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Abstract Optimization is a classical issue and in many

areas that are bound up with people’s daily life. In current

decades, with the development of human civilization and

industry society, many complicated optimization problems

are raised. In the meantime, corresponding novel approaches

are constantly proposed for solving these problems. One of

them is meta-heuristics, which is inspired from natural

phenomena and contains many kinds of algorithms. The

classical meta-heuristic algorithms have exhibited their

superiority in dealing optimization problems, especially for

specific problems such as combinatorial optimization. As a

novel meta-heuristic algorithm, biogeography-based opti-

mization (BBO), inspired from the science of biogeography,

has its own characteristics and exhibits a huge potential in

computation and optimization. According to current inves-

tigations and analysis on this algorithm, it has not only

achieved a great success in numerical optimization prob-

lems, but also been implemented in various kinds of appli-

cations, and drawn worldwide attentions. In this paper, we

present a survey for this algorithm. First, we introduce the

basic operators of BBO, including migration and mutation.

For migration operator, it mimics species migration among

islands, which provides a recombination way for candidate

solutions to interact with each other so that the whole pop-

ulation can be improved. Besides linear migration model,

several other popular migration models are also introduced

and the corresponding performances are analyzed. For

mutation operator, the design of BBO is different from other

meta-heuristics. In standard BBO, different candidate solu-

tions have different migration rates and the rate assignment is

influential to BBO’s performance. Second, we summarized

some popular variants of BBO and related hybrid algorithms

that significantly enhance BBO’s performance. This part

introduces the development of this algorithm and helps

readers understand the way to choose a suitable version of

BBO for a given problem. The way to improve algorithms’

performances helps readers design new variants of BBO for

specific problems. Third, we present the evaluation of BBO’s

performance for both numerical and practical problems. The

results demonstrate BBO is competent to solve optimization

problems. Despite so many achievements of BBO, some

open issues that should be considered and solved in future

work in order to make this algorithm more competitive in

meta-heuristics.

Keywords Optimization � Meta-heuristic �
Biogeography-based optimization � Migration operator �
Mutation operator � BBO’s applications

1 Introduction

In artificial intelligence, optimization is an important issue

which exists in a wide range of practical applications. Even

in our daily life, optimization exists everywhere, such as

optimizing paths in transportation, maximizing profit in

investments and minimizing the payments in journey. In

many real applications, resources, including money, time

and people, are not much enough. Therefore, it is crucial to

do optimization in order to satisfy users’ requirements. To

date, a widely used formulation to summarize an opti-

mization problem can be given as (1).
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Minimize fiðxÞ; ði ¼ 1; 2; . . .;MÞ ð1Þ

subject to:

hjðxÞ ¼ 0; ðj ¼ 1; 2; . . .; JÞ ð2Þ

gkðxÞ� 0; ðk ¼ 1; 2; . . .;KÞ ð3Þ

where fi; hj and gk are usually nonlinear functions, or

integrals, or differential equations. In (1), the vector x ¼
ðx1; x2; . . .; xnÞ can include continuous, discrete or mixed

variables in searching domain. fi is the ith objective func-

tion. If the number of objective functions is two or three,

the optimization problem is multi-objective optimization,

while it is called many-objective optimization if the num-

ber of fi is more than three.

To solve optimization problems, meta-heuristic algo-

rithms inspired by nature phenomena play an important

role and are well implemented in science, engineering,

medicine, finance and so forth. Other than several classic

algorithms such as genetic algorithm (GA) [1, 2], particle

swarm optimization (PSO) [3, 4], ant colony optimization

(ACO) [5], novel approaches are explored and exploited in

recent years. Inspired from the science of biogeography,

Simon proposed biogeography-based optimization (BBO)

in 2008 [6], which mimics the species dynamic distribution

caused by migration and mutation. As a novel meta-

heuristic approach, this algorithm has drawn worldwide

attentions due to its outstanding performance in optimiza-

tion problems and has been well implemented in various

kinds of applications.

The science of biogeography is a branch of geography

that investigates the species distribution and its dynamic

properties from past to present spatially and temporally.

Since the research of biogeography is related to the phys-

ical environment and also includes biomes, taxonomy and

the interactive influence between environment and species

distribution, biogeography is also deemed to be a subfield

of physical geography. The related research of biogeogra-

phy begins by Wallance [7] and Darwin [8] in the middle

and later periods of nineteenth century. In 1967, MacAr-

thur and Wilson [9], who focus on the species distribution

among islands, publish the book named ‘‘The Theory of

Island Biogeography’’, where is to build mathematical

models of biogeography to inaugurate a new view for

biogeography scientists to understand and describe spatial

patterns of species distribution. After that, island biography

gains popularity as the researches of MacArthur and Wil-

son are easy to explain species distribution on islands.

Furthermore, the researches of habitat fragmentation give

rise to the development of landscape ecology and conser-

vation biology.

With the development of computational intelligence,

scientists and engineers would like to solve problems by

learning from nature. Considering that the science of bio-

geography is becoming a mature discipline, it is possible to

propose new computational methods according to the

mechanism in biogeography. The work has been done in

2008 that biogeography-based optimization (BBO) is pro-

posed. Due to BBO’s outstanding performance in handling

optimization problems, this algorithm has already been

implemented in both numerical simulations and practical

applications. In BBO, the algorithm abstracts the mecha-

nism of species migration and mutation, and employs

related mathematical models to depict the species dynamic

distribution. In BBO, ‘‘island’’ is considered as a habitat

which is isolated from other habitats, rather than an area

surround by water [10]. In nature, for a good island, there

are many kinds of species living on it. For the best islands,

the capability for species living is almost saturated. Hence,

the good island has a low immigration rate and a high

emigration rate. However, for a poor island, considering

that the number of the species living on it is small, the

island has a high immigration rate and a low emigration

rate. In BBO, a candidate solution is considered as an

island. The features in the solution are considered as spe-

cies. Species migration is analogous to candidate solutions’

interaction. Hence, for a good solution, it has a high

probability to affect other solutions and has a low proba-

bility to be affected. Meanwhile, for a poor solution, it has

a low probability to affect other solutions and has a high

probability to be affected. It is noted that the probability to

affect other solutions is analogous to immigration rate,

while the probability to be affected by other solutions is

analogous to emigration rate. In BBO, migration operator

and mutation operator are very important to affect algo-

rithm’s performance. For each generation, every candidate

solution has chances to communicate with all other can-

didates. Therefore, the candidate solutions in BBO have

more flexible ways to communicate with each other by

comparing some other classic meta-heuristic method, say

genetic algorithm (GA). Considering BBO is very active in

current researches and gains a big success in optimization

[6, 11–15], we investigate this algorithm and provide this

survey to help readers understand this algorithm and help

this algorithm develop further.

The rest of this paper is organized as follows. In Sect. 2,

we introduce the standard BBO by employing a linear

migration model. In this section, two basic operators, say

migration operator and mutation operator, respectively, are

illustrated. Section 3 presents theoretical analysis on BBO

including Markov model analysis, dynamic model and the

effects of migration and mutation to BBO’s performance.

In Sect. 3, we also summarize variants of BBO and hybrid

algorithms. The implementations and practical applications

of BBO are summarized in Sect. 4. We conclude this paper

and present some open unsolved issues of BBO in Sect. 5.
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2 The method of biogeography-based optimization

2.1 BBO’s mechanism and its fundamental

operators

By abstracting the mechanism of species migration among

different islands, Biogeography-based optimization mim-

ics the species distribution in natural biogeography. It is

noted that the island in BBO is not a piece of subconti-

nental land that is surrounded by water, but describes an

area which is geographically isolated from other areas. In

the science of biogeography, to judge the quality of geo-

graphical areas, we need to consider many elements

including climate, temperature and humidity. All the ele-

ments are called suitability index variables (SIVs), and the

quality of the island is called habitat suitability index

(HSI). For the areas which are suitable for species living,

it has a large value of HSI, while for the areas which are

not suitable for species living, it only has a low HSI.

Hence, the capability of good areas are almost saturated so

that it is difficult to immigrate to the areas, but easy to

emigrate. Oppositely, for poor areas, it is easy to immi-

grate, but difficult to emigrate. In BBO, a poor solution is

analogous to an area that has a low HSI, while a good

solution presents an area that has a high HSI. According to

the mechanism of BBO, good solutions have high proba-

bilities to share their SIVs with other solutions and have a

low probability to accept SIVs from other solutions.

Meanwhile, poor solutions have low probabilities to share

their SIVs with other solutions and have high probabilities

to accept SIVs from other solutions. This is very similar to

species migrating among good and poor areas. To explain

the relationship between species distribution and migration

rates, we give Fig. 1, where I is the maximum possible

immigration rate and E presents the maximum possible

emigration rate, Kmax is the maximum number that an

island can afford and K0 is the number of species that

makes immigration rate equal to emigration rate.

According to Fig. 1, it is obvious that immigration rate

increases as the quality of solution decreases, while the

emigration rate decreases when the quantity of species

decreases. In nature, the curves of natural models may be

more complicated. However, this linear model presents a

descriptive way for us to know the process of species

migration. Novel migration models can be designed if

needed, and we will introduce some in next sections.

In standard BBO, there is a default assignment for the

species number in each island. For convenience, the algo-

rithm assumes that for the ith island, it has i species living

there. According to the design of BBO, a good island has a

large number of species, while a poor island has a small

number of species. In this way, the ranking of islands can

be decided by the number of species. According to Fig. 1, a

linear migration model is presented in (4).

li ¼
Ei

N

ki ¼ I 1 � i

N

� � ð4Þ

where ki and li are the immigration rate and emigration

rate for ith island, respectively, I and E are the maximum

migration rate and maximum emigration rate, respectively,

and N is the population size.

The pseudo-codes of migration operator are shown in

Algorithm 1, where Hi and Hj denote the ith island and the

jth island, respectively, N is the maximum account of

species and D is the dimension of a solution.

Algorithm 1 Pseudo-codes of Biogeography-Based

for i = 1 to N do
for SIV = 1 to D do

Generate a random value r1 ∈ [0, 1]
if λi > r1 then

Hi(SIV ) is selected
else

Hi(SIV ) is not selected
end if
if Hi(SIV ) is selected then

Generate a random value r2 and set Total Sum = r2
∑N

1 μi

Set Temp Sum = 0 and j = 0
while Temp Sum ≤ Total Sum do

j = j + 1
Temp Sum = Temp Sum + μj

end while
Hi(SIV) = Hj(SIV)

else
Hi(SIV) = Hi(SIV)

end if
end for

end for

Optimization Migration Operator

Like most other meta-heuristics, BBO has mutation oper-

ator which helps algorithms break away local optimum and

Fig. 1 Linear migration model in biogeography-based optimization

in a single Island
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explore the searching space. In standard version of most

other meta-heuristic algorithms, the mutation rate is a fixed

value. However, in standard BBO, the mutation rate

dynamically changes during the optimization process. The

design of BBO’s mutation rate takes account of the prob-

ability that migration occurs. To understand the dynamical

mutation rate, we introduce a notation PS which is the

probability that an island contains exactly S species.

In Island S, the immigration rate is kS and emigration

rate is lS. By assuming Dt is small enough so that during

Dt there is no more than one migration (immigration or

emigration) occurs. Hence, PS changes from time t to t þ
Dt as follows,

PSðt þ DtÞ ¼ PSðtÞð1 � kSDt � lSDtÞ þ PS�1ðtÞkS�1Dt

þ PSþ1ðtÞlSþ1Dt ð5Þ

In (5), it contains three cases [6]: (1) for the island contains

S species at time t, no immigration or emigration occurs

during Dt; (2) for the island that contains K � 1 species at

time t, one species immigrates during Dt; and (3) For the

island that contains K þ 1 species at time t, one species

emigrates during Dt. For simplicity, we define the largest

possible species account that an island can support is N (as

mentioned above, the index of island which can support N

species is also N), and obtain

_P ¼ AP ð6Þ

where

P ¼ ½P0; . . .;PN �T ð7Þ

and

A ¼

�ðk0 þ l0Þ l1 0 � � � 0

k0 � ðk1 þ l1Þ l2
. .
. ..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
.

kN�2 � ðkN�1 þ lN�1Þ lN
0 � � � 0 kN�1 � ðkN þ lNÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

ð8Þ

In BBO [6], the mutation rate of Island S is calculated by

(9).

mS ¼ mmax

Pmax � PS

Pmax

� �
ð9Þ

where mmax is defined by users in advance and Pmax and PS

can be obtained by (5). Since (5) involves migration rates,

the mutation rate in (9) is not independent and affected by

migration rates, which is a significant difference between

BBO and other standard meta-heuristics. The pseudo-codes

of mutation operator are shown in Algorithm 2, where N is

the maximum value of island index and D is the dimension

of a solution.

Algorithm 2 Pseudo-codes of Biogeography-Based

for i = 1 to N do
Use λi and μi to compute the probability Pi
and mutation rate mi

for SIV = 1 to D do
Generate a random value R
if R < mi then

Generate a feasible value F in searching space
Hi(SIV) = F

end if
end for

end for

Optimization Mutation

2.2 Comparative study on BBO and other

meta-heuristics

According to current researches, BBO has drawn a lot of

attentions due to its outstanding performances. In this

subsection, we present a comparison study to investigate

the differences of BBO and other meta-heuristics. First, we

compare BBO with several other algorithms in the view of

design and mechanism. Second, we employ widely used

benchmarks to compare algorithms’ performances.

By comparing BBO with several other classical meta-

heuristics, BBO has its own characteristics in design. As a

population-based optimization algorithm, BBO improves

its current population in each iteration, rather than repro-

duce a new population which is termed ‘‘children.’’ Hence,

it is different from genetic algorithm (GA) and evolution-

ary strategy (ES). In ACO (ant colony optimization), the

algorithm generates a new set of solutions according to

pheromone density in paths, while BBO maintains solu-

tions, but only changes some features, from one iteration to

the next. The principle to maintain solutions is based on

migration models. For the comparison between BBO and

PSO (particle swarm optimization), the two algorithms

share information among solutions in a direct and indirect

way, respectively. The candidate solutions in BBO com-

municate with each other in a direct way; namely, it can

directly share their attributes (SIVs) with other solutions.

However, PSO’s solutions communicate with each other by

an additional variable, namely velocity, which is not a

direct interaction. For DE (differential evolution), although

the solutions interact with each other in a direct way, the

motivation to change solutions is based on the differences

among solutions. However, in BBO, the motivation is

dependent on the design of migration models. In [12], the

authors analyze the Markov models for BBO and GA,

respectively, and also employ a simple specific problem as

an example to compare BBO and GA. Considering the

length of this survey, we do not present the problem (which

can be found in [16]), but show the conclusion. The author
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presents BBO’s performance as a function of population

size N as follows:

BBO performance

GA performance
¼ 5N þ 7

3N þ 9

� �D

ð10Þ

where D is the dimension of a solution. To summarize the

conclusion, BBO outperforms GA for all problems sizes

and all population sizes. In addition, the authors also use

several classical combinatorial problems, including trav-

eling salesman problem, graph coloring problem and bin

packing problem, as benchmarks to compare BBO’s and

GA’s performances. All the simulation results exhibit that

the performance of BBO is superior to that of GA. Besides,

the standard BBO also has a big difference comparing with

other meta-heuristics. In BBO, the mutation rate is not a

predefined constant value, but related to migration models,

which means that mutation operator is affected by recom-

bination operator. Besides, for different candidate solu-

tions, their mutation rates are different and dynamically

changes during the whole optimization process. The details

will be presented in following section.

To present a performance comparison between BBO and

several other classical meta-heuristics, we present the

numerical simulation results of BBO and other algorithms.

In [6], Simon firstly employs several widely used bench-

marks to test BBO’s performances. The results can be

found in Table 1, where the details of benchmarks can be

found in [17]. From Table 1, it is obvious that BBO is very

competitive to deal with optimization problems. For Ack-

ley, Fletcher, Rastrigin, Schwefel 1.2, Schwefel 2.21,

Schwefel 2.22, Sphere benchmarks, BBO outperforms

other algorithms. For other benchmarks, BBO also

achieves a very good performance. In [14], the author

employs 23 common benchmarks to investigate a more

comprehensive comparison. The results also demonstrate

that BBO is competent in optimization. The author also

investigates the effects of population size, problem

dimensions, maximum migration rate, etc. to BBO’s per-

formances, which is helpful for users to adjust parameters

in order to pursue a better performance for a specific

problem. The author also proposes several new migration

models and compare the performances. According to the

experimental numerical simulation results, we know that

nonlinear migration models are generally superior to linear

migration models. However, the simulations are done only

for single-objective optimization problems. According to

the sequential studies on multi-objective BBO [15], the

evaluations to migration models should be reconsidered,

which will be illustrated in the following sections.

3 The development of biogeography-based
optimization

3.1 Evaluation and improvement for migration

model

Meta-heuristic algorithms have various kinds of ways to

handle individuals in population to make them more suit-

able to the fitness function so that the population evolutes

toward optimum. The ways to deal with individuals are

usually inspired by nature phenomena. In genetic algo-

rithm, the crossover operator mimics the biological process

by generating chromosomes to next generations [1, 18].

Simulated annealing (SA) is inspired by the annealing in

metallurgy [19]. The idea of particle swarm optimization

Table 1 Mean normalized

optimization results and CPU

times on benchmark functions

over 100 monte carlo

simulations, and the smallest

(best) number in each row is

100

ACO BBO DE ES GA PBIL PSO SGA

Ackley 182 100 146 197 197 232 192 103

Fletcher 1013 100 385 494 415 917 799 114

Griewank 162 117 272 696 516 2831 1023 100

Penalty #1 2.22E7 1.16E4 9.70E4 1.26E4 2.46E5 2.82E7 2.09E6 100

Penalty #2 5.02E5 715 5862 4.234 1.06E4 5.37E5 6.35E4 100

Quartic 3213 262 1176 7008 2850 4.81E4 8570 100

Rastrigin 454 100 397 536 421 634 470 134

Rosenbrock 1711 102 253 716 428 1861 516 100

Schwefel 1.2 292 100 391 425 166 606 592 119

Schwefel 2.21 161 100 227 162 184 265 179 146

Schwefel 2.22 688 100 290 1094 500 861 665 142

Schwefel 2.26 108 118 137 140 142 177 142 100

Sphere 1347 100 250 910 906 2785 1000 109

Step 248 112 302 813 551 3271 1161 100

CPU Time 3.2 2.4 3.3 2.3 2.1 1.0 2.9 2.1

The best performances are marked by bold font and the data are cited from [6]
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(PSO) is inspired from the nature phenomena of birds’

flocking [3]. Ant colony optimization (ACO) mimics the

mechanism of ants foraging behavior [5], and artificial bee

colony (ABC) models honeybees behavior in collecting

nectar [20].

First, we summarize the analysis on migration operators.

As a particular operator in BBO, migration helps BBO

recombine and improve population. The quality of migra-

tion operator is directly influential to algorithm’s perfor-

mance. In [6], linear migration operator is introduced as

shown in Sect. 2. In subsequent researches, novel migra-

tion models are proposed and analyzed. Besides the linear

migration model, in [14] the author propose five new

migration models. By employing a set of 23 benchmarks in

the numerical simulation, it is clear that different migration

models have different performances. A suitable design of

migration model outperforms others for most benchmarks,

which also validates the performances of migration models

are not random. The conclusion in [14] is given that the

performance raises as probability of medium number of

species increases, which presents a guidance for users to

choose a suitable migration model. However, the conclu-

sion does not hold for all cases. To complete the research

of migration models, in [13], Guo et al. investigate

migration models in a mathematical way. By employing

probability analysis, [13] present the roles of emigration

rate and immigration rate, which explore a new view to do

the researches on migration model and the conclusions are

more helpful to design new migration models. The simu-

lation results are in agreement with the analysis and novel

migration models designed based on the analysis is feasible

and effective. Besides, Simon [16] investigates BBO by

Markov analysis. The probability of population transi-

tioning during one iteration is also proposed.

Second, the details are given as follows. In [6], the

original BBO employs a linear migration model which is

explained in Sect. 2. After that, in addition to the linear

migration model, Ma [14] proposes another five novel

migration models which are listed as follows.

Model 1 (Const immigration and linear emigration

model)

kS ¼
I

2
ð11Þ

lS ¼ E
S

N
ð12Þ

Model 2 (Linear immigration and const emigration model)

kS ¼ I 1 � S

N

� �
ð13Þ

lS ¼
E

2
ð14Þ

Model 3 (Linear migration model, which is proposed in

[6].)

kS ¼ I 1 � S

N

� �
ð15Þ

lS ¼ E
S

N

� �
ð16Þ

Model 4 (Trapezoidal migration model)

kS ¼
I; if S� i0

2I 1 � S

N

� �
; if i0\FðKÞ�N

8<
: ð17Þ

lS ¼
2E

S

N
; if S� i0

E; if i0\S�N

8<
: ð18Þ

where i0 ¼ ceilðNþ1
2
Þ and ceil() is an operator that makes a

variable round toward positive infinity.

Model 5 (Quadratic migration model)

kS ¼ I 1 � S

N

� �2

ð19Þ

lS ¼ E
S

N

� �2

ð20Þ

Model 6 (Sinusoidal migration model)

kS ¼
I

2
cos

S

N
p

� �
þ 1

� �
ð21Þ

lS ¼
E

2
� cos

S

N
p

� �
þ 1

� �
ð22Þ

According to the numerical simulation in [14], non-

linear migration models perform better than linear

migration models. After that, Guo et al. investigate the

models’ performances in a mathematical way [13]. The

authors analyze the probability to obtain a good feature

and the probability to retain the good feature by one-

iteration evolution analysis. According to the analysis, for

a solution i, the probability to obtain a good feature is

given in (23).

PobtainðiÞ � ki

P
j2Ji ljPN
j¼1 lj

ð23Þ

where Ji ¼ fj 2 ½1;N� : fj is better than fig and N is the

population size. The probability for solution i to retain the

feature is given in (24).

PretainðiÞ ¼ 1 � ki 1 � liP
j lj

 !
ð24Þ

From (23) and (24), we know that, for solution i, a large

value of l is helpful to obtain and retain good features.
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However, it is not easy to decide the design for immigra-

tion rate, say k. A large value of k can enhance BBO’s

ability to obtain good features, but reduce the probability to

retain the features. Hence, the design of immigration model

should balance the probabilities to obtain and retain good

features.

The analysis of migration operator had also been done

by Markov models. In [21], Simon et al. focus on migration

operator to investigate BBO’s population transitioning

during one iteration. The authors conduct Markov analysis

for BBO and use multinomial theory to present the prob-

ability Pr(u|v), shown in (25), that BBO obtains a popu-

lation vector u after one iteration, given that BBO starts

with a population v.

PrðujvÞ ¼
X
J2Y

YT
k¼1

YN
i¼1

½PkiðvÞ�Jki ð25Þ

where

PkiðvÞ ¼
Yq
s¼1

1 � kmð Þ10 xmðsÞ � xiðsÞð Þ þ km

P
g2GiðsÞ vglgPn

j¼1 vjlj

" #

ð26Þ

Y ¼
(
J 2 RT�N : Jki 2 f0; 1g;

XN
i¼1

Jki ¼ 1

for all k;
XT

k¼1

Jki ¼ ui for all i

)
ð27Þ

and 10ð�Þ is an indicator function on set f0g,

GiðsÞ ¼ fg : xgðsÞ ¼ xiðsÞg, T is the number of trials and N

is the population size. The introduction of mutation oper-

ator based on Markov analysis is given in next subsec-

tion. However, the computational cost to calculate Markov

model is very expensive because of the ðN þ T � 1Þ-
choose-T size of the Markov transition matrix. In simula-

tion, the authors employ the 3-b one-max problem to val-

idate the analysis conclusion.

3.2 Analysis of BBO’s mutation operator

Like most other meta-heuristic algorithms, BBO also has

mutation operator that plays an important role in exploring

the search space, maintaining the diversity of population

and getting rid of local optimums. In [21], the authors

conduct Markov analysis for mutation operator. By defin-

ing Uij as the probability that xj mutates to xi, we obtain a

n� n mutation matrix U. The probability that the kth

immigration trial followed by mutation results in xi is

denoted as P
ð2Þ
ki ðvÞ which can be depicted in (28).

P
ð2Þ
ki ðvÞ ¼

Xn
j¼1

UijPkjðvÞ ð28Þ

from which we can obtain the following format.

Pð2ÞðvÞ ¼ PðvÞUT ð29Þ

where P(v) is composed by the elements shown in (26). In

this case, considering both migration and mutation, the

probability of transitioning from population vector v to u

after one generation as

PrðujvÞ ¼
X
Y

YT
k¼1

YN
i¼1

½Pð2Þ
ki ðvÞ�

Jki ð30Þ

where Y is same as in (27).

In Sect. 2.2, we present comparisons between BBO and

other meta-heuristics. As mentioned, the design of muta-

tion operator in BBO is very different from the standard

version of other meta-heuristics. In most other standard

meta-heuristics, the value of mutation rate is predefined by

users’ experiences and the value is fixed during the whole

optimization process. Besides, the mutation operator is

independent of recombination operator. However, there is a

big difference between BBO and other meta-heuristics in

design of mutation operator. According to (9), for island S,

the mutation rate is composed by two parts. The first part is

mmax which is defined by users in advance. This value

limits the maximum value of migration rate. The second

part is related to probabilities PS and Pmax. Considering

that PS and Pmax are calculated based on migration models,

mutation rates are related to migration models, which

means that if migration model changes, mutation rates

change. Besides, for a solution S, its ranking in the whole

population may change so that its migration rates will

change, and therefore, the value of PS changes, then mS

changes according to (9). Hence, the mutation rate of

solution S is not fixed during the whole optimization pro-

cess, but dynamically changes. To present a visual expla-

nation, an example is given in Fig. 2. In this example, we

employ a linear migration model, quadratic model and

sinusoidal model, respectively. The population size is set as

50 and predefined mutation rate mmax is 0.05.

As shown in Fig. 2, we can drawn two conclusions: (1)

In BBO, for different solutions, their mutation rates are

different. (2) The selection of migration models will affect

the migration rates. These make the design of mutation

operator more complex. In order to reveal the relationship

between the mutation operator and migration operator, Guo

et al. employ drift analysis to investigate the expected

value of first hitting time (EFHT) of BBO with different

mutation operators [22]. In that paper, the authors take

account into three kinds of objective functions including

linear functions, pseudo-modular functions and almost

positive functions. For convenience, the authors use detail

functions, shown in (31), (32) and (33), to conduct the

analysis for mutation operators.
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Linear function

Maximize FðXÞ ¼
Xn
i¼1

xi ð31Þ

Pseudo-modular function

Maximize FðXÞ ¼
Xn
i¼1

Yi
j¼1

xj ð32Þ

Almost positive function

Maximize FðXÞ ¼ n�
Xn
i¼1

xi þ ðnþ 1Þ
Yn
i¼1

xi ð33Þ

According to the analysis in [22], for the metric first hitting

time, quadratic migration model can generate better

mutation rates than sinusoidal migration model, and sinu-

soidal migration model can generate better mutation rates

than linear migration model. Since the drift analysis is only

implemented to three specific problems, there lacks general

conclusions to evaluate the effects of mutation models to

BBO’s performance. From the conclusions, it is intuitive to

conclude that a large mutation rate can provide more

chances for population to obtain good features. Although

the conclusions in [22] are limited to specific problems, but

useful for readers to do an analysis for given problems.

Besides, they are also can be considered as references to

design migration models. This conclusions also match the

study in [14]. Sinusoidal migration model which can pro-

vide a large mutation rate outperforms linear migration

model which can only provide a relatively small mutation

rate. Besides, the numerical simulation results in [14] also

demonstrate that a too large value of mutation rate will also

reduce algorithm’s ability. Hence, a proper value of mmax is

crucial to BBO’s performance.

3.3 Development of BBO and hybrid algorithms

After Simon first proposes BBO in 2008 [6], many works

to develop BBO have been done from different views.

There are mainly four aspects. The first one is improve-

ment of migration operators. As a recombination operator,

the design of migration operator directly affects BBO’s

performance, and therefore, the related work is most

attractive. Many improved versions of BBO’s migration

operators have been proposed. Second, mutation operator is

also a crucial operator that affects BBO’s performance.

Classical and novel mutation operators are implemented to

BBO in order to enhance BBO’s ability. Third, in the

research of bio-inspired algorithms, hybrid algorithm is

also a hot topic, since in general, a hybrid algorithm can

combine advantages from two or more algorithms so that

the proposed algorithm can exhibit a more powerful ability

in optimization. BBO is also been used to hybridize algo-

rithms and achieve very good performances. Fourth,

nowadays, many complex problems are raised, including

multi-objective optimization, large-scale optimization and

expensive optimization. For the specific problems, BBO

should be modified to fit the requirements in solving

problems. The first three points focus on the improvement

of algorithms’ design, while the fourth one is about BBO’s

application. In this section, we investigate BBO’s design

(the first three points), while the applications (the fourth

point) will be summarized in Sect. 4.

3.3.1 Variants of BBO

After the standard version of BBO, Simon proposes a

simplified version of BBO, which is called SBBO in [23].

For a migration, the steps are given as follows. For each

iteration, SBBO does not evaluate all solutions, but only

tracks the best candidate solution.

1. In an iteration, find the best solution xbest in the whole

population.

2. Randomly generate a integer s 2 ½1;N�, where N is the

population size.

3. Select an island xj according to immigration rates

which satisfy a uniform probability distribution.

4. xj ¼ xbest

As illustrations in above steps, the immigration and emi-

gration rates meet a uniform provability distribution, which

can be explained as in Fig. 3. Based on SBBO, it is easy to

be implemented by Markov analysis. In the analysis of

[23], the authors focus on the probability per generation

that a population optimum improves, the state matrix of the

algorithm, and the expected amount of improvement in the

population optimum, which provides an easy way for

researchers to explore and exploit BBO.

Fig. 2 Mutation rates with linear migration model, quadric migration

model and sinusoidal migration model (predefined maximum muta-

tion rate mmax ¼ 0:05, population size = 50)
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A dynamic system model for BBO is proposed and

discussed in [16]. In [16], Simon summarizes a previously

proposed Markov model of BBO and derives a dynamic

system model for BBO. In dynamic system model, the

authors make a slight modification in standard BBO. In

BBO, all N candidate solutions will take part in immigra-

tion, while in [16], the algorithm chooses a random can-

didate solution for N times. The pseudo-codes are given in

Algorithm 3. By comparing the dynamic model of BBO

with the corresponding models with GA on a set of 19

classical benchmarks, it is obvious that BBO far outper-

forms GAs in simulation with low mutation rates (0.1xxx).

Besides, for problems with large dimension, BBO are also

has a better performance than GAs.

Algorithm 3 Pseudo-codes of Dynamic System Model for

for h = 1 to N do
Generate a random integer r ∈ [1, N ]
for SIV = 1 to D do

if Hr is selected by lambdar to be immigrated then
Use μ values to select the emigrating individual Hj

Hi(SIV ) = Hj(SIV )
end if
Probabilistically mutate Hi

end for
end for

Biogeography-Based Optimization

In current years, BBO has been much explored and

improved and many variants of BBO are proposed. After

Simon proposes BBO, related analysis on standard BBO

begins in subsequent works. In 2009, Ergezer et al. propose

oppositional Biogeography-Based Optimization (OBBO)

in [24] by employing opposition-based learning (OBL)

[25]. For OBL, its principle is that a number’s opposite is

probably closer than a random number to the right solution.

As an efficient machine learning method for reinforcement

learning [25, 26], oppositional learning has been well

implemented in soft computing including neural network

[27, 28], fuzzy systems [29] and differential evolution [30,

31]. For the combination of BBO and oppositional

learning, [24] illustrated two ways. The first one is open-

path opposition, which is efficient for problems with non-

connected nodes such as the graph coloring problem. The

second is circular opposition, which is suited for problems

where the endpoints are linked, say TSP problem. The

simulation results demonstrate that the performance of

OBBO enhances as the dimension of problem increases.

Compared with the standard BBO, OBBO has a high

probability to produce qualified solutions with lower

computation cost. A similar way to produce more

promising solutions is to employ local searching ability

[32, 33], other than the oppositional way, the local

searching technology do a local searching around current

solutions, which is to enhance the probability to pursue

better solutions. In OBBO, OBL algorithm is called with a

probability Jr 2 ½0; 1� after migration and mutation opera-

tor. The pseudo-codes are given in Algorithm 4.

Algorithm 4 Pseudo-codes of Oppositional

Operate BBO’s migration and mutation to obtain
H

Generate a random value R ∈ [0, 1]
if R > Jr then

Quit the program
else

Find min value (Min), max value (Max) and median value

for i = 1 to N do
for SIV = 1 to D do

OHi(SIV ) = Min + Max − Hi(SIV )
end for

end for
end if
Rank OH and H together and select the first N individuals

Biogeography-Based Optimization

(Median) in the whole population

to compose new population

Population

Besides opposition-based learning, an improved version,

termed quasi-opposition-based learning technology, is

implemented in [34]. For quasi-oppositional operation,

Line 10 should be changed as shown in Algorithm 5, where

Median ¼ MinþMax
2

, j 2 ½0; 1� is a reflection weight which is

Fig. 3 SBBO’ migration curves

in island. All solutions have the

same probability of migration

rates except the best solution

with kbest ¼ 0 and lbest ¼ 1
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introduced to determine the amount of reflection based on

the solution fitness.

Algorithm 5 Pseudo-codes of Quasi-Oppositional Operation

if Hi(SIV ) < Median then
OHi(SIV ) = Hi(SIV ) + (Median − Hi(SIV ))κ

else
OHi(SIV ) = Median + (Hi(SIV ) − Median)κ

end if

3.3.2 Improvement of migration and mutation operators

As a crucial operator in BBO, migration and mutation

operators have drawn many attentions in current resear-

ches. In 2009, a perturb Biogeography-Based Optimization

(PBBO) is proposed in [35]. In standard BBO, if a solution

is not selected to be immigrate, migration operator does not

run. However, in [35], for the solutions that not be selected

to be immigrated, perturb method is used which is to select

a neighborhood solution to update the current one. The

pseudo-codes are given in Algorithm (6), where u 2
½�2; 0� is a random value.

Algorithm 6 Pseudo-codes of migration operator in PBBO

for i = 1 to N do
for SIV = 1 to D do

if Hi(SIV ) is selected to be immigrated by Hj(SIV ) then
Hi(SIV ) = Hj(SIV )

else
Generate a random integer t ∈ [1, N ]
Hi(SIV ) = Hi(SIV ) + ϕ(Hi(SIV ) − Ht(SIV ))

end if
end for

end for

Besides, the author also employs Gaussian mutation

operator in PBBO, which can be depicted in (34).

HiðSIVÞ ¼ HiðSIVÞ þ Nð0; 1Þ ð34Þ

where N(0, 1), shown in (35), satisfies the Guassian dis-

tribution [36].

Nð0; 1Þ ¼ 1ffiffiffiffiffiffi
2p

p e�
x2

2 ð35Þ

Two years later, an improvement in migration operator

for the case Hi is selected is proposed in [37]. Considering

that in standard BBO, if HiðSIVÞ is selected to be immi-

grated by HjðSIVÞ, the operator HiðSIVÞ ¼ HjðSIVÞ. This

may shrinks searching space so that to results in a local

optimum. Hence, Ma proposes a novel operator which

combines the features of both immigrators and emigrants,

shown in Algorithm 7. This strategy helps BBO maintain

population diversity and so that avoid local optimum.

Algorithm 7 Pseudo-codes of migration operator

for i = 1 to N do
for SIV = 1 to D do

if Hi(SIV ) is selected to be immigrated by Hj(SIV ) then
Hi(SIV ) = (1 − α)Hj(SIV ) + αHi(SIV )

else
Hi(SIV ) = Hi(SIV )

end if
end for

end for

in Blended BBO

In Algorithm 7, a 2 ½0; 1� is used to adjust the weights of

current candidate solution and immigrate solution. In [37],

the authors investigate the setting of a in an experimental

way. The test results conclude that a proper value of a, say

a ¼ 0:5, performs better than a large or a small value of a, say

a ¼ 0 and 0.8, respectively. In [6, 35] and [37], design of

migration operator only involves another one solution,

which means the current candidate will learn from another

solution. To learn from more than one solution in one

migration, Xiong [38] proposes, in 2004, a polyphyletic

migration operator, which employs another two solutions in

migration operator. The pseudo-codes are given in Algo-

rithm 8, where u 2 ½0; 1�, i; j; l; s 2 ½1;N�, N and D are pop-

ulation size and problem dimension, respectively. After

migration, [38] employs orthogonal learning strategy (OLS)

so that BBO can search potential solutions around current

solutions. The strategy, given in Algorithm 9, is also pro-

posed in [39]. In Algorithm 9, Ai ¼ H
p
i best, where

i ¼ 1; 2; . . .;N. H
p
i best is randomly chosen as one of the top

p� 100% (p 2 ð0; 1�) ranking solutions in the current pop-

ulation and should be different fromHi. This strategy divides

a large dimension into several factors and employs orthog-

onal rules to produce new generations. Based on the analysis

and simulation results, this method helps BBO improve

population diversity and enhance the convergence speed.

Considering that orthogonal learning strategy is not the main

focus in this survey, we do not present the details, but rec-

ommend [40] and [41] as references. By combing Algorithm

8 and Algorithm 9, [38] proposes polyphyletic orthogonal

learning BBO, which is abbreviated as POLBBO.

Algorithm 8 Pseudo-codes of polyphyletic migration operator
for i = 1 to N do

for SIV = 1 to D do
if Hi(SIV ) is selected to be immigrated then

Select Hj with respect to μj

if rand(0,1) < μj then
Randomly select l � = i � = j
Hi(SIV ) = Hj(SIV ) + ϕ(Hj(SIV ) − Hl(SIV ))

else
Generate a random integer s �= i
Hi(SIV ) = Hs(SIV )

end if
else

Hi (SIV ) = Hi(SIV )
end if

end for
end for
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In [42], the authors propose four variants of migration

operators, which are total immigration-based BBO, partial

immigration-based BBO, total emigration-based BBO and

partial emigration-based BBO, respectively. The corre-

sponding Markov analysis is also done for the four algo-

rithms. For partial immigration model, it is the same as

standard BBO, which employs k to decide whether a

solution should be immigrated or not. In total immigration-

based BBO, k is used to decide whether a whole solution

should immigrate. If a solution is selected to be immi-

grated, all the composing features will involve in immi-

gration. The pseudo-codes are shown in Algorithm 10.

Algorithm 10 Pseudo-codes of Migration Operator

for i = 1 to N do
Generate a random value r1 ∈ [0, 1]
if λi > r1 then

Hi is selected
else

Hi is not selected
end if
if Hi is selected then

for SIV = 1 to D do
Generate a random value r2 and set Total Sum = r2

∑N
1 μi

Set Temp Sum = 0 and j = 0
while Temp Sum ≤ Total Sum do

j = j + 1
Temp Sum = Temp Sum + μj

end while
Hi(SIV) = Hj(SIV)

end for
end if

end for

in total immigration-based BBO

In both partial immigration-based BBO and total

immigration-based BBO, the sequence in migration is that

emigration occurs after immigration. To change the

sequence, Ma [42] proposes partial emigration-based BBO

and total emigration-based BBO, which are shown in

Algorithm 11 and Algorithm 12. In these two algorithms,

immigration occurs after emigration, which means that

only emigration rate is used to decide whether migration

occurs. If emigration rate occurs by l selection, immigra-

tion occurs to select immigrators according to k.

Algorithm 11 Pseudo-codes of Migration Operator for

for i = 1 to N do
for SIV = 1 to D do

Generate a random value r1 ∈ [0, 1]
if μi > r1 then

Hi(SIV ) is selected
else

Hi(SIV ) is not selected
end if
if Hi(SIV ) is selected then

Generate a random value r2 and set Total Sum = r2
∑N

1 λi

Set Temp Sum = 0 and j = 0
while Temp Sum ≤ Total Sum do

j = j + 1
Temp Sum = Temp Sum + λj

end while
Hi(SIV) = Hj(SIV)

else
Hi(SIV) = Hi(SIV)

end if
end for

end for

Partial Emigration-based BBO

Algorithm 12 Pseudo-codes of Migration Operator

for i = 1 to N do
Generate a random value r1 ∈ [0, 1]
if μi > r1 then

Hi is selected
else

Hi is not selected
end if
if Hi is selected then

for SIV = 1 to D do
Generate a random value r2 and set Total Sum = r2

∑N
1 λi

Set Temp Sum = 0 and j = 0
while Temp Sum ≤ Total Sum do

j = j + 1
Temp Sum = Temp Sum + λj

end while
Hi(SIV) = Hj(SIV)

end for
end if

end for

in total emigration-based BBO

Quantum BBO (QBBO) is proposed in [43], which

employs multi-quantum probability models. In the decision

space, by establishing a quantum model in an area that

represents a habitat, migration models work more efficient

to generate promising solutions. A combinatorial problem

Algorithm 9 Pseudo-codes of Orthogonal Learning Strategy on Hi

Generate an assisted body Ai

Generate an orthogonal array LR(2D) using the procedures given in [40] and [41]
Make up D tested solutions Hi (i = 1, 2, ..., D) according to the orthogonal array
Evaluate each Hr and record the best solution Ha

Using the factor analysis to derive a predictive solution Hb and evaluate Hb

Compare f(Ha) with f(Hb), and the better solution is used as the vector Vi
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named 0-1 knapsack problem is considered as benchmark

in simulations, and the results demonstrate that QBBO

have efficient ability to solve hard optimization problem.

In nature, predators must hunt prey to live, while the

prey needs to run away from the predators. Inspired by this

phenomenon, a predator–prey strategy is imported into the

design of BBO to enhance BBO’s searching ability of

obtaining good features. In [44, 45] and [46], the authors

adopt the concept of predator–prey strategy, which the

inferior individuals (preys) will be hunted, namely

replaced, by good individuals (predators). The replacement

probability increases with increasing iteration. This design

is effective to increase population diversity and overcome

the traps of local optimum.

Besides the investigation on regular mutation operator,

some classical mutation operator are implemented to BBO.

Since the regular mutation operator is more likely to

mutate in a random way, it lacks the exploration ability. To

enhance the effectiveness of mutation operator, Gong [47]

employs Gaussian mutation, Cauchy mutation and Lévy

mutation, respectively, in real-code BBO to reveal the

effects of mutation operator to algorithms’ performances.

The three kinds of mutation operators are widely used in

evolutionary algorithms. Comparing with standard BBO,

the modified mutation operator has a superior ability to

explore searching space. Although, in [47], the authors do

not draw a conclusion to compare the qualities of the three

mutation operator, the modified mutation operators

enhance BBO’s performance to explore searching space,

especially for the high-dimensional problems. In [48], a

modified BBO is proposed which is inspired from the

natural phenomenon that same individuals will be pre-

vented. Hence, the authors control the mutation rate to keep

individuals from mutating to the near feasible solutions so

that the population in BBO can maintain a suitable diver-

sity. In this way, the mutation operator is more effective to

help algorithm converge fast. In [49], the authors design a

mutation operator by involving chaos mapping, which is

given in (36).

HnewiðSIVÞ ¼ HiðSIVÞ þ ð1 � 2xÞ ð36Þ

where xnþ1 ¼ lxnð1 � xnÞ, l is the control parameter

which is often equal to 4 for full range of mapping and xi is

a variable between 0 and 1 and the initial value of x,

namely, x1 6¼ 0; 0:25; 0:5; 0:75; 1. After mutation, the pro-

posed algorithm operates selection between Hnewi and Hi. If

the new candidate solution Hnewi is better than Hi, then

Hi ¼ Hnewi. Otherwise, Hi does not change. In standard

BBO, the mutation is operated in random way. However, in

the chaos way, BBO can mutate around the current solu-

tions so that the algorithm is able to find more precious

solutions.

3.3.3 Hybrid algorithms based on BBO

Hybrid algorithms combing advantages of each individual

algorithm are widely used to enhance algorithms’ perfor-

mance. In the research of BBO, hybrid approach is also

popular and successful.

In [50], the authors propose DE/BBO algorithm which is

a hybridization of BBO and another popular meta-heuristic

algorithms termed differential evolution (DE) which is a

robust and fast global optimization algorithm [51]. DE/

BBO that has the exploration ability of DE and the

exploitation ability of BBO is effective to generate com-

petitive solutions in handling global numerical optimiza-

tion problems. The pseudo-codes of the migration in DE/

BBO algorithm are given in Algorithm 13. A set including

23 benchmarks are used to verify the algorithm’s perfor-

mance. Some other issues including the effects of popu-

lation size, dimensions, parameter setting are also

discussed in that paper. In [52], a BBO-DE algorithms is

also proposed and applied to a wireless sensor network

(WSN) problem, which the objective is to minimize the

total power spent. The algorithm’s performances are

compared with BBO and DE, respectively, and show that

the proposed algorithm performs better than individual

ones.

Algorithm 13 Pseudo-codes of hybrid migration operator of DE/BBO
for i = 1 to N do

Generate three different integers a1, a2 and a3 (a1, a2, a3 �= i)
Generate a random integer j ∈ (1, D)
for SIV = 1 to D do

Generate a random value r1 ∈ [0, 1]
if r1 < λi then

Generate a random value r2
if r2 < CRorj == jrand then

Hi(SIV ) = Ha1(SIV ) + F × (Ha2(SIV ) − Ha3(SIV ))
else

Select Hk with probability according to μk

Hi(SIV ) = Hk(SIV )
end if

else
Hi(j) = Hi(j)

end if
end for

end for

In [53], the authors hybridize BBO with other two kinds

of evolutionary algorithms, ant colony optimization (ACO)

and artificial immune algorithm (AIA) in two different

ways. However, the hybrid strategies are only implemented

by sequential operating different algorithms, but not com-

bine different meta-heuristical algorithms into a novel

algorithm. The flowcharts are given in Fig. 4. Several

numerical simulations and practical problems are consid-

ered as benchmarks to validate the proposed hybridization

method is feasible and effective in solving optimization

problems. However, from Fig. 4, we know that the hybrid

strategy is proposed just by sequentially operating different
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algorithms, but do not combine the design ini one

algorithm.

In [54], the authors propose a hybrid algorithm of BBO

and artificial bee colony (ABC) for global numerical

optimization problem. In this paper, the migration operator

in BBO is imported by the mechanism of ABC, which

trains the migration rates by ABC in order to obtain a more

suitable rate setting. This hybridization is helpful for can-

didate solutions to obtain good features. A set of 13 clas-

sical benchmarks are tested to demonstrate the feasibility

and effectiveness of this method. By comparing this

algorithm with other standard evolutionary algorithms, it

shows that the algorithm has superior ability in dealing

with optimization problems. In [55], the authors hybridize

BBO and PSO to propose biogeography-based particle

swarm optimization (BPSO). A hierarchical structure is

designed, which the population are split into several

groups. The flowchart of BPSO is given in Fig. 5. For each

generation, in the inner of group, PSO is utilized to select

elite individuals and all the elite individuals composes the

initial population for BBO. The individuals selected by

BBO will take part in the next generations of PSO. Based

on the simulation results, the BPSO outperforms both of

BBO and PSO. Several mechanical design problems are

also considered as benchmarks to validate the superiority

of hybrid design.

Fig. 4 a Flowchart for BBO AIA 1, b Flowchart for BBO AIA 2, c Flowchart chart for BBO ACO 1. Cited from [53]

Fig. 5 Flowchart of BPSO.

Cited from [55]
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4 The applications of biogeography-based
optimization

Considering that BBO’s performances are very outstanding

in different kinds of optimization problems, this algorithm

has drawn many worldwide attentions and been imple-

mented to various kinds of practical applications including

power systems, image processing, wireless network, path

planning and job shop schedule. A list of BBO’s applica-

tions are presented in Table 2.

As a very important practical area in industry, power

system is a very hot and attractive practical case. In power

system problems, economic load dispatch (ELD) problem

and optimal power flow are common and important. In

[82, 85] and [83] which is a global optimization problem

with multi-objectives and has nonlinearity and constraints,

is a common and important problem in power system. In

[83], the authors propose four kinds of economic load

dispatch problems, which are ELD with quadratic cost

function and transmission loss, ELD with prohibited

operating zones and ramp rate limits, ELD with valve-

point loading effects, and ELD with combined valve-point

loading effects and multi-fuel options, respectively. By

employing BBO in [83] and [82], Bhattacharya considers

two cases that are convex optimization and non-convex

optimization, respectively, in ELD and the simulation

results show a good performance of BBO. For BBO, it is

easy to deal with non-convex optimization with constraints

which includes transmission losses, electric load, limita-

tion of slide speed, multi-fuel and no operation area. In

[84], Bhattacharya uses DE and BBO to deal with ELD

problem in convex and non-convex thermal power gen-

erator and gains well performance in handling this

problem.

Table 2 Applications and

Implementations of BBO
Application areas References and problems

Combinatorial problems [12, 56, 57], TSP

[12, 43, 58], Knapsack problem

[12], Graph coloring problem

Communications [59–61], Antenna arrays

[62], Wireless networked learning control system

[63], Cognitive radio system

[52], Wireless sensor network

Computation [64], GPU

[65], Grid computing systems

Energy [49], Solar and fuel cells

[66], Thermal engineering

Image processing [67], Image matching

[68], Video coding

[69, 70], Satellite image classification

Job shop scheduling [71], Job shop scheduling

Mechanical engineering and design [55], Mechanical engineering design

Medicine [72], Electrical impedance tomography

[73], CT-scan

Parameter estimation and tuning [74, 75], PID parameter tuning

[76–79], Parameter estimation for chaotic system

Power system [34, 45, 80, 81], Optimal power flow

[82–85], Economic load dispatch problem

[86], Power management

[87], Design of static var compensator controller

[88], PMU placement

[89], VAR control

[90], Voltage stability

Robotics [91], Robot parameter tuning

System engineering [92], Complex system

Vehicles and transportation [93], Emergency railway wagon scheduling

[46, 94], Path planning
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In [56], Ergezer et al. further explore OBBO, which

introduce two different strategies of opposition, open-path

opposition and circular opposition, respectively, to solve

two types of combinatorial optimization problems, 16

vertex coloring problem and 16 traveling salesman prob-

lem, respectively. The results validate the superiority of

OBBO. In [87], a Cauchy mutation strategy is introduced

into an improved biogeography-based optimization (IBBO)

algorithm in order to design an optimal sub-synchronous

damping controller. The distribution function of Cauchy

distribution is given in (37).

CðiÞ ¼ 1

2
þ 1

p arctanðiÞ ð37Þ

The formula of the mutative scale of chaos and Cauchy

distribution is given as follows:

Hnew iðSIVÞ ¼ ð1 � -SIVÞHcbðSIVÞ þ -SIVCðiÞ ð38Þ

where Hnew i is the newly generated optimized individual

and Hcb is the best individual in current population. After

running (38), if the fitness of Hnew i is better than that of

the Hcb, it remains. Otherwise, we still use Hcb as the

current best solution and give up Hnew i. CðiÞ is the chaos

or Cauchy iteration variable mapped to the parameters of

the search space. -SIV is a variable scale factor, which can

be obtained with the following formula:

-k ¼ 1 � ðk � 1Þ
k

����
����
c

ð39Þ

where c is a parameter which is to adjust convergence

speed. The paper summarizes the design of SVC controller

as a constrained optimization problem as follows:

max f ¼ 1

n
� jjRjj1 ð40Þ

where R ¼ ðg1; g2; . . .; gnÞT , jjRjj1 ¼
Pn

i¼1 gi, gi [ 0. The

simulation results show that the improved BBO is com-

petent to solve SVC controller. The Cauchy mutation

strategy is also used in [67]. By importing cauchy mutation

in BBO, paper [67] applies BBO to image matching based

on lateral inhibition technology and the results also

demonstrate that the Cauchy mutation is competitive in

dealing with the optimization in image matching.

In [55], a hybrid strategy on BBO and PSO is proposed.

In the hybridization, two strategies are employed. The first

one is hierarchical strategy. The whole population is divi-

ded into several groups. In each group, namely low layer,

PSO is implemented to select good individuals. All group

good individuals are collected together as a new population

in upper layer to be implemented by BBO. Second, in the

selection from groups to upper layer, a large proportion of

individuals are adopted. This strategy helps algorithm

employs more good solutions in generating next

population. By employing several classical mechanical

engineering problems, the algorithm is tested and the

results demonstrate the proposed algorithm is superior to

previous work.

BBO is well implemented in complex system with

multi-subsystems, multi-objectives and multi-constraints

[92]. Considering that complex system is very common in

practical applications which involve more than thousands

of variables, it is very necessary to design BBO for com-

plex systems. In [92], the authors propose the idea of dis-

tances between island to rank solutions, which is given as

follows:

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc
k¼1

ðShak � ShbkÞ2

s
ð41Þ

The distances are influential to migration rates and there-

fore affect algorithms’ performances. This calculation is

valid if and only if both islands share the same structure,

which means that they have the same SIV type at the same

location. However, in a complex system, subsystems usu-

ally have different island structures. Three complex system

optimization algorithms are used to compare the design of

BBO/Complex. The results show that BBO demonstrates a

very competitive performance.

In [45], the authors apply BBO with predator–prey

strategy to optimize power flow. In predator–prey strategy,

the best solution is considered as a predator, while the

worst solution is considered as a prey. Predator is moti-

vated to affect other solutions, while the prey is pushed to

be improved. Hence, the algorithm can exhibit a huge

potential to pursue optimums. Predator–prey strategy is

also used in [46] and extended to multi-objective opti-

mization problems in [44].

In [80], the authors consider a three-objective power

flow problem, and 9-bus, 26-bus and IEEE 118-bus sys-

tems are taken into account as the benchmarks to compare

BBO and other well used optimization algorithms includ-

ing genetic algorithm and particle swarm optimization. The

simulation results demonstrate that BBO outperforms oth-

ers in handling this optimization problem. BBO also per-

forms well in parameter estimation and tuning. The

algorithm is employed in PID controllers for vibration

control of active suspension system in [74]. Paper [62]

employs BBO and Kalman filter in wireless network

learning control system for PID parameter tuning. Besides

parameter estimation in PID controller, BBO is also used to

other systems for parameter estimation. In [76, 78] and

[77], the authors employ BBO to investigate the parameter

estimation in chaotic system. According to the results,

BBO is competitive in dealing with parameter estimation

problems. Considering that meta-heuristics is very popular

in design of antenna, in [59], BBO is adopted in the design
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of isotropic linear antenna arrays by optimizing null control

and side lobe level. In [63], the authors use BBO to help

cognitive radio system to meet the quality of service

including five objectives : maximum spectral, minimum

interference, maximum throughput, minimum bit error rate

and minimum transmit power. There also exist successful

cases of BBO in transportation systems. Emergency rail-

way wagon scheduling plays an important role in railway

transportation. By employing BBO, Zheng et al. [93]

investigate the scheduling for emergency railway wagon in

a mathematical way, which takes into account multiple

targets stations, source stations and transfer stations. Path

planning is a hot topic in various kinds of applications,

such as [46] and [94] for path planning in uninhabited

combat air vehicle (UCAV) and Voronoi diagram (VD).

All the achievements illustrate that BBO does not only

exhibit a dramatic performance in analysis and numerical

simulation, it also plays an active role in applications. In

above applications, the comparisons of BBO and other

evolutionary algorithms are conducted and the results show

that BBO is competent to solve optimization problems.

5 Discussions and conclusions

In current years, BBO deserves worldwide attentions due to

its novelty and remarkable performance. However com-

pared with some other classical meta-heuristics such as

genetic algorithm, particle swarm optimization and ant

colony optimization, the basic research of BBO is not

completed. Hence, there still exists some topics related to

BBO are supposed to be further investigated. The examples

are given that the parameter setting, complexity analysis,

design of fitness functions as well as the exploitation of

applications should be studied in future work.

To be specific, two aspects are illustrated as follows.

First, in the field of theoretical research, though BBO

has been analyzed by establishing Markov model and

theoretical/experimental comparisons also validate the

superiority of this algorithm, there is still a long way to

further explore this algorithm. Although the improve-

ments of algorithm including the proposal of PBBO,

OBBO, DE/BBO and PBSO have demonstrated their

powerful abilities in simulations and experiments of

computation and optimization, the investigations of

mechanisms of these algorithms including convergence

and complexity analysis are few in a mathematical view.

Besides, the hybridization of algorithms can be con-

ducted from the view of other disciplines including fuzzy

logistics, neural networks and big data structures. Sec-

ond, the applications of BBO can be exploited in future

work. By referring the applications of other meta-

heuristics, BBO can play more important roles in various

areas including data mining, information security and

bioinformatics, since its current applications exhibit that

BBO has a competitive ability in dealing with practical

implementations.
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