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Abstract We present a fast and efficient hash algorithm

based on a generalized chaotic mapping with variable

parameters in this paper. We first define a generalized

chaotic mapping by utilizing piecewise linear chaotic map

and trigonometric functions. Then, we convert the arbitrary

length of message into the corresponding ASCII values and

perform 6-unit iterations with variable parameters and

message values based on the generalized chaotic mapping.

The final hash value is obtained by cascading extracted bits

from iteration state values. We excessively evaluate the

proposed algorithm in terms of distribution of hash value,

sensitivity of hash value to the message and secret keys,

statistical analysis of diffusion and confusion, analysis of

birthday attacks and collision resistance, analysis of secret

keys, analysis of speed, and comparison with other algo-

rithms, and the results illustrate that the suggested algo-

rithm is fast, efficient, and enough simple and has good

confusion and diffusion capabilities, strong collision

resistance, and a high level of security.

Keywords Chaos � Hash function � Generalized chaotic

mapping � Piecewise linear chaotic map � Variable
parameter

1 Introduction

With the development of electronic commerce, one-way

hash function has been widely developed in public-key

cryptography, digital signatures [1], integrity verifica-

tion [2], message authentication and dynamic password

authentication [3], etc. A hash function is a one-way

function that can be used to map digital data of arbi-

trary size to digital data with fixed size. The digital

data returned by a hash function are referred to as hash

value or message digest. Hash functions have the

properties of sensitivity to initial conditions, diffusion

and confusion, collision resistance. There are some

traditional one-way hash algorithms, such as MD2,

MD4, MD5, and SHA [4, 5], but most of them are

based on the hypothesis of complexity that requires lots

of complicated logic computing (such as XOR) or

packet encryption method-based multiple iterations.

Nevertheless, there are inherent defects in logic opera-

tion although the computation is simple for the further

method, and the computation of the latter method is

large and it is hard to find fast and reliable encryption

methods simultaneously. Chaos has some inherent

merits of one way, sensitivity to tiny modifications in

initial conditions and parameters, mixing property and

ergodicity, which can be used for designing chaotic

hash functions. In the last decades, many researchers

propose different hash algorithms based on chaotic

maps [6–19], encouraged by the specific properties of

chaotic dynamical systems such as high sensitivity to

the initial conditions, ergodicity, high complexity

induced by their simple analytic expressions. However,

these chaotic maps in cryptanalytic studies reveal

security weakness [20–27].
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In this paper, we present a fast and efficient hash

algorithm based on a generalized chaotic mapping with

variable parameters. A piecewise linear chaotic map with

variable parameter p is chosen, and a generalized chaotic

mapping is defined by utilizing the piecewise linear

chaotic map and trigonometric functions [such as

sin(x) and cos(x)]. Then, we convert the arbitrary length

of message into the corresponding ASCII values and

perform 6-unit iterations with variable parameters and

message values based on the generalized chaotic map-

ping, where the variable parameter p is updated by the

generalized chaotic mapping. The final hash value is

obtained by cascading extracted bits from iteration state

values. We excessively evaluate the proposed algorithm

in terms of distribution of hash value, sensitivity of hash

value to the message and secret keys, statistical analysis

of diffusion and confusion, analysis of birthday attacks

and collision resistance, analysis of secret keys, analysis

of speed, and comparison with other algorithms, and the

results illustrate that the suggested algorithm is fast,

efficient, and enough simple and has good confusion and

diffusion capabilities, strong collision resistance, and a

high level of security.

The main contributions of this work can be summarized

as follows:

• We present a fast and efficient hash algorithm based on

a generalized chaotic mapping with variable

parameters.

• We define a generalized chaotic mapping by utilizing

piecewise linear chaotic map and trigonometric

functions.

• We excessively evaluate the proposed algorithm, and

the results illustrate that it has good capabilities of

confusion and diffusion, strong collision resistance.

The remainder of this paper is organized as follows:

Sect. 2 introduces the preliminaries of piecewise linear

chaotic map and defines a generalized chaotic mapping

used in the hash algorithm. In Sect. 3, we design the

chaotic hash algorithm based on a generalized chaotic

mapping with variable parameters in detail. We

excessively evaluate the performance of the proposed

hash algorithm in Sect. 4 and present conclusions in

Sect. 5.

2 Preliminaries

To learn about the proposed hash algorithm, we should

have some related preliminaries. In this section, we first

introduce piecewise linear chaotic map, which is utilized

for constructing a generalized chaotic mapping with

trigonometric functions, and then define the generalized

chaotic mapping in detail, which is used to iterate the

message to generate hash values in the algorithm.

2.1 Piecewise linear chaotic map (PWLCM)

The chaotic tent map chosen in the hash algorithm is one-

dimensional and piecewise linear chaotic map expressed as

follows:

Xðtþ 1Þ ¼ FpðXðtÞÞ

¼

XðtÞ=p 0�XðtÞ\p;

ðXðtÞ� pÞ=ð0:5� pÞ; p�XðtÞ\0:5;

ð1� p�XðtÞÞ=ð0:5� pÞ; 0:5�XðtÞ\1� p;

ð1�XðtÞÞ=p; 1� p�XðtÞ�1;

8
>>><

>>>:

where X(t) represents the iteration trajectory value and

p denotes the control parameter. When p is assigned

values in (0, 0.5), X(t) evolves into a chaotic state in

range of (0, 1). That is, X(t) sequence values vary in (0,

1) and distribute independently. The PWLCM has

properties of uniform distribution, good ergodicity,

confusion and diffusion; therefore, it can provide chaotic

random sequences. An explicit analysis of the bifurca-

tion diagram of the PWLCM shows that with the spec-

ified initial value X(0) and parameter p, its iterative

values are fixed, which are listed in Table 1. The map is

running in a chaotic state within the range (0, 1), except

for the specified values in Table 1. Therefore, we use the

Table 1 Fixed iterative values of PWLCM with the specified initial

value X(0) and parameter p

X(0) p X(t) (t = 1, 2,…)

\0.25 2 9 X(0) 0.5, 1, 0, 0,…
\0.5 X(0) 0, 0, 0, 0,…
0.5 (0, 1) 1, 0, 0, 0, …
(0, 1) 0.25 0.5, 1, 0, 0,…
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map as a key generator to produce the four initial buffers

for our hash algorithm. Moreover, based on Ref. [28],

we believe{X(t)}is ergodic and uniformly distributed in

the interval (0, 1) and the autocorrelation function is d-
like [52].

2.2 Generalized chaotic mapping (GCM)

To realize multiple chaotic mappings under a unified

structure, a key factor is that it should ensure each input of

these chaotic maps does not exceed its value range [29].

Therefore, chaotic maps with same value range will be

given preferential consideration to construct the general-

ized chaotic mapping. Then, we define a generalized

chaotic mapping model as follows:

f ðt þ 1Þ ¼ Gðcðt þ 1Þ; XðtÞ; f ðtÞÞ ¼ a1 �
cðt þ 1Þ
256

þ a2

� sinðcðt þ 1ÞÞj j þ a3 � sinðcðt þ 1ÞÞj j2

þ a4 � sinðcðt þ 1ÞÞj j3 þ a5 � cosðcðt þ 1ÞÞj j
þ a6 � ð1� XðtÞ2Þ þ a7 � ð1� f ðtÞ3Þ

where ai (i = 1, 2, 3,…, 7) only have two values: 0 or 1,

and each variable element has the same value range of (0,

1). c(t ? 1) is the (t ? 1)th element of an array composed

of the ASCII code values of message characters. X(t) is the

tth iteration value of PWLCM. When ai (i = 1, 2, 3,…, 7)

take different values, GCM illustrates different chaotic

maps, and this kind of structure can easily control the range

of the results. As we can see, the GCM is composed of

outputs of PWLCM and trigonometric functions.

3 Description of the proposed algorithm

In this section, we design the fast and efficient hash

algorithm based on a generalized chaotic mapping with

variable parameters. The input is an arbitrary length of

message M, and the output is l-bit hash value, where

l = 128. The reason we choose the 128-bit length of

hash value is that it is sufficient enough to ensure the

security. We describe the hash algorithm in three steps

of message preprocessing, hash algorithm description,

and hash value generation, in the following:

Step 1 (Message preprocessing) We first convert the

original message M into the corresponding ASCII

code values and then store these values into an array

c, where we denote the length of the array by n.

Step 2 (Hash algorithm description) We assign values

to secret keys (f(0), X(0)) as f(0) = 0, X(0) = 0.2323,

where f(0) is the input of GCM and the output is used

to dynamically change the control parameter p of

PWLCM, and X(0) is the initial value of PWLCM.

Then, we perform 6-unit iterations, 1st-nth, (n ? 1)th–

2nth, (2n ? 1)th–3nth, (3n ? 1)th–4nth, (4n ? 1)th–

5nth, (5n ? 1)th–6nth, on message array c. For each

iteration, we first assign values to parameters a1, a2,

a3,…, a7 in GCM: For i = 1 to n, we calculate

s(i) = c(i) mod 8 and then assign values as

a1,…,as(i) = 1 and as(i?1),…,a7 = 0. There are two

exceptions: One is that when s(i) = 0, then we set

s(i) = 7; the other is that, for some special conditions,

for example, when all messages are all the same (such

as all blank-space message), let coefficients of variables
cðiþ1Þ
256

and (1 - X(i))2 be 1 and others be 0. Then, we

iterate GCM n times to generate f(n), then recalculate

f ðnÞ ¼ f ðnÞ � f ðnÞb c � 0:5j j such that f(n) is in the

range of (0,0.5), and compute X(n) = Ff(n)(X(n - 1)),

which are then used as the inputs for the next iteration.

The detailed 6-unit iteration processes are described in

Algorithm 1:
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for i = 1 to n
s(i) = c(i) mod 8;
a1,…,as(i) = 1;
as(i+1),…,a7 = 0;

2
321

3 32
7654

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c if i G c i X i f i a a c i a c i

a c i a c i a X i a f i

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for

1( ) ( ) ( ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

1 ( )( ) ( ( 1))f nX n F X n= − ;

for i = n+1 to 2n
s(i-n) = c(i-n) mod 8;
a1,…,as(i-n) = 1;
as(i-n+1),…,a7 = 0;

2
432

3 32
7165

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c nf i G c i X i f i a a c n a c n

a c n a c n a X n a f n

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for

2 (2 ) (2 ) (2 ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

2 (2 )(2 ) ( (2 1))f nX n F X n= − ;

for i = 2n+1 to 3n
s(i-2n) = c(i-2n) mod 8;
a1,…,as(i-2n) = 1;
as(i-2n+1),…,a7 = 0;

2
543

3 32
7216

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c nf i G c i X i f i a a c n a c n

a c n a c n a X n a f n

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for

3 (3 ) (3 ) (3 ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

3 (3 )(3 ) ( (3 1))f nX n F X n= − ;

for i = 3n+1 to 4n
s(i-3n) = c(i-3n) mod 8;
a1,…,as(i-3n) = 1;
as(i-3n+1),…,a7 = 0;

2
654

3 32
7321

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c nf i G c i X i f i a a c n a c n

a c n a c n a X n a f n

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for

4 (4 ) (4 ) (4 ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

4 (4 )(4 ) ( (4 1))f nX n F X n= − ;

for i = 4n+1 to 5n
s(i-4n) = c(i-4n) mod 8;
a1,…,as(i-4n) = 1;
as(i-4n+1),…,a7 = 0;

2
165

3 32
7432

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c nf i G c i X i f i a a c n a c n

a c n a c n a X n a f n

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for
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Step 3 (Hash value generation) After 6-unit iterations,

we obtain X(n), X(2n), X(3n), X(4n), X(5n), X(6n), then

convert them to their corresponding binary formats,

extract 20, 20, 20, 20, 24, 24 bits after their decimal

point, respectively, and finally combine them to generate

a 128-bit final hash value.

4 Performance analysis

We evaluate the proposed hash function based on a gen-

eralized chaotic mapping with variable parameters in terms

of distribution of hash value, sensitivity of hash value to

the message and secret keys, statistical analysis of diffusion

and confusion, analysis of birthday attacks and collision

resistance, analysis of secret keys, analysis of speed, and

comparison with other algorithms. The arbitrary length of

message for evaluating the performance of the proposed

hash algorithm is randomly chosen as:

Southwest University (SWU) is a key comprehensive

university, under the direct administration of the

Ministry of Education. It was newly established in

July 2005 through the incorporation of former

Southwest China Normal University and Southwest

Agricultural University upon the approval of the

Ministry of Education. SWU is situated nearby the

beautiful Jialing River, and is located at the foot of

Jinyun Mountain, a state level scenic spot, in Beibei

District, Chongqing Municipality.

4.1 Distribution of hash value

One of the most important properties of a hash function is

the uniform distribution of hash value, which is directly

related to the security of the hash function. We conduct the

hash simulation experiment on the randomly chosen

message and then use two two-dimensional graphs to dis-

play the distribution of the message and the final hash

value. First of all, we plot the randomly chosen message in

Fig. 1a, and we can see that the decimal ASCII code values

of the message distribute in a small range of [32, 127],

while in Fig. 1b, the distribution of the corresponding hash

value in hexadecimal format is very irregular. To make a

comparison, we choose an extreme message, ‘‘all 0’’-

message, and we can see that the distribution of the mes-

sage in Fig. 2a and the distribution of the corresponding

hash value in hexadecimal format in Fig. 2b also spread

5 (5 ) (5 ) (5 ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

5 (5 )(5 ) ( (5 1))f nX n F X n= − ;

for i = 5n+1 to 6n
s(i-5n) = c(i-5n) mod 8;
a1,…,as(i-5n) = 1;
as(i-5n+1),…,a7 = 0;

2
216

3 32
7543

( )( ) ( ( ), ( 1), ( 1)) sin( ( )) sin( ( ))
256

sin( ( )) cos( ( )) (1 ( 1) ) (1 ( 1) )

c nf i G c i X i f i a a c n a c n

a c n a c n a X n a f n

= − − = × + × + ×

+ × + × + × − − + × − −
;

end for

6 (6 ) (6 ) (6 ) 0.5f n f n f n= − −⎢ ⎥⎣ ⎦ ;

6 (6 )(6 ) ( (6 1))f nX n F X n= − ;

(a)

(b)

Fig. 1 Spread of message and hash value: a distribution of the

message in ASCII code and b distribution of the hash value in

hexadecimal format (6FF0FEBF7460A59ED5EF9F8AEBED0B20)
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irregularly. The simulation results indicate that no infor-

mation (including the statistic information) of the message

can be left after the diffusion and confusion.

4.2 Sensitivity of hash value to the message

and secret keys

According to the characteristics of a hash function, it is

hard to find the original message if the hash value is

known, which indicates that a hash function must be sen-

sitive to tiny modifications in original message or secret

keys. In particular, any slight modifications on message or

secret keys will lead to a 50 % difference in hash value,

according to a Hamming distance of approximately l/2

(l denotes the length of hash value) between the two hash

values. In order to show the sensitivity of hash value to the

message and secret keys, we conduct hash algorithm sim-

ulation experiment under the following seven conditions:

Condition 1: The original message chosen as the one in

Sect. 4.1;

Condition 2: Change the first character ‘‘S’’ to ‘‘s’’;

Condition 3: Change the word ‘‘key’’ to ‘‘non-key’’;

Condition 4: Swap the word ‘‘Normal’’ with

‘‘Agricultural’’;

Condition 5: Change the full stop ‘‘.’’ at the end of the

message into a comma ‘‘,’’;

Condition 6: Add a blank space to the end of the

message;

Condition 7: Change the secret key X(0) = 0.2323 to

X(0) = 0.2323000000000001.

The corresponding hash values in hexadecimal format

are obtained, followed by the corresponding number of

different bits compared with the hash value of Condition 1:

Condition 1: 6FF0FEBF7460A59ED5EF9F8AEBED0B

20.

Condition 2: 54E86ABB3E709568B05A090BBA54893

8 (50).

Condition 3: 554B06A95906DE6E192456A46CD8FC3

6 (71).

Condition 4: 9AB0E492C1C6A3CF89BE84116F092CB

1 (57).

Condition 5: AEF66656E072DFD495B5A579522BB5C

7 (62).

Condition 6: FAA7F8AE9E6FAAD150DAC41810D9D

88F (67).

Condition 7: 85D8AD49506CD53A3A6AC15A15A490

10 (62).

The graphical display of binary sequences is plotted in

Fig. 3.

As shown in the seven different hash values in hex-

adecimal format and Fig. 3, we conclude that the simula-

tion results indicate the sensitivity property of the proposed

hash algorithm is so perfect that any tiny difference in the

message or secret keys will cause huge changes in the final

hash value. Note that the reason we increase the value of

X(0) with 10-17 in Condition 7 is the fact that 10-17 is the

least value for the sensitive test of the hash algorithm,

which has been verified in Sect. 4.5.

4.3 Statistical analysis of diffusion and confusion

Diffusion and confusion are two essential elements to hide

message redundancy in the encryption algorithms that are

introduced by Shannon [30]. The diffusion refers to as

spreading out of the influence of a single plaintext bit over

many cipher text bits so as to hide the statistical structure

of the plaintext, while the confusion refers to as the use of

transformations that complicate dependence of the statis-

tics of cipher text on the statistics of plaintext.

We conduct the following experiment to capture quali-

tative characteristics of the diffusion and confusion: We

first conduct the hash algorithm simulation on a randomly

chosen message. Then, we randomly modify a bit in the

(a)

(b)

Fig. 2 Spread of ‘‘all 0’’-message and hash value: a distribution of all
‘‘all 0’’-message and b distribution of the hash value in hexadecimal

format (6C79365B9EFD85966F599385F47568CE)

1410 Neural Comput & Applic (2017) 28:1405–1415
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message and then conduct the simulation. Finally, we count

the difference between the two hash values in binary for-

mat. We denote the number of changed bits as Bi. We

perform N = 10,000 times of these tests, and the corre-

sponding distribution of changed bit number is illustrated

in Fig. 4. As depicted in Fig. 4, the maximum changed bit

number is 84 and the minimum is 45, which show a good

diffusion effect of the proposed hash algorithm.

In addition, we perform the same experiment to capture

the statistic characteristics of the diffusion and confusion

on the proposed hash algorithm. First, we define six sta-

tistical metrics of minimum changed bit number Bmin,

maximum changed bit number Bmax, mean changed bit

number �B, mean changed probability P, standard deviation

of the changed bit number DB, and standard deviation

DP. They are computed as:

Minimum changed bit number: Bmin = min{B1, B2,…,

BN},

Maximum changed bit number: Bmax = max{B1, B2,…,

BN},

Mean changed bit number: B ¼ 1
N

PN
i¼1 Bi,

Mean changed probability: P ¼ ðB=lÞ � 100%,

Standard variance of the changed bit number:

DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
i¼1 ðBi � BÞ2

q

;

Standard variance: DP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
i¼1 ðBi=l� PÞ2

q

�
100%; where N indicates the total number of tests, Bi

denotes the changed bit number in the ith test, and l is

the length of hash value. Based on the six statistics, we

conduct the experiment on the hash algorithm N times,

where N = 256, 512, 1024, 2048, and 10,000. The

corresponding results of Bmin, Bmax, B, P, DB, and

DP are presented in Table 2. As depicted in Table 2, the

mean changed bit number B is very close to the ideal

value 64 bits (half of length of hash values), which is an

empirical proof that the hash algorithm shows strong

capability of confusion and diffusion [31], and the mean

changed probability P is very close to the ideal value

50 % as well. Furthermore, the value of standard

deviation of the changed bit number DB and standard

deviation DP is very small, and with the increase of N,

the two values are smaller and smaller, so the capability

of diffusion and confusion is very stable.

Fig. 3 Hash values under seven

different conditions

(a)

(b)

Fig. 4 Distribution of changed bit number: a plot of Bi and

b histogram of Bi
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4.4 Analysis of birthday attack and collision

resistance

In fact, collision resistance is similar to birthday attacks in

theory. They are essentially a probability problem that two

random input data are found such that they are hashed to

the same output. In the following, we conduct qualitative

and quantitative analysis of collision resistance on the

proposed algorithm.

We first perform a qualitative analysis on the algorithm.

In the proposed algorithm, the generalized chaotic mapping

with variable parameters is introduced to ensure that the

parameter p in each iteration is dynamically updated by the

last iteration value f(i) and the corresponding message bit

in different positions. This inherent structure expedites the

avalanche effect, which will ensure that each bit of the final

hash value will be related to all the bits of message and

even a single bit change in message or key will be diffused

and result in great changes in the final hash value. There-

fore, the proposed hash algorithm can resist the collision

attack.

Then, we conduct the following experiment to make a

quantitative analysis on collision resistance [32]: First, the

hash value for a paragraph of message randomly chosen is

generated and stored in ASCII format. Then, a bit in the

message is selected randomly and toggled. A new hash

value is then generated and stored in ASCII format as well.

Two hash values are compared, and the number of ASCII

character with the same value at the same location in the

hash value is counted. We conduct the experiment 10,000

times. A plot of the distribution of the number of hits is

demonstrated in Fig. 5. As illustrated in Fig. 5, there are 42

tests hitting twice, 404 tests hitting once, while in 9554

tests, no hit occurs, which are listed in Table 3.

Moreover, we introduce the absolute difference of two

hash values d, which is calculated by the formula:

d ¼
PN

i¼1 t eið Þ � t e0i
� ��

�
�
�, where ei and e’i are the ith ASCII

character of the original hash value and the new hash value,

respectively, and the function t(*) converts the entries to

their equivalent decimal values. This kind of collision test

is performed 10,000 times as well, with the secret key

X(0) = 0.2323, and f(0) = 0. The maximum, mean, mini-

mum values of d and mean/character are listed in Table 4.

Based on the calculation in Ref. [53], the theoretical mean/

character value can be computed as 1
3
� 256 ¼ 85:3333.

The mean/character value 89.29 is close the theoretical

value.

Therefore, the qualitative and quantitative analysis on

collision demonstrates that the proposed hash algorithm

has good collision resistance.

4.5 Analysis of secret keys

In the proposed algorithm, the chaotic sensitivities to tiny

modifications in initial values and parameters are fully

utilized. The security of hash algorithm completely

depends on message and secret keys. Therefore, the algo-

rithm is immune from key recovery attack.

To investigate the key space, we conduct the following

evaluation experiment: We first set the initial value X(0) of

Table 2 Statistics of number of

changed bits
N N = 256 N = 512 N = 1024 N = 2048 N = 10,000 Mean

Bmin 45 51 45 45 45 46

Bmax 80 84 84 84 84 83

B 63.93 64.14 64.13 64.27 64.45 64.18

P (%) 49.94 50.11 50.10 50.21 50.35 50.14

DB 5.66 5.39 5.50 5.59 5.63 5.55

DP (%) 4.43 4.21 4.30 4.36 4.40 4.34

Table 3 Number of hits (10,000-time tests)

Number of equal characters 0 1 2 3 4 5 6 7 8

The proposed algorithm 9554 404 42 0 0 0 0 0 0

Fig. 5 Distribution of the number of ASCII characters with the same

value at the same location in the hash value

Table 4 Absolute differences of two hash values (10,000-time tests)

Maximum Minimum Mean Mean/character

2096 646 1429 89.29
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PWLCM to be larger than 10-16, such as

X(0) = 0.2323200000000001, and the corresponding

changed bit number of the hash value is around 64

(85D8AD49506CD53A3A6AC15A15A49010 (62)). In

contrast, if we set X(0) to be 10-17 or less than 10-17, the

hexadecimal format of hash value is permanently shown as

‘‘7C3DB62518F8E15F3A350B766D5E2A47’’; that is, no

corresponding hash bit changes. Therefore, the sensitive

precision of secret key X(0) to hash value is 10-16. Simi-

larly, the sensitive precision of the parameter p is 10-16 as

well. Considering both X(0) 2 (0, 1) and p 2 (0, 0.5), we

can derive that the secret key space is approximately larger

than 2106. According to the ECRYPT II report on key

lengths [33, 47–49], 106 bits provide sufficient security

against brute force key-search attacks [50, 51].

4.6 Analysis of speed

First, the proposed hash algorithm does not need message

padding as the preparation, while message padding is

proportional to the length of original message; therefore,

our algorithm without the message padding process

improves the executive speed. Then, a generalized chaotic

mapping and a one-dimensional piecewise linear chaotic

map are utilized in our algorithm, the dynamical property

of which is enough for the security of the algorithm, and

the structures of which are simple that greatly reduce

complexity of the algorithm, thereby providing fast com-

putation speed and achieving the high efficiency.

Moreover, the proposed algorithm has the parallel

property. Six iteration values X(n), X(2n), X(3n), X(4n),

X(5n), and X(6n) contribute 20, 20, 20, 20, 24, and 24 bits

to the final hash value, respectively, which corresponds to

the parallel computation of 2.5, 2.5, 2.5, 2.5, 3, and 3 bytes.

4.7 Comparison with other algorithms

We perform a comparison between the proposed hash

function and some significant chaos-based hash functions

as well as MD5, which is based on statistical performance

and collision resistance.

Tables 5 and 6 describe the comparison of statistical

performance between the proposed algorithm and selected

existing algorithms. Note that the results reported in

Table 5 are based on N = 2048 random tests and 128-bit

hash value, while the results of Table 6 focus on

N = 10,000 random tests and 128-bit hash value. Based on

the results, our algorithm shows better statistical

performance.

In addition, Tables 7 and 8 present the comparison of

the number of ASCII characters with the same value at the

same location and absolute difference in 128-bit hash

values between our algorithm and selected existing

algorithms. Note that the reported results of Table 7 are

based on N = 2048 random tests, while the results of

Table 8 focus on N = 10,000 random tests. Based on the

results, the proposed algorithm shows better collision

resistance.

As a discussion, the proposed hash algorithm illustrates

better statistical performance and collision resistance

capability. We present a fast and efficient hash algorithm

based on a generalized chaotic mapping with variable

parameters. We dedicate to the improvement of the effi-

ciency with high execution speed. However, most of the

Table 5 Comparison on statistical performance with N = 2048

random tests and 128-bit hash value

Algorithms Statistical performance of the algorithms

B P (%) DB DP (%)

MD5 [34] 64.03 50.02 5.66 4.42

Li’s [14] 63.57 49.66 7.43 5.80

Xiao’s [15] 63.92 49.94 5.62 4.39

Xiao’s [16] 64.09 50.07 5.48 4.28

Kanso’s [17] 63.94 49.95 5.69 4.44

Deng’s [20] 63.84 49.88 5.88 4.59

Guo’s [24] 63.40 49.53 7.13 6.35

Kanso’s [35] 64.01 50.01 5.61 4.38

Li’s [36] 63.81 49.85 5.76 4.50

Li’s [37] 63.89 49.91 5.64 4.41

Ren’s [38] 63.92 49.94 5.78 4.52

Teh’s [39] 64.01 50.01 5.66 4.26

Wang’s [40] 63.98 49.98 5.53 4.33

Wang’s [41] 64.15 50.11 5.77 4.51

Xiao’s [42] 64.01 50.01 5.72 4.47

Xiao’s [43] 64.18 50.15 5.67 4.41

Zhang’s [44] 63.91 49.92 5.58 4.36

Zhang’s [45] 64.43 49.96 5.57 4.51

This scheme 64.27 50.21 5.59 4.36

Table 6 Comparison on statistical performance with N = 10,000

random tests and 128-bit hash value

Algorithms Statistical performance of the algorithms

B P (%) DB DP (%)

Kanso’s [17] 63.94 49.95 5.64 4.41

Ren’s [38] 64.00 50.00 5.62 4.39

Teh’s [39] 63.85 49.88 5.67 4.43

Wang’s [40] 63.90 49.91 5.58 4.36

Wang’s [41] 63.99 49.99 5.61 4.39

Zhang’s [44] 63.96 49.97 5.52 4.32

This scheme 64.45 50.35 5.63 4.40
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start-of-the-art literature focuses on complexity of the

algorithm, ignoring the speed and efficiency.

5 Conclusion

In this paper, we present a fast and efficient hash algorithm

based on a generalized chaotic mapping with variable

parameters. We first define a generalized chaotic mapping

by utilizing piecewise linear chaotic map and trigonometric

functions. Then, we convert the arbitrary length of message

into the corresponding ASCII values and perform 6-unit

iterations with variable parameters and message values

based on the generalized chaotic mapping. The final hash

value is obtained by cascading extracted bits from iteration

state values. We excessively evaluate the proposed algo-

rithm in terms of distribution of hash value, sensitivity of

hash value to the message and secret keys, statistical

analysis of diffusion and confusion, analysis of birthday

attacks and collision resistance, analysis of secret keys,

analysis of speed, and comparison with other algorithms,

and the results illustrate that the suggested algorithm is

fast, efficient, and enough simple and has good confusion

and diffusion capabilities, strong collision resistance, and a

high level of security.
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