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Abstract In this paper, an interpolation neural network is

introduced for the learning of a wind turbine behavior with

incomplete data. The proposed hybrid method is the

combination of an interpolation algorithm and a neural

network. The interpolation algorithm is applied to estimate

the missing data of all the variables; later, the neural net-

work is employed to learn the output behavior. The pro-

posed method avoids the requirement to know all the

system data. Experiments show the effectiveness of the

proposed technique.

Keywords Neural networks � Interpolation � Hybrid
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1 Introduction

The hybrid systems have been widely used in the learning

of incomplete data for the applications of nonlinear mod-

eling [21, 28], prediction [27], pattern recognition [33],

classification [23, 25], control, fault detection, and diag-

nosis in industrial systems [7, 13], visual inspection [15],

and cascaded systems [3].

There are many studies about hybrid systems for the

learning of nonlinear behaviors. Despite the proposals, few

researches have been carried out in the past to perform the

learning of incomplete data.

On the other hand, there are other methods for the

learning of nonlinear behaviors with incomplete data, but

they use noise signals considering the design as a stochastic

problem, it would be interesting to consider the design as a

deterministic problem.

In this research, a hybrid algorithm as the combination

of the stable neural network and interpolation algorithm is

introduced for the learning of nonlinear systems with

incomplete data where the design is considered as a

deterministic problem. It consists in the following two

stages.

First, the interpolation algorithm is used to obtain the

missing data of all the variables in some nonlinear

behavior. Figure 1 shows that the interpolation algorithm is

applied to build the estimation of the variables denoted as

bxlðkÞ when only some points of the real variables denoted

as xlrðkÞ are available.

Second, after the interpolation algorithm obtains the

estimation of the variables, Fig. 2 shows that the interpo-

lation neural network is employed to learn the output

nonlinear behavior where the variables estimated by the

interpolation algorithm denoted as bx1ðkÞ ¼ bz1ðkÞ,
bx2ðkÞ ¼ bz2ðkÞ,..., bxnðkÞ ¼ bznðkÞ, bxnþ1ðkÞ ¼ byðkÞ are used

instead of the real variables denoted as x1;rðkÞ ¼ z1ðkÞ,
x2;rðkÞ ¼ z2ðkÞ, ..., xn;rðkÞ ¼ znðkÞ, xnþ1;rðkÞ ¼ yrðkÞ. byðkÞ
is the target output of the neural network. The inputs and

output of the neural network are bz1ðkÞ, bz2ðkÞ,...,bznðkÞ and
NNðkÞ, respectively. The importance of the neural network

is that while the interpolation algorithm only estimates the

variables of the nonlinear behavior, the neural network

learns the output behavior.

In remainder of this section, there will be the survey of

related works. Finally, the organization of this paper will

be mentioned.
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Granjas no. 682, Col. Santa Catarina, 02250 Mexico, D.F.,

Mexico

123

Neural Comput & Applic (2017) 28:2017–2028

DOI 10.1007/s00521-015-2169-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2169-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2169-4&amp;domain=pdf


1.1 Related works

This subsection contains a survey of two kind of related

works: (a) hybrid systems for the learning of nonlinear

behaviors and (b) methods for the learning of behaviors

with incomplete data.

There is some research about the learning with hybrid

systems. In [1], a learning approach to train uninorm-based

hybrid neural networks is suggested. In [2], four semi-su-

pervised learning methods are discussed. A specific

ensemble strategy is developed in [4]. In [5], an approach

to the construction of classifiers from imbalanced datasets

is described. A dynamic pattern recognition method is

proposed in [9]. In [10] and [19], the use of evolving

classifiers for the activity recognition is described. Hybrid

and ensemble methods in machine learning are focused in

[11]. In [12], a granular neural network framework for the

evolving fuzzy system modeling is introduced. A novel

hybrid active learning strategy is proposed in [14]. In [16],

an enhanced version of the evolving participatory learning

approach is developed. A class of hybrid fuzzy models is

designed in [18]. A parsimonious network based on the

fuzzy inference system is addressed in [20]. In [21], a novel

dynamic parsimonious fuzzy neural network is considered.

A holistic concept of a fully data-driven modeling tool is

proposed in [22]. In [23], a novel evolving fuzzy-rule-

based classifier is proposed. A novel meta-cognitive-based

scaffolding classifier is considered in [24] . In [25], a novel

interval type-2 fuzzy classifier is introduced. An evolving

hybrid fuzzy neural network-based modeling approach is

introduced in [26].

Otherwise, there is some research about the learning of

nonlinear behaviors with incomplete data. In [6], kernel

regression method is used for the modeling with incom-

plete data. The story of incomplete and redundant repre-

sentation modeling is introduced in [8]. In [32], the authors

propose a new model called sparse hidden Markov model.

A novel sparse shape composition model is considered in

[35]. In [36], a method is introduced for regression and

classification problems.

1.2 Organization of the paper

The paper is structured as follows. In Sect. 2, the interpo-

lation neural network is described. In Sect. 3, the interpo-

lation neural network is employed for the modeling of two

trajectories of the wind turbine behavior. Finally, in

Sect. 4, the conclusion and future research are detailed.

2 Interpolation neural network

This section is divided in two subsection which consider

the two stages of the proposed algorithm. (a) the interpo-

lation algorithm is utilized to estimate the nonlinear

behavior of all the variables with incomplete data. (b) The

interpolation neural network is employed for the learning

of the nonlinear behavior output with incomplete data.

2.1 Interpolation algorithm to estimate

the incomplete data

The interpolation algorithm is described in this subsection

as the first part of the proposed model. The algorithm

proposed in this part is used to estimate the missing data of

all the variables with incomplete data, i.e., the proposed

algorithm is a multi-dimension approximator where all the

variables are independently estimated.

Fig. 1 Interpolation algorithm to estimate all the variables with

incomplete data

Fig. 2 Interpolation neural network for the learning
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2.1.1 Description of the interpolation algorithm

Consider the functions xlrðkÞ ¼ f ðklÞ 2 R with l ¼
1; 2; ; . . .; nþ 1 is the number of variables estimated with

this algorithm, kl ¼ 1; 2; . . .; T , T are the iterations number

for the variables, xlrðkÞ are the output real data of the

nonlinear behaviors. The approximation consists to find

bxlðkÞ such that they estimate the real variables with

incomplete data xlrðkÞ.
The slopes of xlrðkÞ denoted as mlðkÞ using the kl and

xlrðkÞ data of the nonlinear behavior are obtained as

follows:

mlðkÞ ¼
xlrðkÞ � xlrðk � 1Þ
ðklÞ � ðkl � 1Þ ð1Þ

The nonlinear behaviors are divided in Nl intervals, each

interval is generated by considering the following

inequality:

mlðkÞj j � mlðk � 1Þj jð Þj j � hl ð2Þ

where hl is a small selected threshold parameter, consider

that the signals taken from kl for each of the Nl intervals are

denoted by j. Figure 3 shows the approximation of the

nonlinear behaviors using the interpolation algorithm.

The Eq. (3) describes the approximation of the nonlin-

ear behaviors using the proposed interpolation algorithm

[30]:

bxlðkÞ ¼ 1� klðkÞð Þ � xl;i;jðkÞ þ klðkÞ � xl;f ;jðkÞ ð3Þ

where xl;i;jðkÞ are the initial values of xlrðkÞ in the interval j,
xl;f ;jðkÞ are the final values of xlrðkÞ in the interval j, kl are

the variant iterations inside of the interval j, klðkÞ are the

variant-in-time parameters of the interval j, klðkÞ are given
as follows:

klðkÞ ¼
kl � kl;i;j

kl;f ;j � kl;i;j
ð4Þ

where kl;i;j are the initial values of klðkÞ in the interval j,

and kl;f ;j are the final values of klðkÞ in the interval j.

It is known that kl;i;j � kl � kl;f ;j for each interval j;

consequently, 0� klðkÞ� 1, and klðkÞ always increases.

The variant parameters klðkÞ are important in the proposed

interpolation algorithm because bxlðkÞ are the approxima-

tions of xlrðkÞ from the initial points to the final points for

each interval j. The interpolation algorithm for the

approximation of nonlinear behaviors is as follows:

1. Obtain the slope of xlrðkÞ denoted as mlðkÞ using the kl
and xlrðkÞ data of the nonlinear behaviors using the

Eq. (1), and select the threshold parameters hl.

2. Obtain the elements number in the intervals Nl with

Eq. (2).

3. The intervals are denoted by j.

4. For each interval j, obtain klðkÞ with Eq. (4).

5. For each interval j, obtain bxlðkÞ as the approximations

of xlrðkÞ using Eq. (3).

2.1.2 Boundedness of the interpolation algorithm

In this section, the variables of the interpolation algorithm

will be guaranteed to be bounded. Substituting (4) into (3)

of the interpolation algorithm gives:

bxlðkÞ ¼ 1� kl � kl;i;j

kl;f ;j � kl;i;j

� �

� xl;i;jðkÞ þ
kl � kl;i;j

kl;f ;j � kl;i;j
� xl;f ;jðkÞ

ð5Þ

(5) can be rewritten as follows:

bxlðkÞ ¼ xl;i;jðkÞ þ
kl � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

ð6Þ

Theorem 1 The outputs bxlðkÞ of the interpolation algo-

rithm (3)–(4), (6), are guaranteed to be bounded by xl;i;jðkÞ
and by xl;f ;jðkÞ for all the intervals j.

Proof The proof is given by two parts. (a) If

xl;i;jðkÞ� xl;f ;jðkÞ, then xl;f ;jðkÞ � xl;i;jðkÞ� 0, using (6), and

the fact kl;i;j � kl � kl;f ;j, it gives:

xl;i;jðkÞ þ
kl;i;j � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

� xl;i;jðkÞ þ
kl � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

� xl;i;jðkÞ þ
kl;f ;j � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

ð7Þ

Inequality (7) gives xl;i;jðkÞ� bxlðkÞ� xl;f ;jðkÞ. (b) If

xl;f ;jðkÞ� xl;i;jðkÞ, then xl;f ;jðkÞ � xl;i;jðkÞ� 0, using (6), and

the fact kl;i;j � kl � kl;f ;j, it gives:Fig. 3 Interpolation algorithm
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xl;i;jðkÞ þ
kl;f ;j � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

� xl;i;jðkÞ þ
kl � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

� xl;i;jðkÞ þ
kl;i;j � kl;i;j

kl;f ;j � kl;i;j
xl;f ;jðkÞ � xl;i;jðkÞ
� �

ð8Þ

Inequality (8) gives xl;f ;jðkÞ� bxlðkÞ� xl;i;jðkÞ. Since (a) If

xl;i;jðkÞ� xl;f ;jðkÞ, then xl;i;jðkÞ� bxlðkÞ� xl;f ;jðkÞ, and (b) If

xl;f ;jðkÞ� xl;i;jðkÞ, then xl;f ;jðkÞ� bxlðkÞ� xl;i;jðkÞ, in all the

cases bxlðkÞ are bounded by xl;i;jðkÞ and by xl;f ;jðkÞ as the

Theorem claims. h

Remark 1 There are three differences between the

interpolation algorithm introduced by [30] and that con-

sidered in this study. The first difference is that in [30],

the interval number is obtained by the changes in the

slopes sign, while in this study the interval number is

determined by Eq. (2). The second difference is that in

[30], the interpolation algorithm is applied only to esti-

mate the nonlinear system output, while in this work the

interpolation algorithm is used to estimate all the non-

linear system variables. The third difference is that in

[30], the interpolation algorithm is considered alone,

while in this research the interpolation algorithm is

combined with a stable neural network.

2.2 Neural network to learn the nonlinear behavior

with incomplete data

The neural network is described in this subsection as the

second part of the proposed model. This subsection

describes the algorithm proposed in this study for the

modeling of a nonlinear behavior with incomplete data.

2.2.1 Description of the neural network

In this study, incomplete data are considered; conse-

quently, the neural network of this paper is used to learn

the nonlinear behavior using only the variables estimated

with the interpolation model, not the real data variables,

that is, the variables of the interpolation algorithm bz1ðkÞ,
bz2ðkÞ,...,bznðkÞ, byðkÞ, are used instead of the real variables

with incomplete data z1ðkÞ, z2ðkÞ; . . .; znðkÞ, yrðkÞ.
The stable backpropagation algorithm is employed with

a new time-varying rate to guarantee its uniformly stability

for online identification and its identification error con-

verges to a small zone bounded by the uncertainty. The

weights error is bounded by the initial weights error, i.e.,

overfitting and local optimum are eliminated in the men-

tioned algorithm [27, 28].

Stable backpropagation algorithm is as follows [27, 28]:

1. Obtain the output of the nonlinear system y(k). Note

that the nonlinear system may have the structure

represented by Eq. (9); the parameter n is selected

according to this nonlinear system.

byðkÞ ¼ f ZðkÞ½ � ð9Þ

where ZðkÞ ¼ bz1ðkÞ. . .;bziðkÞ; . . .;bznðkÞ½ �T2 Rn�1 is the

input vector, f is an unknown nonlinear function, f 2 C1,

and byðkÞ, bz1ðkÞ, bz2ðkÞ,...,bznðkÞ are the outputs of the

interpolation algorithm.

2. Select the following parameters; V(1) and W(1) as

random numbers between 0 and 1; m as an integer

number, and a0 as a positive value smaller or equal to

1; obtain the output of the neural network NNð1Þ with
Eq. (10). The interpolation neural network which

learns the real output with incomplete data of the

nonlinear behavior yrðkÞ is as follows:

NNðkÞ ¼ VðkÞUðkÞ ¼
X
m

j¼1

VjðkÞ/jðkÞ

Uk ¼ /1ðkÞ; . . .;/jðkÞ; . . .;/mðkÞ
� �T

/jðkÞ ¼ tanh
X
n

i¼1

WijðkÞbziðkÞ
 !

ð10Þ

where bz1ðkÞ, bz2ðkÞ; . . .;bznðkÞ are the inputs estimation with

the interpolation algorithm, Vjðk þ 1Þ and Wijðk þ 1Þ are

the weights of the hidden and output layer, respectively. m

is the neuron number in the hidden layer. /j is the hyper-

bolic tangent function.

3. For each iteration k, obtain the output of the neural

network NNðkÞ with Eq. (10), obtain the neural

network error eNNðkÞ with Eq. (11), and update the

parameters Vjðk þ 1Þ and Wijðk þ 1Þ with Eq. (12).

eNNðkÞ ¼ NNðkÞ � byðkÞ ð11Þ

Vjðk þ 1Þ ¼ VjðkÞ � aðkÞ/jðkÞeNNðkÞ
Wijðk þ 1Þ ¼ WijðkÞ � aðkÞrijðkÞeNNðkÞ

ð12Þ

where the new time-varying rate aðkÞ is:

aðkÞ ¼ a0

2 1
2
þ
Pm

j¼1/
2
j ðkÞ þ

Pm
j¼1

P
n

i¼1

r2ijðkÞ
� �

where i ¼ 1; . . .; n, j ¼ 1; . . .;m, rijðkÞ ¼ VjðkÞsech2
ð
Pn

i¼1WijðkÞziðkÞÞbziðkÞ 2 R, a0 is the constant learning

speed, byðkÞ is the output estimation with the interpolation

algorithm, NNðkÞ is the output of the interpolation neural

network, and bz1ðkÞ, bz2ðkÞ,...,bznðkÞ, byðkÞ are the outputs of

the interpolation algorithm.
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Remark 2 The hyperbolic tangent is used as the activation

function in the proposed neural network because it considers

positive andnegativevalues, being itmore complete thanothers

as the sigmoid function which only considers positive values.

2.2.2 Stability analysis of the neural network

The following theorem guarantees that the interpolation

neural network can approximate a nonlinear behavior.

Theorem 2 ([34]) Suppose that the input universe of

discourse U is a compact set in Rn. Then, for any given

real continuous function rðkÞ on U, and arbitrary 2 [ 0,

there exists an interpolation neural network NNðkÞ in the

form (10) such that:

sup
x2U

NNðkÞ � byðkÞj j\ 2 ð13Þ

That is, the neural network NNðkÞ is an approximator of

the output of the interpolation algorithm byðkÞ.

Proof See [34] for the proof. h

The following theorem gives the stability of the neural

network model.

Theorem 3 The interpolation neural network (10), (11),

and (12) applied for the identification of the nonlinear

system (9) is uniformly stable and the upper bound of the

average identification error e2pðkÞ satisfies:

lim sup
T!1

1

T

X
T

k¼2

e2pðkÞ� a0l
2 ð14Þ

where e2pðkÞ ¼
aðk�1Þ

2
e2ðk � 1Þ, 0\a0 � 1 2 R and

0\aðkÞ 2 R are defined in (12), e(k) is defined in (11),

lðkÞ ¼ yðkÞ �
PM

j¼1V
�
j /

�
j is an uncertainty, l is the upper

bound of the uncertainty lðkÞ, lðkÞj j\ l,

/�
j ¼ tanhð

PN
i¼1W

�
ijxiðkÞÞ, V�

j and W�
ij are unknown

weights such that the uncertainty lðkÞ is minimized.

Proof See [27, 28] for the proof. h

The following theorem proves that the weights of the

interpolation neural network are bounded.

Theorem 4 When the average error e2pðkÞ is bigger than
the uncertainty a0l2, the weights error is bounded by the

initial weights error as follows:

e2pðk þ 1Þ� a0l
2

¼)
X
M

j¼1

eV 2
j ðk þ 1Þ þ

X
M

j¼1

X
N

i¼1

eW 2
ijðk þ 1Þ

�
X
M

j¼1

eV 2
j ð1Þ þ

X
M

j¼1

X
N

i¼1

eW 2
ijð1Þ ð15Þ

where i ¼ 1; . . .;N, j ¼ 1; . . .;M, eVjðkÞ and eWijðkÞ is the

weights error, eVjð1Þ and eWijð1Þ is the initial weights error,
e2pðk þ 1Þ ¼ aðkÞ

2
e2ðkÞ, Vjðk þ 1Þ, Wijðk þ 1Þ, 0\a0 �

1 2 R, and 0\aðkÞ 2 R are defined in (12), e(k) is defined

in (11), l is the upper bound of the uncertainty lðkÞ,
lðkÞj j\l.

Proof See [27, 28] for the proof. h

Remark 3 There are two conditions for applying this

algorithm for nonlinear systems: the first one is that the

nonlinear system may have the form described by (9), and

the second one is that the uncertainty lðkÞ may be

bounded.

Remark 4 The value of the parameter l used for the

stability of the algorithm is unimportant, because this

parameter is not used in the algorithm. The bound of lðkÞ
is needed to guarantee the stability of the algorithm, but it

is not used in the backpropagation algorithm (10), (11),

(12).

Remark 5 There is one important difference between the

stable neural network of [27, 28] and the considered in this

study. It is that in [27, 28], the stable neural network is

alone used for the learning of short data, while, in this

research, the stable neural network is combined with the

interpolation algorithm for the learning of nonlinear sys-

tems with incomplete data.

Remark 6 The fuzzy slopes model of [29] has two dif-

ferences with the interpolation neural network of this

research: (1) the fuzzy slopes model uses a fuzzy inference

system, while the interpolation neural network employs the

stable neural network, obtaining an advantage in the pro-

posed method because a stable algorithm guarantees that

all the variables will remain bounded; (2) the fuzzy slopes

model only considers the output with incomplete data,

while the interpolation neural network considers all the

variables with incomplete data, obtaining an advantage in

the introduced technique because it is a generalization of

the previous.

3 Experimental results

The interpolation neural network is compared with the

fuzzy slopes model of [29] for the learning of the wind

turbine behavior with incomplete data. The objective is that

the interpolation neural network output NN of (1)–(4),

(10)–(12) must be nearer with the real output of the wind

turbine yr than the fuzzy slopes model output.

Figure 4 shows the prototype of the manufactured wind

turbine with a rotatory tower which is considered for this

Neural Comput & Applic (2017) 28:2017–2028 2021
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study. This prototype has three blades with a rotatory tower

which does not use a gear box. Important research about

wind turbines is presented in [7, 31], and [33]. Table 1

shows the parameters of the prototype. The parameters m2

and lc2 are obtained from the wind turbine blades. The

parameters R1, L1, and k1, are obtained from the tower

motor. The parameters k2, R2, Re, and L2, are obtained from

the wind turbine generator. The parameters R, q, Vx, and b,
are obtained from [31].

1� 10�5 are considered as the initial conditions for the

plant states x1 ¼ i2, x2 ¼ h2, x3 ¼ h
�
2, x4 ¼ i1, x5 ¼ h1, and

x6 ¼ h
�
1. u1 is the force of the air received by the three blades

in kgm2 rad/s2, u2 is themotor armature voltage inV, h1 is the
angular position of the tower motor in rad, h2 is the angular

position of a wind turbine blade in rad, i1 is the motor

armature current of the tower in A, i2 is the generator

armature current in A, and y is the output voltage generated

by the wind turbine in V. An electronic circuit and a

microcontroller board of Arduino are used to digitalize and

to send the obtained signals to a personal computer. Figure 5

shows the electronic circuit of the acquisition system. Fig-

ure 6 shows one program designed to save the real data of the

electric current, electric voltage, blades position, and tower

position using theMathlab software. Figure 7 shows the real

electronic circuit to save the real data of the electric voltage,

electric current, blades position, and tower position.

The interpolation neural network learns the behavior

considering real data of the inputs and states of the wind

turbine behavior, the eight inputs for the nonlinear behavior

are denoted as z1ðkÞ ¼ u1r, z2ðkÞ ¼ u2r, z3ðkÞ ¼ x1r,

z4ðkÞ ¼ x2r, z5ðkÞ ¼ x3r, z6ðkÞ ¼ x4r, z7ðkÞ ¼ x5r, and

z8ðkÞ ¼ x6r, and the target output is denoted as byðkÞ ¼ y.

The root mean square error is used for the comparison

results [17, 28, 30]:

RMSE ¼ 1

T

X
T

k¼1

e2ðkÞ
 !1

2

ð16Þ

where T is the iterations number, and eðkÞ ¼ eFSðkÞ is the
error of the fuzzy slopes model, or eðkÞ ¼ eNNðkÞ is the

error of the interpolation neural network of (11).

3.1 Experiment 1

Experiment 1 considers the first movement of the wind

turbine described as follows: (1) from 0 to 2 s, both inputs

are fed; consequently, the tower moves far of the maximum

air intake, the generator current is decreased, and the wind

turbine blades stop moving; (2) from 2 to 4 s, both inputs are

not fed; consequently, current is not generated, and both the

tower and wind turbine blades do no move; (3) from 4 to 6 s,

both inputs are fed, but the air intake is positive and tower

voltage is negative; consequently, the tower returns to the

maximum air intake, the generator current is increased, and

the wind turbine blades move; (4) from 6 to 8 s, both inputs

are not fed; consequently, current is not generated, and the

tower and wind turbine blades do no move. The described

behavior is repeated three times for the learning and once for

the testing; consequently, 8412 data are used for the training

and 2804 data are used for the testing.

The fuzzy slopes model is used with parameters n ¼ 8,

m ¼ 4, við1Þ ¼ rand, cijð1Þ ¼ rand, rijð1Þ ¼ 10r and,

h ¼ 1� 10�7, rand is a random number between 0 and 1.

The interpolation neural network of (1)–(4), (10)–(12) is

used with parameters n ¼ 8, m ¼ 4, a0 ¼ 0:5,

Vjð1Þ ¼ rand, Wijð1Þ ¼ rand, h ¼ 1� 10�7, rand is a ran-

dom number between 0 and 1.

Fig. 4 Prototype of the manufactured wind turbine

Table 1 Parameters of the prototype

Parameter Value Parameter Value

lc2 0:5m Re 30X

m2 0:5 kg km 0:09Wb

kb2 1� 10�6 kgm2=s2 kb1 1� 10�6 kgm2=s2

bb2 1� 10�1 kgm2rad=s bb1 1� 10�1 kgm2 rad=s

k2 0:45Vs=rad k1 0:0045Vs=rad

R2 6:96X R1 18X

L2 6:031� 10�1H L1 6:031� 10�1H

R lc2 m Vx 5m=s

q 1:225 kg=m3 b 0:5 rad

g 9:81m=s2

2022 Neural Comput & Applic (2017) 28:2017–2028

123



Figure 8 shows the incomplete data for the states of the

wind turbine behavior. Figure 9 shows the modeling of the

wind turbine behavior using the fuzzy slopes model and

interpolation neural network for the training. Figure 10

shows the modeling of the wind turbine behavior using the

fuzzy slopes model and interpolation neural network for

the testing. Table 2 shows the root mean square error for

the fuzzy slopes model and interpolation neural network.

The iterations number is shown instead of the time in

seconds to guarantee that in this research incomplete data

are employed. From Fig. 9 and Table 2, it is shown that the

interpolation neural network is the best for the training of

the wind turbine behavior because the RMSE of the above

algorithm is the smallest one. The training could be used

for online designs such as the control, prediction, or fault

detection. From Fig. 10 and Table 2, it is shown that the

interpolation neural network is the best for the testing of

the wind turbine behavior because the RMSE of the above

algorithm is the smallest one. The testing could be used for

offline designs such as the pattern recognition or

classification.

3.2 Experiment 2

Experiment 2 considers the second movement of the wind

turbine described as follows: (1) from 0 to 2 s, the input air

is fed and the tower input is not fed; consequently, the

tower remains in the maximum air intake, the generator

current is maximum, and the wind turbine blades have

motion; (2) from 2 to 4 s, the air is not fed and the tower

input is fed; consequently, current is not generated, the

tower moves far of the maximum air intake, and the wind

turbine blades do not have motion; (3) from 4 s to 6 s, the

air is fed and the tower input is not fed; consequently, the

tower does not move, the generator current is minimum,

and the wind turbine blades almost do not move; (4) from 6

s to 8 s, the air is not fed and the tower input is fed with a

negative voltage; consequently, current is not generated,

the tower returns to the maximum air intake, and the wind

turbine blades do not have motion. The described behavior

is repeated three times for the learning and once for the

testing; consequently, 8412 data are used for the training

and 2804 data are used for the testing.

The fuzzy slopes model is used with parameters n ¼ 8,

m ¼ 4, við1Þ ¼ rand, cijð1Þ ¼ rand, rijð1Þ ¼ 10rand,

h ¼ 1� 10�7, rand is a random number between 0 and 1.

The interpolation neural network of (1)–(4), (10 )–(12)

is used with parameters n ¼ 8, m ¼ 4, a0 ¼ 0:5,

Vjð1Þ ¼ rand, Wijð1Þ ¼ rand, h ¼ 5� 10�8, rand is a ran-

dom number between 0 and 1.

Figure 11 shows the incomplete data for the states of the

wind turbine behavior. Figure 12 shows the modeling of

Fig. 5 Electronic circuit of the acquisition system
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the wind turbine behavior using the fuzzy slopes model and

interpolation neural network for the training. Figure 13

shows the modeling of the wind turbine behavior using the

fuzzy slopes model and interpolation neural network for

the testing. Table 3 shows the root mean square error for

the fuzzy slopes model and interpolation neural network.

The iterations number is shown instead of the time in

seconds to guarantee that in this research incomplete data

are employed. From Fig. 12 and Table 3, it is shown that

the interpolation neural network is the best for the training

of the wind turbine behavior because the RMSE of the

above algorithm is the smallest one. The training could be

Fig. 6 Program to save the real

data

Fig. 7 Electronic circuit to save

the real data
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used for online designs such as the control, prediction, or

fault detection. From Fig. 13 and Table 3, it is shown that

the interpolation neural network is the best for the testing

of the wind turbine behavior because the RMSE of the

above algorithm is the smallest one. The testing could be

used for offline designs such as the pattern recognition or

classification.

Fig. 8 Incomplete data for the

experiment 1

Fig. 9 Modeling for the training of the experiment 1 Fig. 10 Modeling for the testing of the experiment 1

Table 2 Comparison of the errors

RMSE for training RMSE for testing

Fuzzy slopes model 0.0065 0.0086

Interpolation neural network 0.0049 0.0071
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Remark 7 Choosing an appropriate number of hidden

neurons is important in the behavior, because too many

neurons result in a complex system that may be unnecessary

for the problem and it can cause overfitting [28], whereas

too few neurons produce a less powerful system that may be

Fig. 11 Incomplete data for the

experiment 2

Fig. 12 Modeling for the training of the experiment 2 Fig. 13 Modeling for the testing of the experiment 2

Table 3 Comparison of the errors

RMSE for training RMSE for testing

Fuzzy slopes model 0.0065 0.0086

Interpolation neural network 0.0035 0.0077
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insufficient to achieve the objective. The number of hidden

neurons is considered as a design parameter and it is

determined based on the trial-error method.

4 Conclusion

In this paper, the interpolation neural network was intro-

duced. The interpolation algorithm was applied to build an

estimation of the nonlinear behaviors when only some

points of the real behavior with incomplete data were

available. After the interpolation algorithm obtained the

estimation of the nonlinear behaviors, the neural network

was employed to learn the output nonlinear behavior con-

sidering only the outputs of the interpolation model instead

of the real data inputs and output. The importance of the

neural network is that while the interpolation algorithm

only estimates the nonlinear behaviors, the neural network

learns the output behavior. The proposed interpolation

neural network was compared with a fuzzy slopes model

for the modeling of the wind turbine behavior, giving that

the first algorithm provides higher accuracy compared to

the other. The proposed technique could be used in control,

prediction, pattern recognition, classification, or fault

detection. As a future research, the proposed strategy will

be used for the control design.
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18. Nuñez A, De Schutter B, Saez D, Skrjanc I (2014) Hybrid-fuzzy

modeling and identification. Appl Soft Comput 17:67–78
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