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Abstract QUALIFLEX is a very efficient outranking

method to handle multi-criteria decision-making (MCDM)

involving cardinal and ordinal preference information.

Based on a likelihood-based comparison approach, this

paper develops two interval-valued hesitant fuzzy QUA-

LIFLEX outranking methods to handle MCDM problems

within the interval-valued hesitant fuzzy context. First, we

define the likelihoods of interval-valued hesitant fuzzy

preference relations that compare two interval-valued

hesitant fuzzy elements (IVHFEs). Then, we propose the

concepts of the concordance/discordance index, the

weighted concordance/discordance index and the compre-

hensive concordance/discordance index. Moreover, an

interval-valued hesitant fuzzy QUALIFLEX model is

developed to solve MCDM problems where the evaluative

ratings of the alternatives and the weights of the criteria

take the form of IVHFEs. Additionally, this paper pro-

pounds another likelihood-based interval-valued hesitant

fuzzy QUALIFLEX method to accommodate the IVHFEs’

evaluative ratings of alternatives and non-fuzzy criterion

weights with incomplete information. Finally, a numerical

example concerning the selection of green suppliers is

provided to demonstrate the practicability of the proposed

methods, and a comparison analysis is given to illustrate

the advantages of the proposed methods.

Keywords Multi-criteria decision-making � Interval-
valued hesitant fuzzy set � Likelihood � QUALIFLEX �

Comprehensive concordance index � Comparative

analysis � Incomplete information

1 Introduction

In multi-criteria decision-making (MCDM) [13, 38, 56],

the evaluative ratings of the alternatives with respect to the

criteria are often expressed by fuzzy sets [51], interval-

valued fuzzy sets [52], intuitionistic fuzzy sets [1, 2],

interval-valued intuitionistic fuzzy sets [3] and type-2

fuzzy sets [14]. In real applications, however, the decision-

makers may hesitate among several possible precise values

when expressing their assessments of the alternatives based

on the criteria. To address such cases, Torra [39] and Torra

and Narukawa [40] introduced the concept of hesitant

fuzzy sets (HFSs), which permits the degree of member-

ship to have different possible precise values between 0

and 1. Recently, Chen et al. [11, 12] used interval numbers

within [0, 1] instead of crisp numbers to express the

membership degrees in hesitant fuzzy sets and then intro-

duced the concept of interval-valued hesitant fuzzy sets

(IVHFSs), which permit the membership degrees of an

element to have several different interval values within [0,

1]. Since their introduction, IVHFSs have been success-

fully used in many practical problems, especially in

MCDM fields. MCDM within the interval-valued hesitant

fuzzy environment is called interval-valued hesitant fuzzy

MCDM. The existing interval-valued hesitant fuzzy

MCDM methods can be generally divided into two classes.

The first class is comprised of methods that use interval-

value hesitant fuzzy aggregation operators [11, 24, 31, 45,

46, 53, 54]. For example, Chen et al. [11] proposed a series

of operators to aggregate interval-valued hesitant fuzzy

information, such as the interval-valued hesitant fuzzy
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weighted averaging (IVHFWA) operator, the interval-val-

ued hesitant fuzzy weighted geometric (IVHFWG) opera-

tor, the generalized interval-valued hesitant fuzzy weighted

averaging (GIVHFWA) operator, the generalized interval-

valued hesitant fuzzy weighted geometric (GIVHFWG)

operator, the interval-valued hesitant fuzzy ordered

weighted averaging (IVHFOWA) operator, the interval-

valued hesitant fuzzy ordered weighted geometric (IVH-

FOWG) operator, the generalized interval-valued hesitant

fuzzy ordered weighted averaging (GIVHFOWA) operator,

the generalized interval-valued hesitant fuzzy ordered

weighted geometric (GIVHFOWG) operator, the interval-

valued hesitant fuzzy hybrid averaging (IVHFHA) opera-

tor, the interval-valued hesitant fuzzy hybrid geometric

(IVHFHG) operator, the generalized interval-valued hesi-

tant fuzzy hybrid averaging (GIVHFHA) operator and the

generalized interval-valued hesitant fuzzy hybrid geomet-

ric (GIVHFHG) operator. Zhang et al. [53] developed

several induced generalized aggregation operators for

interval-valued hesitant fuzzy information, including the

induced generalized interval-valued hesitant fuzzy ordered

weighted averaging (IGIVHFOWA) operator and the

induced generalized interval-valued hesitant fuzzy ordered

weighted geometric (IGIVHFOWG) operator. The second

class is comprised of methods based on distance measures

[12, 16, 17, 26, 32, 43, 50]. For example, Farhadinia [16]

investigated the entropy, the similarity measure and the

distance measure for IVHFSs. Chen et al. [12] proposed

some correlation coefficient formulas for IVHFSs and

applied them to clustering analysis in interval-valued

hesitant fuzzy environments. Wei et al. [43] put forward a

family of distance and similarity measures for interval-

valued hesitant fuzzy sets. Xu and Zhang [50] used TOP-

SIS and the maximizing deviation method to develop an

approach for handling MCDM problems in which the

evaluative ratings of the alternatives are expressed by

interval-valued hesitant fuzzy elements (IVHFEs) and the

information regarding the criterion weights is incomplete.

However, two main disadvantages of the existing

interval-valued hesitant fuzzy MCDM methodologies have

emerged. (1) Different interval-valued hesitant fuzzy

aggregation operators are involved in different operations,

and this can lead to different results. Moreover, if interval-

valued hesitant fuzzy aggregation operators include a large

number of IVHFEs, the number of operations and the

magnitudes of the results will be very large. The deterio-

ration caused by these complexities may limit the appli-

cation of interval-valued hesitant fuzzy aggregation

operators. (2) In any associated distance measure, two

IVHFEs must be of equal length and must be arranged in

ascending order. Otherwise, it is necessary to add a specific

interval value to the shorter of the two until they are both of

equivalent length. It should be noted that filling some

artificial interval values into an IVHFE would change the

information in the original IVHFE. Moreover, different

methods of extension can produce different results. Thus,

such an approach is less well justified theoretically and less

reliable practically. Outranking methods can overcome

these drawbacks [4, 25, 34–36] and should be used to

manage MCDM problems with IVHFSs. The QUALI-

FLEX (i.e., QUALItative FLEXible) multiple criteria

method is a very popular outranking method. However,

most of the existing interval-valued hesitant fuzzy deci-

sion-making methods only focus on scoring or compromise

models, and until now no investigations on interval-valued

hesitant fuzzy outranking models, particularly interval-

valued hesitant fuzzy QUALIFLEX methods, have been

found. Therefore, it is very natural for us to present some

interval-valued hesitant fuzzy QUALIFLEX methods that

circumvent the aforementioned drawbacks in the existing

interval-valued hesitant fuzzy decision-making methods.

By generalizing Jacquet-Lagreze’s permutation method

[21], Paelinck [27–29] developed the QUALIFLEX

method, which approaches MCDM problems by testing

how each possible ranking order of alternatives is supported

by different criteria [6, 19, 20, 22, 33, 50]. Recently, some

meaningful extensions of the classical QUALIFLEX

method have been proposed, such as the intuitionistic fuzzy

permutation method [10], the interval-valued fuzzy per-

mutation method [9], the QUALIREG (qualitative regres-

sion) method [18], the intuitionistic fuzzy QUALIFLEX

method with optimism and pessimism [8], the QUALI-

FLEX-based method with incomplete information [5], the

interval-valued intuitionistic fuzzy QUALIFLEX method

[6], the QUALIFLEX method based on interval type-2

trapezoidal fuzzy (IT2TrF) numbers [7, 41] and the hesitant

fuzzy QUALIFLEX method [55]. However, all of these

QUALIFLEX methods fail to address the IVHFEs’ decision

data. To overcome this drawback, this paper extends the

QUALIFLEX method to accommodate interval-valued

hesitant fuzzy decision environments, which we call inter-

val-valued hesitant fuzzy QUALIFLEX methods and then

develops two interval-valued hesitant fuzzy QUALIFLEX

methods to address MCDM problems with the interval-

valued hesitant fuzzy information. First, we define the

likelihoods of interval-valued hesitant fuzzy preference

relations, based on which we present the concepts of the

concordance/discordance index (CDI), the weighted con-

cordance/discordance index (WCDI) and the comprehen-

sive concordance/discordance index (CCDI). Second, we

plug the likelihoods of interval-valued hesitant fuzzy pref-

erence relations into the classical QUALIFLEX method and

then propose the interval-valued hesitant fuzzy QUALI-

FLEX (IVHF-QUALIFLEX) method to address the MCDM

problems in which IVHFEs are used to represent the eval-

uative ratings of the alternatives and the weights of the
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criteria. Third, similar to the interval-valued intuitionistic

fuzzy QUALIFLEX method proposed in [6], we develop

another likelihood-based IVHF-QUALIFLEX method to

address the IVHFEs’ evaluative ratings of alternatives and

non-fuzzy criterion weights with incomplete information.

The structure of this paper is as follows: Sect. 2 reviews

the concepts of IVHFSs. Section 3 formulates an MCDM

problem within the interval-valued hesitant fuzzy context

and then introduces the likelihoods of interval-valued hesi-

tant fuzzy preference relations. In Sect. 4, a likelihood-

based interval-valued hesitant fuzzy QUALIFLEX method

is first developed to solve a MCDM problem involving

interval-valued hesitant fuzzy criterion weights. Further-

more, this section also proposes a likelihood-based interval-

valued hesitant fuzzy QUALIFLEX method for addressing

incomplete certain information of criterion weights. Sec-

tion 5 employs a practical example to justify the proposed

methods. This section also carries out a comparative analysis

with other interval-valued hesitant fuzzy MCDM methods.

Section 6 ends this paper with some concluding remarks.

2 Preliminaries

Definition 2.1 [39, 40]. Let X be a reference set. A

hesitant fuzzy set (HFS) A on X is defined in terms of a

function hAðxÞ that, when applied to X, returns a subset of

0; 1½ �.

An HFS A can be expressed by the following mathe-

matical symbol [47]:

A ¼ x; hA xð Þh ijx 2 Xf g ð1Þ

where hAðxÞ is a set of values in 0; 1½ � and denotes all of the

possible membership degrees of the element x 2 X to the

set A. For convenience, Xia and Xu [47] called h ¼ hA xð Þ a
hesitant fuzzy element (HFE).

Throughout this paper, let Dð½0; 1�Þ denote the set of all

closed subintervals of 0; 1½ �, i.e., D 0; 1½ �ð Þ ¼ ~a ¼ aL; aU½ �f
jaL � aU ; aL; aU 2 0; 1½ �g.

To compare two intervals ~a ¼ aL; aU½ � and ~b ¼ bL; bU½ �,
three possibility degree formulae have been developed by

Facchinetti et al. [15], Wang et al. [42], and Xu and Da [49]

and have been further proved to be equivalent by Xu and

Chen [48]. In the following, we review Xu and Da’s pos-

sibility degree formula that is used throughout the paper.

Definition 2.2 [49]. Let ~a ¼ aL; aU½ �; ~b ¼ bL; bU½ �
2 D 0; 1½ �ð Þ, and let l~a ¼ aU � aL and l~b ¼ bU � bL. Then,

the degree of possibility of ~a� ~b is defined as:

p ~a� ~b
� �

¼ max 1�max
bU � aL

l~a þ l~b
; 0

� �
; 0

� �
ð2Þ

The degree of possibility p ~a� ~b
� �

has the following

properties [49]:

1. 0� p ~a� ~b
� �

� 1;

2. p ~a� ~b
� �

þ p ~b� ~a
� �

¼ 1. In particular, p ~a� ~að Þ ¼ 0:5;

3. p ~a� ~b
� �

¼ 1 if and only if bU � aL;

4. p ~a� ~b
� �

¼ 0 if and only if aU � bL;

5. p ~a� ~b
� �

� 0:5 if and only if aL þ aU � bL þ bU . In

particular, p ~a� ~b
� �

¼ 0:5 if and only if aL þ aU ¼
bL þ bU;

6. Let ~a; ~b; ~c 2 D 0; 1½ �ð Þ, if p ~a� ~b
� �

� 0:5 and

p ~b� ~c
� �

� 0:5, then p ~a� ~cð Þ� 0:5.

Definition 2.3 [11, 12]. An interval-valued hesitant fuzzy

set (IVHFS) ~A on the set X is defined in terms of a function

that, when applied to X, returns a subset of D 0; 1½ �ð Þ.

An IVHFS ~A can be expressed as the following math-

ematical symbol [11]:

~A ¼ x; ~h ~A xð Þ
� 	

x 2 X
� �

ð3Þ

where ~h ~A xð Þ denotes all of the possible interval degrees of

x 2 X to ~A. For simplicity, eh ¼ ~h ~A xð Þ is said to be an

interval-valued hesitant fuzzy element (IVHFE) [11]. If

~c 2 eh, then ~c is an interval number and can be denoted by

~c ¼ cL; cU½ �, where cL ¼ inf ~c and cU ¼ sup ~c are the lower
and upper limits of ~c, respectively. Obviously, if cL ¼ cU

for any ~c 2 eh, then the IVHFE reduces to the HFE.

For convenience, we denote an IVHFE as ~h ¼ ~cj~cf 2
ehg ¼ c1ð ÞL; c1ð ÞU

h i
;

n
c2ð ÞL; c2ð ÞU

h i
; . . .; cl ~h

� �L
; cl ~h
� �Uh i

g,

where l~h is the number of interval values in ~h. The lower

bound of ~h is h� ¼ min c1ð ÞL; c2ð ÞL; . . .; cl ~h
� �Ln o

, and the

upper bound of ~h is hþ ¼ max c1ð ÞU ; c2ð ÞU ; . . .; cl ~h
� �Un o

.

Example 2.1 Let X ¼ x1; x2; x3f g, ~A ¼ x1; 0:7; 0:8½ �;fhf
0:5; 0:6½ �gi; x2; 0:3; 0:5½ �;fh 0:3; 0:4½ �; 0:2; 0:3½ �gi; x3;h
0:6; 0:8½ �; 0:6; 0:7½ �f gig, and ~h ¼ 0:3; 0:5½ �; 0:3; 0:4½ �; 0:2;½f

0:3�g. Then ~A is an IVHFS on X, ~h is an IVHFE, and

l~h ¼ 3.

3 Likelihood defined on the interval-valued
hesitant fuzzy environment

In this section, we first construct an MCDM problem

within the interval-valued hesitant fuzzy decision envi-

ronment. We then define the likelihood of the interval-

valued hesitant fuzzy preference relations.
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3.1 Interval-valued hesitant fuzzy decision context

Consider an MCDM problem within the interval-valued

hesitant fuzzy context in which both the evaluative ratings

of alternatives and the weights of criteria are given in the

form of IVHFEs. Denote a set of alternatives by

Z ¼ z1; z2; . . .; zmf g. Denote a set of criteria by

C ¼ c1; c2; . . .; cnf g. We use an IVHFE ~hij ¼

~c1ij; ~c
2
ij; . . .; ~c

lij
ij

n o
to express the evaluative rating of the

alternative zi 2 Z with respect to the criterion cj 2 C.

Therefore, an interval-valued hesitant fuzzy decision

matrix is established as below.

( )

1 2

11 11 11

2 21 22 2

1 2

n

n

n
ij m n

m m m mn

c c c

h h hz
z h h hH h

z h h h

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

ð4Þ

This paper explores MCDM problems involving two

different preference information structures of criterion

importance: interval-valued hesitant fuzzy importance

weights and non-fuzzy importance weights with incom-

plete certain information.

3.2 Likelihood of interval-valued hesitant fuzzy

preference relations

Within the decision context of IVHFSs, let two IVHFEs

~haj ¼ ~c1aj; ~c
2
aj; . . .; ~c

laj
aj

n o
and ~hbj ¼ ~c1bj; ~c

2
bj; . . .; ~c

lbj
bj

n o
be the

evaluative ratings of the alternatives za and zb, respectively,

with respect to the criterion cj 2 C. Let ~haj � ~hbj be an

interval-valued hesitant fuzzy preference relation that

denotes the alternative za not being inferior to the alter-

native zb with respect to the criterion cj 2 C. Let

L ~haj � ~hbj
� �

denote the likelihood of the interval-valued

hesitant fuzzy preference relation ~haj � ~hbj for each pair of

alternatives za; zb
� �

. Using Eq. (2), we determine

L ~haj � ~hbj
� �

using the following method.

Definition 3.1 Let ~haj ¼ ~c1aj; ~c
2
aj; . . .; ~c

laj
aj

n o
(where laj is

the number of intervals in ~haj) and ~hbj ¼ ~c1bj; ~c
2
bj; . . .; ~c

lbj
bj

n o

(where lbj is the number of intervals in ~hbj) be two IVHFEs.

The likelihood L ~haj � ~hbj
� �

of an interval-valued hesitant

fuzzy preference relation ~haj � ~hbj is defined as:

L ~haj � ~hbj
� �

¼ 1

laj � lbj
Xlaj

k¼1

Xlbj

s¼1

p ~ckaj � ~csbj

 �
ð5Þ

Example 3.1 Let ~haj ¼ 0:3; 0:5½ �; 0:3; 0:4½ �; 0:2; 0:3½ �f g
and ~hbj ¼ 0:1; 0:2½ �; 0:3; 0:4½ �f g be two IVHFEs. Then, the

likelihood L ~haj � ~hbj
� �

of ~haj � ~hbj is calculated as:

L ~haj� ~hbj
� �

¼ 1

3�2

p 0:3;0:5½ �� 0:1;0:2½ �ð Þþp 0:3;0:5½ �� 0:3;0:4½ �ð Þþp 0:3;0:4½ �� 0:1;0:2½ �ð Þþ

p 0:3;0:4½ �� 0:3;0:4½ �ð Þþp 0:2;0:3½ �� 0:1;0:2½ �ð Þþp 0:2;0:3½ �� 0:3;0:4½ �ð Þ

0

B@

1

CA

¼ 1

3�2
1þ2

3
þ1þ0:5þ1þ0

� �
¼ 0.6944

Theorem 3.1 Let ~haj ¼ ~c1aj; ~c
2
aj; . . .; ~c

laj
aj

n o
and ~hbj ¼

~c1bj; ~c
2
bj; . . .; ~c

lbj
bj

n o
be two IVHFEs, where laj and lbj are the

number of interval values in ~haj and ~hbj, respectively. Let

the lower bounds of ~haj and ~hbj be h�aj and h�bj, and the

upper bounds of ~haj and ~hbj be h
þ
aj and h

þ
bj, respectively. The

likelihood L ~haj � ~hbj
� �

of ~haj � ~hbj satisfies the following

relationships:

1. 0� L ~haj � ~hbj
� �

� 1;

2. L ~haj � ~hbj
� �

¼ 0 if and only if hþaj � h�bj;

3. L ~haj � ~hbj
� �

¼ 1 if and only if hþbj � h�aj;

4. L ~haj � ~hbj
� �

þ L ~hbj � ~haj
� �

¼ 1;

5. L ~haj � ~hbj
� �

¼ L ~hbj � ~haj
� �

¼ 0:5 if

L ~haj � ~hbj
� �

¼ L ~hbj � ~haj
� �

;

6. L ~haj � ~haj
� �

¼ 0:5.

Proof The lower bound of ~haj is

h�aj ¼ min c1aj

 �L
; c2aj

 �L
; . . .; clajaj

 �L� �
, and the upper

bound of ~haj is hþaj ¼ max c1aj

 �U
; c2aj

 �U
; . . .; clajaj

 �U� �
.

The lower bound of ~hbj is

h�bj ¼ min c1bj

 �L
; c2bj

 �L
; . . .; c

lbj
bj

 �L� �
, and the upper

bound of ~hbj is h
þ
bj ¼ max c1bj

 �U
; c2bj

 �U
; . . .; c

lbj
bj

 �U� �
.

1. Because 0� p ~ckaj � ~csbj

 �
� 1, for any k ¼ 1; 2; . . .; laj

and s ¼ 1; 2; . . .; lbj, we have 0�
Plaj

k¼1

Plbj

s¼1

p ~ckaj � ~csbj

 �

� laj � lbj; thus, 0� L ~haj � ~hbj
� �

� 1.

2. If L ~haj � ~hbj
� �

¼ 0, then p ~ckaj � ~csbj

 �
¼ 0 for any k ¼

1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj, thus ckaj

 �U
� csbj

 �L

for any k ¼ 1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj. We then

have hþaj � h�bj. Conversely, if hþaj � h�bj, then
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ckaj

 �U
� csbj

 �L
for any k ¼ 1; 2; . . .; laj and s ¼ 1; 2;

. . .; lbj; thus, p ~ckaj � ~csbj

 �
¼ 0 for any k ¼ 1; 2; . . .; laj

and s ¼ 1; 2; . . .; lbj, and we then have

L ~haj � ~hbj
� �

¼ 0.

3. If L ~haj � ~hbj
� �

¼ 1, then p ~ckaj � ~csbj

 �
¼ 1 for any k ¼

1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj, thus csbj

 �U
� ckaj

 �L

for any k ¼ 1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj; we then

have hþbj � h�aj. Conversely, if hþbj � h�aj, then

csbj

 �U
� ckaj

 �L
for any k ¼ 1; 2; . . .; laj and

s ¼ 1; 2; . . .; lbj; thus, p ~ckaj � ~csbj

 �
¼ 1 for any k ¼

1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj; we then have

L ~haj � ~hbj
� �

¼ 1.

4. Using Eq. (2), p ~ckaj � ~csbj

 �
þ p ~csbj � ~ckaj

 �
¼ 1, for any

k ¼ 1; 2; . . .; laj and s ¼ 1; 2; . . .; lbj; therefore

L ~haj� ~hbj
� �

þL ~hbj� ~haj
� �

¼ 1

laj � lbj
Xlaj

k¼1

Xlbj

s¼1

p ~ckaj� ~csbj

 �

þ 1

lbj � laj
Xlbj

s¼1

Xlaj

k¼1

p ~csbj� ~ckaj

 �

¼ 1

laj � lbj
Xlaj

k¼1

Xlbj

s¼1

p ~ckaj� ~csbj

 �

þ p ~csbj� ~ckaj

 ��
¼ 1

(5) and (6) can be easily derived from (4).

4 Likelihood-based interval-valued hesitant fuzzy
QUALIFLEX methods

In this section, we first present a comparison approach to

identifying the CDI for all permutation of the rankings of

the alternatives. We then develop a likelihood-based

interval-valued hesitant fuzzy QUALIFLEX (IVHF-QUA-

LIFLEX) method for addressing MCDM problems

involving interval-valued hesitant fuzzy importance

weights and a likelihood-based QUALIFLEX method to

handle MCDM problems involving non-fuzzy importance

weights with incomplete information.

4.1 Proposed method involving interval-valued

hesitant fuzzy importance weights

Consider an MCDM problem in which both the evaluative

ratings of the alternatives and the importance weights of

the criteria take the form of IVHFEs. Let Z be an alter-

native set with m alternatives; then, we have m! permuta-

tions of the ranking of the alternatives. Let Pl denote the lth

permutation as:

Pl ¼ . . .; za; . . .; zb; . . .
� �

; for l ¼ 1; 2; . . .;m! ð6Þ

where za; zb 2 Z and the alternative za is ranked greater

than or equal to zb.

Let ~haj ¼ ~c1aj; ~c
2
aj; . . .; ~c

laj
aj

n o
(where laj is the number of

interval values in ~haj) and ~hbj ¼ ~c1bj; ~c
2
bj; . . .; ~c

lbj
bj

n o
(where

lbj is the number of interval values in ~hbj) be the evaluative

ratings of the alternatives za and zb, respectively, with

respect to the criterion cj 2 C. Comparisons between two

interval-valued hesitant fuzzy evaluative ratings ~haj and ~hbj

can be obtained by using the likelihood L ~haj � ~hbj
� �

of the

interval-valued hesitant fuzzy preference relations
~haj � ~hbj. According to (5) in Definition 3.1, if L ~haj � ~hbj

� �

¼ L ~hbj � ~haj
� �

, it follows that L ~haj � ~hbj
� �

¼ L ~hbj �
�

~hajÞ ¼ 0:5. Therefore, the concordance/discordance index

(CDI) ul
j za; zb
� �

for each pair of alternatives za; zb
� �

with

respect to the criterion cj 2 C and the permutation Pl is

defined as follows:

ul
j za; zb
� �

¼ L ~haj � ~hbj
� �

� 0:5 ð7Þ

where ul
j za; zb
� �

2 �0:5; 0:5½ �.
Based on the likelihood-based comparison of IVHFEs,

we can conclude from Eq. (7) that:

1. If L ~haj � ~hbj
� �

[ 0:5, that is, ul
j za; zb
� �

[ 0, then za

ranks over zb under the jth criterion, and thus, there is

concordance between the likelihood-based ranking

orders and the preorders of za and zb under the l th

permutation Pl [55].

2. If L ~haj � ~hbj
� �

¼ 0:5, that is, ul
j za; zb
� �

¼ 0, then both

za and zb have the same rank in the likelihood-based

ranking and in the lth permutation, thus there is ex

aequo [55].

3. If L ~haj � ~hbj
� �

\0:5, that is, ul
j za; zb
� �

\0, then zb

ranks over za; thus, there is discordance between the

likelihood-based ranking orders and the preorders of za
and zb under the lth permutation Pl [55].
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The index ul
j za; zb
� �

serves as an evaluation value of the

pair of alternatives za; zb
� �

in the lth permutation with

respect to the criterion cj. Obviously, equal importance is

assigned to each criterion cj 2 C in the concordance/dis-

cordance index ul
j za; zb
� �

. To incorporate individual sub-

jective preference over the criteria into the MCDM process,

the weighted concordance/discordance index (WCDI)

ul za; zb
� �

for each pair of alternatives za; zb
� �

(za; zb 2 Z)

with respect to the lth permutation is defined as

ul za; zb
� �

¼
Xn

j¼1

ul
j za; zb
� �

� L ~Wj � g0; 1½ �
 � �

ð8Þ

where g0; 1½ � ¼ 0; 1½ �f g is a constant IVHFE and ~Wj ¼
~w1
j ; ~w

2
j ; . . .; ~w

lj
j

n o
is the interval-valued hesitant fuzzy

importance weight of the criterion cj 2 C.

Furthermore, the comprehensive concordance/discor-

dance index (CCDI) ul with respect to the lth permutation

is defined as follows:

ul ¼
X

za;zb2Z
ul za; zb
� �

¼
X

za;zb2Z

Xn

j¼1

ul
j za; zb
� �

� L ~Wj � g0; 1½ �
 � �

ð9Þ

Finally, the optimal ranking order of the alternatives is

derived via the comparisons of all of the comprehensive

concordance/discordance indexes.

To sum up, the proposed likelihood-based interval-val-

ued hesitant fuzzy QUALIFLEX approach, which is used

to handle an MCDM problem involving interval-valued

hesitant fuzzy importance weights, is composed of the

following steps.

Algorithm A (for MCDM problems involving interval-

valued hesitant fuzzy importance weights)

Step A.1: Formulate a MCDM problem in which Z ¼
z1; z2; . . .; zmf g is an alternative set and C ¼
c1; c2; . . .; cnf g is a criterion set.

Step A.2: Use the IVHFEs to establish the importance

weight ~Wj ¼ ~w1
j ; ~w

2
j ; . . .; ~w

lj
j

n o
of the criterion cj 2 C

and the evaluative rating ~hij ¼ ~c1ij; ~c
2
ij; . . .; ~c

lij
ij

n o
of the

alternative zi 2 Z with respect to the criterion cj 2 C.

Then, construct the interval-valued hesitant fuzzy deci-

sion matrix ~H ¼ ~hij
� �

m�m
in (4) as well as the interval-

valued hesitant fuzzy weight vector of criteria, denoted

as ~W ¼ ~W1; ~W2; . . .; ~Wn

� �
.

Step A.3: Set out all of the m! permutations of the m

alternatives. Let Pl (l ¼ 1; 2; . . .;m!) denote the lth

permutation by using Eq. (6).

Step A.4: Calculate the likelihood L haj � hbj
� �

using

Eq. (5) for cj 2 C and za; zb
� �

, where za; zb 2 Z.

Step A.5: Compute the concordance/discordance index

ul
j za; zb
� �

for each pair of alternative za; zb
� �

in the

permutation Pl with respect to the criterion cj 2 C using

Eq. (7), where l ¼ 1; 2; . . .;m!.

Step A.6: Calculate the WCDI ul za; zb
� �

for each pair of

za; zb
� �

in Pl using Eq. (8), where l ¼ 1; 2; . . .;m!.

Step A.7: Calculate the CCDI ul for each permutation Pl

using Eq. (9), where l ¼ 1; 2; . . .;m!.

Step A.8: Choose the permutation with the greatest ul

value as the optimal ranking order of the alternatives.

4.2 Proposed method involving incomplete

preference information

Consider an MCDM problem involving interval-valued

hesitant fuzzy evaluative ratings of alternatives and

incomplete certain information for the importance weights.

With respect to the permutation Pl, let w
l
j be the non-fuzzy

importance weight of criterion cj 2 C satisfying the nor-

malization conditions wl
j 2 0; 1½ �, j ¼ 1; 2; . . .; n, and

Pn
j¼1 w

l
j ¼ 1. Let C0 denote a set of all non-fuzzy weight

vectors, and

C0¼ wl
1;w

l
2; .. .;w

l
n

� �

wl
j2 0;1½ �; j¼1;2;. ..;n;

Xn

j¼1

wl
j¼1

( )

ð10Þ

The incomplete information regarding non-fuzzy

weights on the criteria can be generally provided by

using the following five basic ranking forms [6, 23, 30,

44].

1. A weak ranking:

C1 ¼
n

wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
�wl

j2
for all j1

2 � 1 and j2 2 K1

o

ð11Þ

where � 1 and K1 are two disjoint subsets of the sub-

script index set N ¼ 1; 2; . . .; nf g of all criteria.

2. A strict ranking:

C2 ¼
n

wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
� wl

j2
� d0j1j2

for all j1 2 � 2 and j2 2 K2

o ð12Þ

where d0j1j2 is a constant that satisfies the condition

d0j1j2 [ 0, and � 2 and K2 are two disjoint subsets of N.
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3. A ranking of differences (or strength of preference):

C3 ¼
n

wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
� wl

j2
�wl

j2
� wl

j3

for all j1 2 � 3; j2 2 K3; and j3 2 X3

o

ð13Þ

where � 3 , K3, and X3 are three disjoint subsets of N.

4. An interval bound:

C4 ¼ wl
1;w

l
2; . . .;w

l
n

� �
2C0



dj1 þ ej1 �wl
j1
�dj1 for all j1 2� 4

n o

ð14Þ

where dj1 � 0 and ej1 � 0 are constants that satisfy the

condition 0� dj1 � dj1 þ ej1 � 1, and � 4 is a subset of

N.

5. A ratio bound (or a ranking with multiples):

C5 ¼
n

wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
� d00j1j2 � w

l
j2

for all j1 2 � 5 and j2 2 K5

o ð15Þ

where d00j1j2 is a constant that satisfies the condition

0� d00j1j2 � 1, and � 5 and K5 are two disjoint subsets of

N.

Let C denote a set of the incompletely known infor-

mation regarding the non-fuzzy weights on the criteria, and

C ¼ C1 [ C2 [ C3 [ C4 [ C5 ð16Þ

Combining C and ul
j za; zb
� �

, the ordinary WCDI

ul za; zb
� �

for each pair of alternatives za; zb
� �

(za; zb 2 Z)

with respect to the permutation Pl is expressed as the

following:

ul za; zb
� �

¼
Xn

j¼1

ul
j za; zb
� �

� wl
j

 �

¼
Xn

j¼1

L ~haj � ~hbj
� �

� 0:5
� �

� wl
j ð17Þ

where wl
1;w

l
2; . . .;w

l
n

� �
2 C.

Moreover, the ordinary CCDI ul for the permutation Pl

is

ul ¼
X

za;zb2Z
ul za; zb
� �

¼
X

za;zb2Z

Xn

j¼1

ul
j za; zb
� �

� wl
j

 �

¼
X

za;zb2Z

Xn

j¼1

L ~haj � ~hbj
� �

� 0:5
� �

� wl
j ð18Þ

For each permutation Pl (l ¼ 1; 2; . . .;m!), the optimal

weight vector �wl ¼ �wl
1; �w

l
2; . . .; �w

l
n

� �
of the criteria is

derived by solving the following model [6]:

max ul ¼
X

za;zb2Z

Xn

j¼1

ul
j za; zb
� �

� wl
j

 �

¼
X

za;zb2Z

Xn

j¼1

L ~haj � ~hbj
� �

� 0:5
� �

� wl
j

s:t: wl
1;w

l
2; . . .;w

l
n

� �
2 C

ð19Þ

for each l ¼ 1; 2; . . .;m!.

Then, we can obtain an optimal objective CCDI �ul for

each l ¼ 1; 2; . . .;m! and choose the permutation with the

maximum value �ul, from which the optimal ranking order

of the alternatives can be derived.

If conflicting preference existed in the incompletely

known information regarding the non-fuzzy weights, it

would be impossible for us to obtain the criteria weights

from the conditions in C. In this case, Chen [6] introduced

several nonnegative deviation variables n�ðiÞj1j2 ; n
�
ðiiÞj1j2 ;



n�ðiiiÞj1j2j3 ; n
�
ðivÞj1 ; n

þ
ðivÞj1 ; n

�
ðvÞj1j2Þ to construct a relaxed set C0,

which is shown as follows:

C0
1 ¼

n
wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
þ n�ðiÞj1j2 �wl

j2

for all j1 2 � 1 and j2 2 K1

o ð20Þ

C0
2 ¼ wl

1;w
l
2; . . .;w

l
n

� �
2 C0



wl
j1
� wl

j2
þ n�ðiiÞj1j2

n

� d0j1j2 for all j1 2 � 2 and j2 2 K2

o ð21Þ

C0
3 ¼

n
wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
� 2wl

j2
þ wl

j3
þ n�ðiiiÞj1j2j3

� 0 for all j1 2 � 3; j2 2 K3; and j3 2 X3

o

ð22Þ

C0
4 ¼

n
wl
1;w

l
2; . . .;w

l
n

� �
2 C0



wl
j1
þ n�ðivÞj1 � dj1 ;w

l
j1
� nþðivÞj1

� dj1 þ ej1 for all j1 2 � 4

o
ð23Þ

C0
5 ¼

(

wl
1;w

l
2; . . .;w

l
n

� �
2 C0



w
l
j1

wl
j2

þ n�ðvÞj1j2 � d00j1j2

for all j1 2 � 5 and j2 2 K5

) ð24Þ

C0 ¼ C0
1 [ C0

2 [ C0
3 [ C0

4 [ C0
5 ð25Þ

Combining ul and the non-fuzzy weights in the relaxed

set C0, Chen [6] established the following bi-objective

model for solving the MCDM problem with incomplete

and conflicting weights information:
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max ul ¼
X

za;zb2Z

Xn

j¼1

ul
j za; zb
� �

�wl
j

 �

¼
X

za;zb2Z

Xn

j¼1

L ~haj� ~hbj
� �

� 0:5
� �

�wl
j

min
X

j1;j2;j32N
n�ðiÞj1j2 þ n�ðiiÞj1j2 þ n�ðiiiÞj1j2j3 þ n�ðivÞj1 þ nþðivÞj1 þ n�ðvÞj1j2

 �

s:t:

wl
1;w

l
2; � � � ;wl

n

� �
2C0;

n�ðiÞj1j2 �0 j1 2 � 1 and j2 2K1;

n�ðiiÞj1j2 �0 j1 2 � 2 and j2 2K2;

n�ðiiiÞj1j2j3 �0 j1 2 � 3; j2 2K3 and j3 2X3;

n�ðivÞj1 �0;nþðivÞj1 �0 j1 2 � 4;

n�ðvÞj1j2 �0 j1 2 � 5 and j2 2K5;

8
>>>>>>>>><

>>>>>>>>>:

ð26Þ

for each l ¼ 1; 2; . . .;m. The application of the max–min

operator [57] can transform the above model into a single-

objective nonlinear programming model [6], which is

shown as follows:

The solution of the above model (27) yields the optimal

weight vector �wl ¼ �wl
1; �w

l
2; . . .; �w

l
n

� �
, and the optimal

deviation values n�ið Þj1j2 ; n
�
iið Þj1j2 ; n

�
iiið Þj1j2j3 ; n�ivð Þj1 ; n

þ
ivð Þj1 ; and

n�vð Þj1j2 (j1; j2; j3 2 N) for each l ¼ 1; 2; . . .;m. Then, we

acquire the CCDI �Il for each permutation Pl. After com-

paring all of the �ul values for all permutations Pl, the

optimal ranking order of the alternatives can be obtained.

Similar to Algorithm A, a likelihood-based interval-

valued hesitant fuzzy QUALIFLEX method, which is

developed for handling the MCDM problem involving the

non-fuzzy importance weights, consists of the following

steps.

Algorithm B (for MCDM problems involving incom-

plete information)

Step B.1: See Step A.1 of Algorithm A.

Step B.2: Establish the interval-valued hesitant fuzzy

decision matrix ~H ¼ ~hij
� �

m�m
in Eq. (4), where ~hij is the

evaluative rating of alternative zi 2 Z with respect to

criterion cj 2 C. Express the weight information of the

criteria in C by means of a weak order, a strict order, a

difference order, an interval bound or a ratio bound.

Construct the set C in Eq. (16) from the known

information.

Steps B.3–B.5: see Steps A.3–A.5 of Algorithm A.

Step B.6: Calculate the ordinary CCDI ul for each

permutation Pl using Eq. (18), where l ¼ 1; 2; . . .;m!.

Then, use (19) to build a linear programming model for

incomplete and consistent weight information, or use

(27) to build a relaxed nonlinear programming model for

incomplete and inconsistent weight information with

respect to each permutation Pl, where l ¼ 1; 2; . . .;m!.

Step B.7: Derive the optimal weight vector �wl and the

optimal CCDI �ul for each permutation Pl by solving (19)

or (27).

Step B.8: Choose the permutation with the greatest

value of �ul as the optimal ranking order of the

alternatives.

max k

s:t:

P

za;zb2Z

Pn

j¼1

L ~haj � ~hbj
� �

� 0:5
� �

� wl
j � k;

�
P

j1;j2;j32N
n�ðiÞj1j2 þ n�ðiiÞj1j2 þ n�ðiiiÞj1j2j3 þ n�ðivÞj1 þ nþðivÞj1 þ n�ðvÞj1j2

 �
� k;

wl
1;w

l
2; . . .;w

l
n

� �
2 C0;

n�ðiÞj1j2 � 0 j1 2 � 1 and j2 2 K1;

n�ðiiÞj1j2 � 0 j1 2 � 2 and j2 2 K2;

n�ðiiiÞj1j2j3 � 0 j1 2 � 3; j2 2 K3; and j3 2 X3;

n�ðivÞj1 � 0; nþivð Þj1 � 0 j1 2 � 4;

n�ðvÞj1j2 � 0 j1 2 � 5 and j2 2 K5

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

for each l ¼ 1; 2; . . .;m:

ð27Þ
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5 Illustrative applications and comparative
analysis

In what follows, we adapt a green supplier selection

problem from Zhang and Xu [55] to verify the applicability

of Algorithms A and B. In addition, a comparative analysis

is carried out to illustrate the advantages of the proposed

methods over other interval-valued hesitant fuzzy MCDM

methods.

5.1 Decision context

Based on environmental criteria at an automobile manu-

facturing company [22, 37], Zhang and Xu [55] have

introduced a green supplier selection problem (see sub-

section 5.1 on page 879 in [55] for more details). In this

problem, suppose that there are four possible green sup-

pliers: z1, z2, z3 and z4. Nine major criteria are used to

evaluate these four possible suppliers, including pollution

production (c1), resource consumption (c2), eco-design

(c3), green image (c4), environmental management system

(c5), commitment to GSCM from managers (c6), use of

environmentally friendly technology (c7), use of environ-

mentally friendly materials (c8) and staff environmental

training (c9).

5.2 Illustration of Algorithm A

In this subsection, Algorithm A is used to choose a best one

from four potential suppliers.

In Step A.1, the set of the alternatives is denoted by

Z ¼ z1; z2; z3; z4f g and the set of the criteria is denoted by

C ¼ c1; c2; c3; c4; c5; c6; c7; c8; c9f g.
In Step A.2, the evaluative ratings ~hij (for each zi 2 Z

and cj 2 C) and the importance weights ~Wj (for each

cj 2 C) are furnished in Table 1.

In the following, we explain where the IVHFSs in

Table 1 come from. In order to obtain a more reasonable

decision result, a decision organization is invited to eval-

uate the performance of the four potential suppliers and the

weights of the nine criteria. Take ~h11 as an example.

Suppose that some of the decision-makers provide an

interval ½0:4; 0:6� as the evaluation for the alternative z1
under the criterion c1, some provide an evaluation of

Table 1 Interval-valued

hesitant fuzzy decision matrix
~H ¼ ~hij

� �
4�9

and the weight

vector ~W of the criteria

The evaluative rating ~hij of the alternative zi 2 Z with respect to the criterion cj 2 C

~h11 ½0:4; 0:6�; ½0:1; 0:3�; ½0:1; 0:2�f g ~h21 ½0:4; 0:5�; ½0:2; 0:3�f g
~h12 {[0.3, 0.5], [0.2, 0.3], [0.1, 0.2]} ~h22 ½0:5; 0:7�; ½0:5; 0:6�f g
~h13 ½0:7; 0:9�; ½0:7; 0:8�; ½0:6; 0:7�; ½0:5; 0:6�f g ~h23 ½0:7; 0:9�; ½0:5; 0:6�; ½0:4; 0:6�f g
~h14 ½0:8; 0:9�; ½0:5; 0:6�f g ~h24 ½0:7; 0:8�; ½0:6; 0:9�; ½0:5; 0:6�; ½0:2; 0:3�f g
~h15 ½0:7; 0:9�; ½0:5; 0:6�; ½0:2; 0:3�f g ~h25 ½0:8; 0:9�; ½0:6; 0:7�; ½0:5; 0:7�f g
~h16 ½0:4; 0:5�; ½0:3; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�f g ~h26 ½0:5; 0:9�; ½0:7; 0:8�; ½0:6; 0:7�f g
~h17 ½0:3; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�f g ~h27 ½0:2; 0:3�; ½0:1; 0:5�f g
~h18 ½0:7; 0:9�; ½0:6; 0:7�; ½0:5; 0:6�; ½0:2; 0:3�f g ~h28 ½0:5; 0:6�; ½0:1; 0:3�f g
~h19 ½0:3; 0:5�; ½0:3; 0:4�; ½0:1; 0:3�f g ~h29 ½0:7; 0:9�; ½0:6; 0:8�; ½0:4; 0:7�f g
~h31 ½0:4; 0:6�; ½0:4; 0:5�; ½0:2; 0:3�f g ~h41 ½0:6; 0:8�; ½0:5; 0:9�f g
~h32 ½0:7; 0:8�; ½0:6; 0:8�; ½0:3; 0:4�; ½0:1; 0:2�f g ~h42 ½0:1; 0:3�; ½0:1; 0:2�f g
~h33 ½0:3; 0:5�; ½0:3; 0:4�; ½0:1; 0:6�f g ~h43 ½0:4; 0:5�; ½0:2; 0:3�; ½0:1; 0:2�f g
~h34 ½0:7; 0:9�; ½0:7; 0:8�; ½0:2; 0:3�f g ~h44 ½0:8; 0:9�; ½0:6; 0:7�; ½0:5; 0:6�; ½0:3; 0:4�f g
~h35 ½0:6; 0:9�; ½0:6; 0:7�; ½0:5; 0:7�f g ~h45 ½0:4; 0:5�; ½0:3; 0:6�; ½0:1; 0:3�f g
~h36 ½0:7; 0:9�; ½0:5; 0:8�; ½0:2; 0:6�; ½0:1; 0:3�f g ~h46 ½0:5; 0:6�; ½0:3; 0:4�; ½0:1; 0:2�f g
~h37 ½0:3; 0:5�; ½0:1; 0:4�; ½0:1; 0:2�f g ~h47 ½0:5; 0:8�; ½0:5; 0:6�; ½0:2; 0:4�; ½0:1; 0:3�f g
~h38 ½0:2; 0:5�; ½0:1; 0:3�f g ~h48 ½0:8; 0:9�; ½0:6; 0:8�; ½0:3; 0:6�; ½0:1; 0:3�f g
~h39 ½0:3; 0:6�; ½0:2; 0:3�; ½0:1; 0:2�f g ~h49 ½0:6; 0:7�; ½0:4; 0:5�f g

The weight ~Wj of the criterion cj 2 C

~W1 ½0:8; 0:9�; ½0:6; 0:9�; ½0:6; 0:8�; ½0:5; 0:7�f g W6 ½0:2; 0:3�; ½0:1; 0:3�f g
~W2 ½0:3; 0:5�; ½0:2; 0:3�f g W7 ½0:7; 0:8�; ½0:6; 0:8�; ½0:5; 0:7�; ½0:5; 0:6�f g
~W3 ½0:3; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�f g W8 ½0:8; 0:9�; ½0:7; 0:8�; ½0:6; 0:7�f g
~W4 ½0:7; 0:8�; ½0:6; 0:7�; ½0:5; 0:7�; ½0:5; 0:6�f g W9 ½0:6; 0:8�; ½0:3; 0:5�; ½0:1; 0:3�f g
W5 ½0:7; 0:9�; ½0:7; 0:8�; ½0:6; 0:8�f g
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½0:1; 0:3� for the alternative z1 under the criterion c1, and

the others provide an evaluation of ½0:1; 0:2� for the alter-

native z1 under the criterion c1; the decision-makers in the

decision organization cannot persuade one another to

change their opinions. Moreover, in the practical setting of

group decision-making, anonymity is needed to protect the

privacy of the decision-makers or to ensure that noninter-

ference opinions are accumulated. Thus, in this situation, it

is natural to maintain and set out all of those possible

original evaluations for the alternative z1 under the crite-

rion c1 provided by the decision-makers, which is repre-

sented as an IVHFE ~h11 ¼ ½0:4; 0:6�; ½0:1; 0:3�; ½0:1; 0:2�f g.
Through such a procedure, we can obtain the IVHFE

evaluative ratings of the suppliers with respect to the cri-

teria and the IVHFE weights of criteria, as shown in

Table 1.

In what follows, we use the proposed likelihood-based

IVHF-QUALIFLEX method to obtain the optimal ranking

order of the four green suppliers.

In Step A.3, there is a total of 24 (=4!) permutations of

the ranking order of the alternatives:

P1 ¼ z1; z2; z3; z4ð Þ;P2 ¼ z1; z2; z4; z3ð Þ;P3 ¼ z1; z3; z2; z4ð Þ;
P4 ¼ z1; z3; z4; z2ð Þ;P5 ¼ z1; z4; z2; z3ð Þ;P6 ¼ z1; z4; z3; z2ð Þ;
P7 ¼ z2; z1; z3; z4ð Þ;P8 ¼ z2; z1; z4; z3ð Þ;P9 ¼ z2; z3; z1; z4ð Þ;
P10 ¼ z2; z3; z4; z1ð Þ;P11 ¼ z2; z4; z1; z3ð Þ;P12 ¼ z2; z4; z3; z1ð Þ;
P13 ¼ z3; z1; z2; z4ð Þ;P14 ¼ z3; z1; z4; z2ð Þ;P15 ¼ z3; z2; z1; z4ð Þ;
P16 ¼ z3; z2; z4; z1ð Þ;P17 ¼ z3; z4; z1; z2ð Þ;P18 ¼ z3; z4; z2; z1ð Þ;
P19 ¼ z4; z1; z2; z3ð Þ;P20 ¼ z4; z1; z3; z2ð Þ;P21 ¼ z4; z2; z1; z3ð Þ;
P22 ¼ z4; z2; z3; z1ð Þ;P23 ¼ z4; z3; z1; z2ð Þ;P24 ¼ z4; z3; z2; z1ð Þ:

In Step A.4, we compute the likelihood L haj � hbj
� �

. The

computation results of the likelihoods for all the interval-

valued hesitant fuzzy preference relations are given in

Table 2.

In Step A.5, the CDI ul
j za; zb
� �

can be calculated by

using Eq. (7). Taking the second permutation P2 as an

example, the computation results of P2 are listed in

Table 3.

In Step A.6, we utilize Eq. (8) to calculate the values of

ul
j za; zb
� �

� L ~Wj � g0; 1½ �
 �

and ul za; zb
� �

for each pair of

Table 2 Computational results

of the likelihoods of ~haj � ~hbj
(za; zb 2 Z)

c1 c2 c3 c4 c5 c6 c7 c8 c9

L ~h1j � ~h2j
� �

0.3333 0.0000 0.6667 0.6563 0.2963 0.0000 0.6944 0.7708 0.0222

L ~h1j � ~h3j
� �

0.2778 0.2639 0.9861 0.6111 0.3259 0.3354 0.6537 0.8646 0.6278

L ~h1j � ~h4j
� �

0.0278 0.7500 1.0000 0.6250 0.7130 0.5139 0.3681 0.4896 0.0556

L ~h2j � ~h1j
� �

0.6667 1.0000 0.3333 0.3438 0.7037 1.0000 0.3056 0.2292 0.9778

L ~h2j � ~h3j
� �

0.3889 0.5313 0.9220 0.4361 0.5778 0.6969 0.5341 0.6750 0.9630

L ~h2j � ~h4j
� �

0.0000 1.0000 0.9630 0.4688 0.9778 0.9778 0.2708 0.2813 0.7778

L ~h3j � ~h1j
� �

0.7222 0.7361 0.0139 0.3889 0.6741 0.6646 0.3463 0.1354 0.3722

L ~h3j � ~h2j
� �

0.6111 0.4688 0.0780 0.5639 0.4222 0.3031 0.4659 0.3250 0.0370

L ~h3j � ~h4j
� �

0.0278 0.8542 0.6852 0.5278 0.9778 0.6847 0.2569 0.2042 0.0833

L ~h4j � ~h1j
� �

0.9722 0.2500 0.0000 0.3750 0.2870 0.4861 0.6319 0.5104 0.9444

L ~h4j � ~h2j
� �

1.0000 0.0000 0.0370 0.5313 0.0222 0.0222 0.7292 0.7188 0.2222

L ~h4j � ~h3j
� �

0.9722 0.1458 0.3148 0.4722 0.0222 0.3153 0.7431 0.7958 0.9167

Table 3 Computation results of the CDI for P2

P2 c1 c2 c3 c4 c5 c6 c7 c8 c9

u2
j z1; z2ð Þ -0.1667 -0.5000 0.1667 0.1563 -0.2037 -0.5000 0.1944 0.2708 -0.4778

u2
j z1; z4ð Þ -0.4722 0.2500 0.5000 0.1250 0.2130 0.0139 -0.1319 -0.0104 -0.4444

u2
j z1; z3ð Þ -0.2222 -0.2361 0.4861 0.1111 -0.1741 -0.1646 0.1537 0.3646 0.1278

u2
j z2; z4ð Þ -0.5000 0.5000 0.4630 -0.0313 0.4778 0.4778 -0.2292 -0.2188 0.2778

u2
j z2; z3ð Þ -0.1111 0.0313 0.4220 -0.0639 0.0778 0.1969 0.0341 0.1750 0.4630

u2
j z4; z3ð Þ 0.4722 -0.3542 -0.1852 -0.0278 -0.4778 -0.1847 0.2431 0.2958 0.4167
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za; zb
� �

in permutation Pl. Considering the second permu-

tation P2, for example, the results of P2 are listed in

Table 4.

In Step A.7, the CCDI ul is calculated using Eq. (9) for

each Pl, as follows:

u1 ¼ 0:3123;u2 ¼ 0:8831;u3 ¼ �0:6957;u4 ¼ �1:2086;

u5 ¼ 0:3702;u6 ¼ �0:6378;u7 ¼ 0:9133;u8 ¼ 1:4841;

u9 ¼ 0:4002;u10 ¼ 0:6378;u11 ¼ 1:7218;u12 ¼ 1:2086;

u13 ¼ �1:2088;u14 ¼ �1:7218;u15 ¼ �0:6078;

u16 ¼ �0:3702;u17 ¼ �1:4841;u18 ¼ �0:8831;

u19 ¼ 0:6078;u20 ¼ �0:4002;u21 ¼ 1:2088;

u22 ¼ 0:6957;u23 ¼ �0:9133;u24 ¼ �0:3123:

In Step A.8, because u11 ¼ 1:7218 gives the largest

value, the best permutation is P11 ¼ z2; z4; z1; z3ð Þ, imply-

ing that the optimal ranking order of the four suppliers is

z2 � z4 � z1 � z3. Therefore, the supplier z2 is the optimal

alternative.

5.3 Illustration of Algorithm B for incomplete

information

In this subsection, let us reconsider the green supplier

selection problem provided in Sect. 5.1. Step B.1 has been

completed in Sect. 5.2.

In Step B.2, the interval-valued hesitant fuzzy decision

matrix has been constructed in Sect. 5.2. Assume that the

authorities provide the importance weights of criteria with

incompletely known non-fuzzy values. Let C0 ¼ wl
1;

��
wl
2;

. . .; wl
9Þjwl

j 2 0; 1½ �; j ¼ 1; 2; . . .; 9;
P9

j¼1 w
l
j ¼ 1g and let

the known information on the criterion weights be repre-

sented by the following:

C1 ¼ wl
1;w

l
2; . . .;w

l
9

� �
2C0



wl
2�wl

3;w
l
7�wl

8

� �

C2 ¼ wl
1;w

l
2; . . .;w

l
9

� �
2C0



wl
9�wl

5 �0:15
� �

C3 ¼ wl
1;w

l
2; . . .;w

l
9

� �
2C0



wl
6�wl

3 �wl
3 �wl

5

� �

C4 ¼ wl
1;w

l
2; . . .;w

l
9

� �
2C0



0:25�wl
1�0:13; 0:15�wl

4�0:08
� �

C5 ¼ wl
1;w

l
2; . . .;w

l
9

� �
2C0



wl
1�0:2wl

3 ;w
l
6�0:7wl

8

� �

It follows from Eq. (16) that the set C is determined as

follows:

C ¼
wl
1;w

l
2; . . .;w

l
9

� �
2 C0



wl
2 �wl

3;w
l
7 �wl

8;w
l
9 � wl

5

� 0:15;wl
6 � wl

3 �wl
3 � wl

5; 0:25�wl
1 � 0:13;

0:15�wl
4 � 0:08;wl

1 � 0:2wl
3;w

l
6 � 0:7wl

8

8
><

>:

9
>=

>;

Steps B.3–B.5 have been finished in Sect. 5.2.

In Step B.6, by employing Eq. (18), we calculate the

CCDI for each permutation, as indicated in Table 5. For

example, consider u2 for the second permutation P2 ¼
z1; z2; z4; z3ð Þ as follows:

Table 4 Results of the WCDI for P2

P2 c1 c2 c3 c4 c5 c6 c7 c8 c9

u2
j z1; z2ð Þ � L ~Wj � g0; 1½ �

 � �0:1150 �0:1723 0:0585 0:0974 �0:1456 �0:1307 0:1226 0:1970 �0:2123

u2 z1; z2ð Þ ¼ �0:1150� 0:1723þ 0:0585þ 0:0974� 0:1456� 0:1307þ 0:1226þ 0:1970� 0:2123 ¼ �0:3005

u2
j z1; z4ð Þ � L ~Wj � g0; 1½ �

 � �0:3259 0:0862 0:1755 0:0779 0:1522 0:0036 �0:0832 �0:0076 �0:1975

u2 z1; z4ð Þ ¼ �0:3259þ 0:0862þ 0:1755þ 0:0779þ 0:1522þ 0:0036� 0:0832� 0:0076� 0:1975 ¼ �0:1188

u2
j z1; z3ð Þ � L ~Wj � g0; 1½ �

 �
�0:1534 �0:0814 0:1706 0:0692 �0:1244 �0:0430 0:0969 0:2652 0:0568

u2 z1; z3ð Þ ¼ �0:1534� 0:0814þ 0:1706þ 0:0692� 0:1244� 0:0430þ 0:0969þ 0:2652þ 0:0568 ¼ 0:2566

u2
j z2; z4ð Þ � L ~Wj � g0; 1½ �

 � �0:3451 0:1723 0:1625 �0:0195 0:3414 0:1249 �0:1445 �0:1591 0:1235

u2 z2; z4ð Þ ¼ �0:3451þ 0:1723þ 0:1625� 0:0195þ 0:3414þ 0:1249� 0:1445� 0:1591þ 0:1235 ¼ 0:2565

u2
j z2; z3ð Þ � L ~Wj � g0; 1½ �

 � �0:0767 0:0108 0:1481 �0:0398 0:0556 0:0515 0:0215 0:1273 0:2058

u2 z2; z3ð Þ ¼ �0:0767þ 0:0108þ 0:1481� 0:0398þ 0:0556þ 0:0515þ 0:0215þ 0:1273þ 0:2058 ¼ 0:5040

u2
j z4; z3ð Þ � L ~Wj � g0; 1½ �

 �
0:3259 �0:1221 �0:0650 �0:0173 �0:3414 �0:0483 0:1533 0:2152 0:1852

u2 z4; z3ð Þ ¼ 0:3259� 0:1221� 0:0650� 0:0173� 0:3414� 0:0483þ 0:1533þ 0:2152þ 0:1852 ¼ 0:2854
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u2¼
X

za;zb2Z

X9

j¼1

u2
j za;zb
� �

�w2
j

 �
¼
X9

j¼1

X

za;zb2Z
u2
j za;zb
� �

 !

w2
j

¼ �0:1667�0:4722�0:2222�0:5000�0:1111þ0:4722ð Þw2
1

þ �0:5000þ0:2500�0:2361þ0:5000þ0:0313�0:3542ð Þw2
2

þ 0:1667þ0:5000þ0:4861þ0:4630þ0:4220�0:1852ð Þw2
3

þ 0:1563þ0:1250þ0:1111�0:0313�0:0639�0:0278ð Þw2
4

þ �0:2037þ0:2130�0:1741þ0:4778þ0:0778�0:4778ð Þw2
5

þ �0:5000þ0:0139�0:1646þ0:4778þ0:1969�0:1847ð Þw2
6

þ 0:1944�0:1319þ0:1537�0:2292þ0:0341þ0:2431ð Þw2
7

þ 0:2708�0:0104þ0:3646�0:2188þ0:1750þ0:2958ð Þw2
8

þ �0:4778�0:4444þ0:1278þ0:2778þ0:4630þ0:4167ð Þw2
9

¼�1:0000w2
1�0:3090w2

2þ1:8525w2
3þ0:2694w2

4�0:0870w2
5

�0:1607w2
6þ0:2642w2

7þ0:8771w2
8þ0:3630w2

9

Because the incompletely known information regarding

the non-fuzzy weights does not conflict, the model (19) is

applied to establish the model for each permutation Pl. For

instance, the model for the permutation P2 is constructed as

follows:

In Step B.7, we solve the model (19) for each permu-

tation Pl and then obtain the optimal weight vector �wl and

the optimal CCDI �ul, as shown in Table 6.

In Step B.8, it directly follows from Table 6 that �u11 ¼
1:7565 is the maximum CCDI, and thus, the optimal

ranking order of the green suppliers is determined as

P11 ¼ z2; z4; z1; z3ð Þ, where the optimal weight vector is

�w11 ¼ 0:13; 0; 0; 0:08; 0; 0; 0 ; 0; 0:79ð Þ. Furthermore, the

optimal green supplier is z2, the same as that derived by

Algorithm A, implying the validity of Algorithms A and

B.

5.4 Illustration of Algorithm B for conflicting

information

In this subsection, we add the condition of wl
8 � wl

7 � 0:02

to the set C2 in the above example. Accordingly, the sets

C2 and C are updated as follows:

CðnewÞ
2 ¼ wl

1;w
l
2; . . .;w

l
9

� �
2C0



wl
9�wl

5 �0:15;wl
8�wl

7�0:02
� �

max
u2 ¼ �1:0000w2

1 � 0:3090w2
2 þ 1:8525w2

3 þ 0:2694w2
4

�0:0870w2
5 � 0:1607w2

6 þ 0:2642w2
7 þ 0:8771w2

8 þ 0:3630w2
9

( )

s:t:

w2
2 �w2

3;w
2
7 �w2

8;w
2
9 � w2

5 � 0:15;w2
6 � w2

3 �w2
3 � w2

5; 0:25�w2
1 � 0:13;

0:15�w2
4 � 0:08;w2

1 � 0:2w2
3;w

2
6 � 0:7w2

8;

w2
1 þ w2

2 þ w2
3 þ w2

4 þ w2
5 þ w2

6 þ w2
7 þ w2

8 þ w2
9 ¼ 1;

0�w2
j � 1; for all j ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9:

8
>>><

>>>:

CðnewÞ ¼ wl
1;w

l
2; . . .;w

l
9

� �
2 C0



wl
2 �wl

3;w
l
7 �wl

8;w
l
9 � wl

5 � 0:15;wl
8 � wl

7 � 0:02;wl
6 � wl

3 �wl
3 � wl

5;
0:25�wl

1 � 0:13; 0:15�wl
4 � 0:08;wl

1 � 0:2wl
3 ;w

l
6 � 0:7wl

8

� �
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Obviously, the condition of wl
7 �wl

8 in C1 is in conflict

with the condition of wl
8 � wl

7 � 0:02 in CðnewÞ
2 , implying

that the weight information in CðnewÞ is partially conflicting.
Because a conflicting preference exists in the incompletely

known information regarding the non-fuzzy weights, we

apply the model (27) to establish the relaxed nonlinear

programming model for each permutation Pl. We relax the

conditions in CðnewÞ to C0, as follows:

where n�ið Þ23, n
�
ið Þ78, n

�
iið Þ95, n

�
iið Þ87, n

�
iiið Þ635, n

�
ivð Þ1, n

þ
ivð Þ1, n

�
ivð Þ4,

nþivð Þ4, n
�
vð Þ13 and n�vð Þ68 are nonnegative deviation variables.

For example, the nonlinear programming model for the

permutation P2 can be built as follows.

Table 5 Calculated results for the comprehensive concordance/discordance indexes

CCDI ul for each permutation Pl

u1 ¼ �1:9444w1
1 þ 0:3993w1

2 þ 2:2229w1
3 þ 0:3250w1

4 þ 0:8685w1
5 þ 0:2087w1

6 � 0:2219w1
7 þ 0:2854w1

8 � 0:4704w1
9

u2 ¼ �1:0000w2
1 � 0:3090w2

2 þ 1:8525w2
3 þ 0:2694w2

4 � 0:0870w2
5 � 0:1607w2

6 þ 0:2642w2
7 þ 0:8771w2

8 þ 0:3630w2
9

u3 ¼ �1:7222w3
1 þ 0:3368w3

2 þ 1:3790w3
3 þ 0:4528w3

4 þ 0:7130w3
5 � 0:1851w3

6 � 0:2901w3
7 � 0:0646w3

8 � 1:3963w3
9

u4 ¼ �0:7222w4
1 � 0:6632w4

2 þ 0:4530w4
3 þ 0:5153w4

4 � 0:2426w4
5 � 1:1407w4

6 þ 0:1682w4
7 þ 0:3729w4

8 � 1:9519w4
9

u5 ¼ �0:0000w5
1 � 1:3090w5

2 þ 0:9266w5
3 þ 0:3319w5

4 � 1:0426w5
5 � 1:1163w5

6 þ 0:7226w5
7 þ 1:3146w5

8 � 0:1926w5
9

u6 ¼ 0:2222w6
1 � 1:3715w6

2 þ 0:0827w6
3 þ 0:4597w6

4 � 1:1981w6
5 � 1:5101w6

6 þ 0:6543w6
7 þ 0:9646w6

8 � 1:1185w6
9

u7 ¼ �1:6111w7
1 þ 1:3993w7

2 þ 1:8896w7
3 þ 0:0125w7

4 þ 1:2759w7
5 þ 1:2087w7

6 � 0:6108w7
7 � 0:2563w7

8 þ 0:4852w7
9

u8 ¼ �0:6667w8
1 þ 0:6910w8

2 þ 1:5192w8
3 � 0:0431w8

4 þ 0:3204w8
5 þ 0:8393w8

6 � 0:1247w8
7 þ 0:3354w8

8 þ 1:3185w8
9

u9 ¼ �1:1667w9
1 þ 1:8715w9

2 þ 0:9173w9
3 � 0:2097w9

4 þ 1:6241w9
5 þ 1:5379w9

6 � 0:9182w9
7 � 0:9854w9

8 þ 0:2296w9
9

u10 ¼ �0:2222w10
1 þ 1:3715w10

2 � 0:0827w10
3 � 0:4597w10

4 þ 1:1981w10
5 þ 1:5101w10

6 � 0:6543w10
7 � 0:9646w10

8 þ 1:1185w10
9

u11 ¼ 0:2778w11
1 þ 0:1910w11

2 þ 0:5192w11
3 � 0:2931w11

4 � 0:1056w11
5 þ 0:8115w11

6 þ 0:1392w11
7 þ 0:3563w11

8 þ 2:2074w11
9

u12 ¼ 0:7222w12
1 þ 0:6632w12

2 � 0:4530w12
3 � 0:5153w12

4 þ 0:2426w12
5 þ 1:1407w12

6 � 0:1682w12
7 � 0:3729w12

8 þ 1:9519w12
9

u13 ¼ �1:2778w13
1 þ 0:8090w13

2 þ 0:4067w13
3 þ 0:2306w13

4 þ 1:0611w13
5 þ 0:1440w13

6 � 0:5976w13
7 � 0:7937w13

8 � 1:6519w13
9

u14 ¼ �0:2778w14
1 � 0:1910w14

2 � 0:5192w14
3 þ 0:2931w14

4 þ 0:1056w14
5 � 0:8115w14

6 � 0:1392w14
7 � 0:3563w14

8 � 2:2074w14
9

u15 ¼ �0:9444w15
1 þ 1:8090w15

2 þ 0:0734w15
3 � 0:0819w15

4 þ 1:4685w15
5 þ 1:1440w15

6 � 0:9864w15
7 � 1:3354w15

8 � 0:6963w15
9

u16 ¼ �0:0000w16
1 þ 1:3090w16

2 � 0:9266w16
3 � 0:3319w16

4 þ 1:0426w16
5 þ 1:1163w16

6 � 0:7226w16
7 � 1:3146w16

8 þ 0:1926w16
9

u17 ¼ 0:6667w17
1 � 0:6910w17

2 � 1:5192w17
3 þ 0:0431w17

4 � 0:3204w17
5 � 0:8393w17

6 þ 0:1247w17
7 � 0:3354w17

8 � 1:3185w17
9

u18 ¼ 1:0000w18
1 þ 0:3090w18

2 � 1:8525w18
3 � 0:2694w18

4 þ 0:0870w18
5 þ 0:1607w18

6 � 0:2642w18
7 � 0:8771w18

8 � 0:3630w18
9

u19 ¼ 0:9444w19
1 � 1:8090w19

2 � 0:0734w19
3 þ 0:0819w19

4 � 1:4685w19
5 � 1:1440w19

6 þ 0:9864w19
7 þ 1:3354w19

8 þ 0:6963w19
9

u20 ¼ 1:1667w20
1 � 1:8715w20

2 � 0:9173w20
3 þ 0:2097w20

4 � 1:6241w20
5 � 1:5379w20

6 þ 0:9182w20
7 þ 0:9854w20

8 � 0:2296w20
9

u21 ¼ 1:2778w21
1 � 0:8090w21

2 � 0:4067w21
3 � 0:2306w21

4 � 1:0611w21
5 � 0:1440w21

6 þ 0:5976w21
7 þ 0:7938w21

8 þ 1:6519w21
9

u22 ¼ 1:7222w22
1 � 0:3368w22

2 � 1:3790w22
3 � 0:4528w22

4 � 0:7130w22
5 þ 0:1851w22

6 þ 0:2901w22
7 þ 0:0646w22

8 þ 1:3963w22
9

u23 ¼ 1:6111w23
1 � 1:3993w23

2 � 1:8896w23
3 � 0:0125w23

4 � 1:2759w23
5 � 1:2087w23

6 þ 0:6108w23
7 þ 0:2563w23

8 � 0:4852w23
9

u24 ¼ 1:9444w24
1 � 0:3993w24

2 � 2:2229w24
3 � 0:3250w24

4 � 0:8685w24
5 � 0:2087w24

6 þ 0:2219w24
7 � 0:2854w24

8 þ 0:4704w24
9

C0 ¼

wl
1;w

l
2; . . .;w

l
9

� �
2 C0



wl
2 þ n�ðiÞ23 �wl

3;w
l
7 þ n�ðiÞ78 �wl

8;w
l
9 � wl

5 þ n�ðiiÞ95 � 0:15;

wl
8 � wl

7 þ n�ðiiÞ87 � 0:02;wl
6 � 2wl

3 þ wl
5 þ n�ðiiiÞ635 � 0;wl

1 þ n�ðivÞ1 � 0:13;wl
1 � nþðivÞ1 � 0:25;

wl
4 þ n�ivð Þ4 � 0:08;wl

4 � nþðivÞ4 � 0:15;
wl
1

wl
3

þ n�ðvÞ13 � 0:2;
wl
6

wl
8

þ n�ðvÞ68 � 0:7

8
>>><

>>>:

9
>>>=

>>>;
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By using the optimization modeling software Lingo 11,

we can solve the above nonlinear programming model and

obtain the optimal objective value �k ¼ �0:02, the optimal

weight vector �w2 ¼ 0:1747; 0:0943; 0:0449; 0:1138;ð
0:0746; 0:0821; 0:0543; 0:0628; 0:2986Þ, the optimal devi-

ation values n�ið Þ78 ¼ 0:0086, n�iið Þ87 ¼ 0:0114, n�ið Þ23 ¼

max k

s:t:

�1:0000w2
1 � 0:3090w2

2þ1:8525w2
3þ0:2694w2

4 � 0:0870w2
5 � 0:1607w2

6þ0:2642w2
7

þ0:8771w2
8þ0:3630w2

9 � k;

� n�ið Þ23 þ n�ið Þ78 þ n�iið Þ95 þ n�iið Þ87 þ n�iiið Þ635 þ n�ivð Þ1 þ nþivð Þ1 þ n�ivð Þ4 þ nþivð Þ4 þ n�vð Þ13 þ n�vð Þ68

 �
� k;

wl
2 þ n�ið Þ23 �wl

3; wl
7 þ n�ið Þ78 �wl

8; wl
9 � wl

5 þ n�iið Þ95 � 0:15;

wl
8 � wl

7 þ n�iið Þ87 � 0:02; wl
6 � 2wl

3 þ wl
5 þ n�iiið Þ635 � 0; wl

1 þ n�ivð Þ1 � 0:13; wl
1 � nþivð Þ1 � 0:25;

wl
4 þ n�ivð Þ4 � 0:08; wl

4 � nþivð Þ4 � 0:15;
wl
1

wl
3

þ n�vð Þ13 � 0:2 ;
wl
6

wl
8

þ n�vð Þ68 � 0:7;

w2
1 þ w2

2 þ w2
3þw2

4 þ w2
5 þ w2

6 þ w2
7 þ w2

8 þ w2
9 ¼ 1;

0�w2
j � 1; for all j ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9;

n�ið Þ23; n
�
ið Þ78; n

�
iið Þ95; n

�
iið Þ87; n

�
iiið Þ635; n

�
ivð Þ1; n

þ
ivð Þ1; n

�
ivð Þ4; n

þ
ivð Þ4; n

�
vð Þ13; n

�
vð Þ68 � 0:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

Table 6 Optimal weight vector �wl and the optimal CCDI �ul for each permutation Pl

Permutation Pl The optimal weight vector �wl The optimal index �ul

P1 �w1 ¼ 0:13; 0:16; 0:16; 0:08; 0; 0:32; 0 ; 0; 0:15ð Þ �u1 ¼ 0:1890

P2 �w2 ¼ 0:13; 0:0659; 0:0659; 0:08; 0; 0:1318; 0:1882 ; 0:1882; 0:15ð Þ �u2 ¼ 0:2413

P3 �w3 ¼ 0:13; 0:57; 0; 0:15; 0; 0; 0 ; 0; 0:15ð Þ �u3 ¼ �0:1734

P4 �w4 ¼ 0:13; 0; 0; 0:15; 0; 0; 0:57 ; 0; 0:15ð Þ �u4 ¼ �0:2135

P5 �w5 ¼ 0:13; 0; 0; 0:08; 0; 0; 0:64; 0; 0:15ð Þ �u5 ¼ 0:4601

P6 �w6 ¼ 0:13; 0; 0; 0:08; 0; 0; 0:64 ; 0; 0:15ð Þ �u6 ¼ 0:3166

P7 �w7 ¼ 0:13; 0:16; 0:16; 0:08; 0; 0:32; 0 ; 0; 0:15ð Þ �u7 ¼ 0:7773

P8 �w8 ¼ 0:13; 0; 0; 0:08; 0; 0; 0 ; 0; 0:79ð Þ �u8 ¼ 0:9515

P9 �w9 ¼ 0:13; 0:64; 0; 0:08; 0; 0; 0 ; 0; 0:15ð Þ �u9 ¼ 1:0638

P10 �w10 ¼ 0:13; 0; 0; 0:08; 0; 0:64; 0 ; 0; 0:15ð Þ �u10 ¼ 1:0686

P11 �w11 ¼ 0:13; 0; 0; 0:08; 0; 0; 0 ; 0; 0:79ð Þ �u11 ¼ 1:7565

P12 �w12 ¼ 0:13; 0; 0; 0:08; 0; 0; 0 ; 0; 0:79ð Þ �u12 ¼ 1:5946

P13 �w13 ¼ 0:13; 0:64; 0; 0:08; 0; 0; 0 ; 0; 0:15ð Þ �u13 ¼ 0:1223

P14 �w14 ¼ 0:13; 0; 0; 0:15; 0; 0; 0:57 ; 0; 0:15ð Þ �u14 ¼ �0:4026

P15 �w15 ¼ 0:13; 0:64; 0; 0:08; 0; 0; 0 ; 0; 0:15ð Þ �u15 ¼ 0:9240

P16 �w16 ¼ 0:13; 0:64; 0; 0:08; 0; 0; 0 ; 0; 0:15ð Þ �u16 ¼ 0:8401

P17 �w17 ¼ 0:25; 0; 0; 0:08; 0; 0; 0 :52; 0; 0:15ð Þ �u17 ¼ 0:0372

P18 �w18 ¼ 0:25; 0:52; 0; 0:08; 0; 0; 0 ; 0; 0:15ð Þ �u18 ¼ 0:3347

P19 �w19 ¼ 0:13; 0; 0; 0:08; 0; 0; 0:64 ; 0; 0:15ð Þ �u19 ¼ 0:8651

P20 �w20 ¼ 0:25; 0; 0; 0:08; 0; 0; 0 :52; 0; 0:15ð Þ �u20 ¼ 0:7515

P21 �w21 ¼ 0:13; 0; 0; 0:08; 0; 0; 0 ; 0; 0:79ð Þ �u21 ¼ 1:4526

P22 �w22 ¼ 0:25; 0; 0; 0:08; 0; 0; 0 ; 0; 0:67ð Þ �u22 ¼ 1:3299

P23 �w23 ¼ 0:25; 0; 0; 0:08; 0; 0; 0 :52; 0; 0:15ð Þ �u23 ¼ 0:6466

P24 �w24 ¼ 0:25; 0; 0; 0:08; 0; 0; 0 ; 0; 0:67ð Þ �u24 ¼ 0:7753

1848 Neural Comput & Applic (2017) 28:1835–1854

123



n�iið Þ95 ¼ n�iiið Þ635 ¼ n�ivð Þ1 ¼ nþivð Þ1 ¼ n�ivð Þ4 ¼ nþivð Þ4 ¼ n�vð Þ13

¼ n�vð Þ68 ¼ 0, and the corresponding CCDI �u2 ¼ �0:02.

When all the �ul values are determined, we can find that

�u12 ¼ �0:01999999 is the maximum value. Thus, the

optimal ranking of the four potential suppliers under

inconsistent weight information is P12 ¼ z2; z4; z3; z1ð Þ,
which again implies that z2 is determined as the best

supplier.

5.5 Comparative analysis and discussion

In the following, we carry out a comparative analysis with

other related methods to verify the proposed IVHF-QUA-

LIFLEX methods.

5.5.1 Comparison with the aggregation operators-based

approaches

In the aggregation operators-based approaches [11, 24, 45,

46, 53, 54], some interval-valued hesitant fuzzy aggrega-

tion operators were developed for aggregating the indi-

vidual IVHFEs into the overall IVHFEs. Then, the scores

of the overall IVHFEs were calculated, based on which the

optimal ranking order of the alternatives were determined.

To facilitate a comparison with our Algorithm A, we

consider here the same green supplier selection problem in

Sect. 5.2 by using Zhang and Wu’s method [54], which

consists of the following steps:

Step 1 Use the interval-valued hesitant fuzzy weighted

averaging (IVHFWA) operator

to fuse all of the performance values ~hij (j ¼ 1; 2; . . .; 9) in

the ith line of ~H and derive the overall performance value
~hi (i ¼ 1; 2; 3; 4) of each alternative zi (i ¼ 1; 2; 3; 4), which

are not shown here due to space considerations. The

dimensions of ~hi (i ¼ 1; 2; 3; 4) are shown as follows:

l~h1 ¼ 31104; l~h2 ¼ 5184; l~h3 ¼ 23328; l~h4 ¼ 13824:

Step 2 According to Definition 6 in [11], we calculate the

scores s ~hi
� �

(i ¼ 1; 2; 3; 4) of ~hi (i ¼ 1; 2; 3; 4) as follows:

s ~h1
� �

¼ 0:4264; 0:5850½ �; s ~h2
� �

¼ 0:4889; 0:6817½ �;
s ~h3
� �

¼ 0:3697; 0:5899½ �; s ~h4
� �

¼ 0:4028; 0:5941½ �

Step 3 According to the comparison methods in [42, 49],

the ranking order of the four scores is determined as

s ~h2
� �

[ s ~h1
� �

[ s ~h4
� �

[ s ~h3
� �

. According to Definition 6

in [11], we can rank the four alternatives zi (i ¼ 1; 2; 3; 4)

as z2 � z1 � z4 � z3. Thus, the best alternative is

again z2.

Obviously, the ranking order of the four suppliers zi
(i ¼ 1; 2; 3; 4) obtained by using Algorithm A is slightly

different from that of Zhang and Wu [54]. A comparison

analysis shows that our Algorithm A has some distinct

advantages over the aggregation operators-based approa-

ches [11, 24, 45, 46, 53, 54]; these are summarized as

follows:

1. From Eq. (28), the IVHFWA operator must perform

the addition or multiplicative operations on all of the

elements of the input IVHFEs. As a result, the

dimension of the derived overall IVHFEs could q

increase rapidly as such aggregations are conducted,

which could increase the complexity of the calcula-

tions. As shown in Step 1 above, the dimensions l~hi
(i ¼ 1; 2; 3; 4) of the overall performance values ~hi
(i ¼ 1; 2; 3; 4) obtained by using Zhang and Wu’s

method [54] is much larger, which increases the

computational complexity and could cause a loss of

decision information. In contrast, Algorithm A does

not need to perform such an aggregation but directly

addresses the input IVHFEs; therefore, it does not

increase the dimensions of the derived overall IVHFEs

and preserves the original decision data to the greatest

extent.

2. The aggregation operators-based approaches are suit-

able for an MCDM problem with a small number of

criteria because of the simple solution procedure.

However, these approaches become inappropriate for

addressing an MCDM problem with a large number of

criteria because the number of operations and the

magnitudes of the results will increase exponentially

~hi ¼ IVHFWA ~hi1; ~hi2; . . .; ~hi9
� �

¼ 	
9

j¼1
wj
~hij

� �

¼ 1�
Y9

j¼1

1� cLij

 �wj

; 1�
Y9

j¼1

1� cUij

 �wj

" #





~ci1 2 ~hi1; ~ci2 2 ~hi2; . . .; ~ci9 2 ~hi9

)( ð28Þ
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with the increase in the number of criteria. In contrast,

our algorithm A can handle an MCDM problem with a

large number of criteria because of the simple solution

steps and the low computational efforts.

3. The aggregation operators-based approaches [11, 24,

45, 46, 53, 54] can only manage the MCDM problems

in which the evaluative ratings of the alternative take

the form of IVHFEs and the weights of the criteria take

the form of crisp numbers. In contrast, the proposed

Algorithm A can address MCDM problems in which

both the evaluative ratings of the alternatives and the

weights of the criteria are given in the form of IVHFEs.

5.5.2 Comparison with the TOPSIS and the maximizing

deviation method-based approach

Based on TOPSIS and the maximizing deviation method,

Xu and Zhang [50] developed an approach to address the

MCDM problems in which the performance ratings take

the form of the IVHFEs and the criteria weights take the

form of crisp numbers with incomplete and consistent

information. Here, we investigate the same example used

in Sect. 5.3 with Xu and Zhang’s method, which is pre-

sented as follows.

Let ~H ¼ ~hij
� �

4�9
be the interval-valued hesitant fuzzy

decision matrix given in Table 1. In this example, the

decision-makers are assumed to be pessimistic and thus

the interval-valued hesitant fuzzy decision matrix in

Table 1 is transformed into the new one, as shown in

Table 7.

In order to derive the best alternative(s), we then pro-

ceed to use Xu and Zhang’s method, which includes the

following steps:

Step 1 Suppose that the partly known information

regarding the criteria weights is given as

Table 7 Regularized interval-

valued hesitant fuzzy decision

matrix ~H ¼ ~hij
� �

4�9

The evaluative rating ~hij of the alternative zi 2 Z with respect to the criterion cj 2 C

~h11 ½0:4; 0:6�; ½0:1; 0:3�; ½0:1; 0:2�; ½0:1; 0:2�f g ~h21 ½0:4; 0:5�; ½0:2; 0:3�; ½0:2; 0:3�; ½0:2; 0:3�f g
~h12 {[0.3, 0.5], [0.2, 0.3], [0.1, 0.2], [0.1, 0.2]} ~h22 ½0:5; 0:7�; ½0:5; 0:6�; ½0:5; 0:6�; ½0:5; 0:6�f g
~h13 ½0:7; 0:9�; ½0:7; 0:8�; ½0:6; 0:7�; ½0:5; 0:6�f g ~h23 ½0:7; 0:9�; ½0:5; 0:6�; ½0:4; 0:6�; ½0:4; 0:6�f g
~h14 ½0:8; 0:9�; ½0:5; 0:6�; ½0:5; 0:6�; ½0:5; 0:6�f g ~h24 ½0:7; 0:8�; ½0:6; 0:9�; ½0:5; 0:6�; ½0:2; 0:3�f g
~h15 ½0:7; 0:9�; ½0:5; 0:6�; ½0:2; 0:3�; ½0:2; 0:3�f g ~h25 ½0:8; 0:9�; ½0:6; 0:7�; ½0:5; 0:7�; ½0:5; 0:7�f g
~h16 ½0:4; 0:5�; ½0:3; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�f g ~h26 ½0:5; 0:9�; ½0:7; 0:8�; ½0:6; 0:7�; ½0:6; 0:7�f g
~h17 ½0:3; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�; ½0:2; 0:3�f g ~h27 ½0:2; 0:3�; ½0:1; 0:5�; ½0:2; 0:3�; ½0:2; 0:3�f g
~h18 ½0:7; 0:9�; ½0:6; 0:7�; ½0:5; 0:6�; ½0:2; 0:3�f g ~h28 ½0:5; 0:6�; ½0:1; 0:3�; ½0:1; 0:3�; ½0:1; 0:3�f g
~h19 ½0:3; 0:5�; ½0:3; 0:4�; ½0:1; 0:3�; ½0:1; 0:3�f g ~h29 ½0:7; 0:9�; ½0:6; 0:8�; ½0:4; 0:7�; ½0:4; 0:7�f g
~h31 ½0:4; 0:6�; ½0:4; 0:5�; ½0:2; 0:3�; ½0:2; 0:3�f g ~h41 ½0:6; 0:8�; ½0:5; 0:9�; ½0:5; 0:9�; ½0:5; 0:9�f g
~h32 ½0:7; 0:8�; ½0:6; 0:8�; ½0:3; 0:4�; ½0:1; 0:2�f g ~h42 ½0:1; 0:3�; ½0:1; 0:2�; ½0:1; 0:2�; ½0:1; 0:2�f g
~h33 ½0:3; 0:5�; ½0:3; 0:4�; ½0:1; 0:6�; ½0:1; 0:6�f g ~h43 ½0:4; 0:5�; ½0:2; 0:3�; ½0:1; 0:2�; ½0:1; 0:2�f g
~h34 ½0:7; 0:9�; ½0:7; 0:8�; ½0:2; 0:3�; ½0:2; 0:3�f g ~h44 ½0:8; 0:9�; ½0:6; 0:7�; ½0:5; 0:6�; ½0:3; 0:4�f g
~h35 ½0:6; 0:9�; ½0:6; 0:7�; ½0:5; 0:7�; ½0:5; 0:7�f g ~h45 ½0:4; 0:5�; ½0:3; 0:6�; ½0:1; 0:3�; ½0:1; 0:3�f g
~h36 ½0:7; 0:9�; ½0:5; 0:8�; ½0:2; 0:6�; ½0:1; 0:3�f g ~h46 ½0:5; 0:6�; ½0:3; 0:4�; ½0:1; 0:2�; ½0:1; 0:2�f g
~h37 ½0:3; 0:5�; ½0:1; 0:4�; ½0:1; 0:2�; ½0:1; 0:2�f g ~h47 ½0:5; 0:8�; ½0:5; 0:6�; ½0:2; 0:4�; ½0:1; 0:3�f g
~h38 ½0:2; 0:5�; ½0:1; 0:3�; ½0:1; 0:3�; ½0:1; 0:3�f g ~h48 ½0:8; 0:9�; ½0:6; 0:8�; ½0:3; 0:6�; ½0:1; 0:3�f g
~h39 ½0:3; 0:6�; ½0:2; 0:3�; ½0:1; 0:2�; ½0:1; 0:2�f g ~h49 ½0:6; 0:7�; ½0:4; 0:5�; ½0:4; 0:5�; ½0:4; 0:5�f g

C ¼ w1;w2; . . .;w9ð Þ 2 C0jw2 �w3;w7 �w8;w9 � w5 � 0:15;w6 � w3 �w3 � w5; 0:25�w1 � 0:13;
0:15�w4 � 0:08;w1 � 0:2w3 ;w6 � 0:7w8

� �
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Use the model (M-4) in [44] to establish the following

single-objective programming model:

The solution to the above model produces the optimal

weight vector w ¼ 0:13; 0:64; 0; 0:08; 0; 0; 0; 0:15ð ÞT .

Step 2 Use Eq. (33) and Eq. (34) in [50] to obtain the

interval-valued hesitant fuzzy positive ideal solution

(IVHFPIS) ~zþ and the interval-valued hesitant fuzzy neg-

ative ideal solution (IVHFNIS) ~z�, respectively:

Step 3 Use Eq. (35) and Eq. (36) in [50] to compute the

distance measures ~dþi and ~d�i of each alternative zi
(i ¼ 1; 2; 3; 4):

~dþ1 ¼ 0:3864; ~dþ2 ¼ 0:1404; ~dþ3 ¼ 0:2712; ~dþ4 ¼ 0:3458;

~d�1 ¼ 0:1042; ~d�2 ¼ 0:3442; ~d�3 ¼ 0:2913; ~d�4 ¼ 0:1181

Step 4 Use Eq. (37) in [50] to compute the relative

closeness coefficient ~Ci of each alternative zi with respect

to the IVHFPIS ~zþ:

~C1 ¼ 0:2124; ~C2 ¼ 0:7102; ~C3 ¼ 0:5178; ~C4 ¼ 0:2545

Step 5 Based on the relative closeness coefficients ~Ci

(i ¼ 1; 2; 3; 4), the alternatives zi (i ¼ 1; 2; 3; 4) can be

ranked as z2 � z3 � z4 � z1, which is slightly different from

the result derived by Algorithm B; there are two inverse rank

orderings between z1 and z3 as well as between z3 and z4, but

the rankings for z2 are the same; that is, the alternative z2 ranks

in first place. Thus, both approaches give the priority to z2.

The following comparison analysis shows that the pro-

posed algorithm B has many advantages over Xu and

Zhang’s methodology for interval-valued hesitant fuzzy

decision-makings.

1. Xu and Zhang’s method calculates the deviation

between each actual alternative and an IVHFPIS

(IVHFNIS) under the condition that all IVHFEs must

be arranged in ascending order and be of equal

length. This is not in accordance with real cases,

because it is impossible to make sure that all IVHFEs

have equal length. If the two IVHFEs being compared

have different lengths, then the value of the shorter

IVHFE must be increased until both are equal.

According to Xu and Zhang [50], there are many

different techniques to extend the shorter IVHFE to

the same length as the longer one. The most

representative techniques are the pessimistic principle

and the optimistic principle. For the pessimistic

principle, the shorter IVHFE is extended by adding

max D wð Þ ¼
X9

j¼1

X4

i¼1

X4

k¼1

wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

X4

k¼1

ckij
 �L

� ckkj

 �L











2

þ ckij
 �U

� ckkj

 �U











2
 !vuut

8
<

:

9
=

;

s:t:

w2 �w3;w7 �w8;w9 � w5 � 0:15;w6 � w3 �w3 � w5; 0:25�w1 � 0:13;

0:15�w4 � 0:08;w1 � 0:2w3 ;w6 � 0:7w8;

w1 þ w2 þ w3 þ w4 þ w5 þ w6 þ w7 þ w8 þ w9 ¼ 1;

0�wj � 1; for all j ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9:

8
>>><

>>>:

~zþ ¼

c1; 0:6; 0:8½ �; 0:5; 0:9½ �; 0:5; 0:9½ �; 0:5; 0:9½ �f gh i; c2; 0:7; 0:8½ �; 0:6; 0:8½ �; 0:5; 0:6½ �; 0:5; 0:6½ �f gh i;
c3; 0:7; 0:9½ �; 0:7; 0:8½ �; 0:6; 0:7½ �; 0:5; 0:6½ �f gh i; c4; 0:8; 0:9½ �; 0:7; 0:9½ �; 0:5; 0:6½ �; 0:5; 0:6½ �f gh i;
c5; 0:8; 0:9½ �; 0:6; 0:7½ �; 0:5; 0:7½ �; 0:5; 0:7½ �f gh i; c6; 0:7; 0:9½ �; 0:7; 0:8½ �; 0:6; 0:7½ �; 0:6; 0:7½ �f gh i;
c7; 0:5; 0:8½ �; 0:5; 0:6½ �; 0:2; 0:4½ �; 0:2; 0:3½ �f gh i; c8; 0:8; 0:9½ �; 0:6; 0:8½ �; 0:5; 0:6½ �; 0:2; 0:3½ �f gh i;
c9; 0:7; 0:9½ �; 0:6; 0:8½ �; 0:4; 0:7½ �; 0:4; 0:7½ �f gh i

8
>>>><

>>>>:

9
>>>>=

>>>>;

~z� ¼

c1; 0:4; 0:5½ �; 0:1; 0:3½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i; c2; 0:1; 0:3½ �; 0:1; 0:2½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i;
c3; 0:3; 0:5½ �; 0:2; 0:3½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i; c4; 0:7; 0:8½ �; 0:5; 0:6½ �; 0:2; 0:3½ �; 0:2; 0:3½ �f gh i;
c5; 0:4; 0:5½ �; 0:3; 0:6½ �; 0:1; 0:3½ �; 0:1; 0:3½ �f gh i; c6; 0:4; 0:5½ �; 0:3; 0:4½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i;
c7; 0:2; 0:3½ �; 0:1; 0:4½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i; c8; 0:2; 0:5½ �; 0:1; 0:3½ �; 0:1; 0:3½ �; 0:1; 0:3½ �f gh i;
c9; 0:3; 0:5½ �; 0:2; 0:3½ �; 0:1; 0:2½ �; 0:1; 0:2½ �f gh i

8
>>>><

>>>>:

9
>>>>=

>>>>;
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the minimum value to it until it has the same length

as the other IVHFE, while for the optimistic princi-

ple, the maximum value of the shorter IVHFE should

be added until the shorter IVHFE has the same length

as the longer one. In the above example, we used the

former case. However, in such cases, different

methods of extension can produce different results.

Moreover, it should also be noted that filling artificial

values into an IVHFE would change the information

in the original IVHFE. Thus, such an approach is less

well justified theoretically and less reliable practi-

cally. In the proposed Algorithm B, we do not need

the IVHFEs to have the same length, that is to say, it

is unnecessary to add a specific value to the shorter of

the two until they are both of equivalent length. This

can prevent loss of data and distortion of the

preference information initially provided, resulting

in final outcomes that more closely correspond to

those in actual decision-making processes.

2. Xu and Zhang [50] ’s method is inappropriate for

addressing the situation in which a conflicting prefer-

ence exists in the incompletely known information

regarding the non-fuzzy weights. In contrast, the

proposed Algorithm B is usable for the situation in

which incomplete and inconsistent information exist in

the criterion importance.

5.5.3 Comparison with the existing QUALIFLEX

approaches under different decision contexts

The IT2TrF-QUALIFLEX method, originally developed

by Chen et al. [7] and Wang et al. [41] by extending the

classical QUALIFLEX method to the IT2TrF environment,

uses IT2TrFNs to represent the evaluative ratings of

alternatives and the weights of criteria. The IVIF-QUA-

LIFLEX method, originally proposed by Chen [6] by

extending the classical QUALIFLEX method to the IVIF

environment, uses IVIFNs to represent the evaluative rat-

ings of alternatives and uses crisp numbers to represent the

weights of criteria. The HF-QUALIFLEX method, origi-

nally proposed by Zhang and Xu [55] by extending the

classical QUALIFLEX method to the hesitant fuzzy envi-

ronment, uses HFEs to represent the evaluative ratings of

alternatives and the weights of criteria. It is noted that all of

these methods mainly accommodate the IT2TrFNs, IVIFNs

and HFEs decision contexts and cannot address IVHFE

decision data in MCDM problems. Compared with these

QUALIFLEX methods, the prominent advantages of the

proposed methods are that they can accommodate the

performance ratings expressed by IVHFEs effectively and

the criteria weights in the form of IVHFEs or crisp

numbers.

6 Concluding remarks

Based on a likelihood-based comparison approach, this

paper has developed an IVHF-QUALIFLEX method for

addressing MCDM problems that contain the IVHFE

evaluative ratings of the alternatives and the IVHFE crite-

rion weights and has also developed an IVHF-QUALI-

FLEX method for addressing MCDM problems that contain

the IVHFE evaluative ratings of the alternatives and non-

fuzzy criterion weights with incomplete information. A

numerical problem has been provided to illustrate the fea-

sibility and applicability of the proposed methods, and then,

a comparison analysis has been conducted to verify the

effectiveness and practicality of the proposed methods. The

comparative analysis shows that the proposed methods have

the following advantages over the existing interval-valued

hesitant fuzzy MCDM methods in the literature. (1) The

proposed methods do not need to perform aggregation

operations, but deal directly with the input IVHFEs,

whereby they do not increase the dimensions of the derived

overall IVHFEs and can preserve the original decision

information as much as possible. (2) The proposed methods

do not need the input IVHFEs to have the same length; that

is, it is unnecessary to add a specific value to the shorter of

the two until they are both of equivalent length. This pre-

vents loss of data and distortion of the preference infor-

mation initially provided, resulting in final outcomes that

more closely correspond to those in actual decision-making

processes. (3) The proposed methods can handle MCDM

problems in which both the evaluative ratings of alterna-

tives and the weights of criteria are represented by IVHFEs.

(4) The proposed methods can deal with the incomplete and

inconsistent importance information. (5) The proposed

methods are preferable for use in solving MCDM problems

where the number of criteria is significantly greater than the

number of alternatives.
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