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Abstract Waterflooding is a significantly important pro-

cess in the life of an oil field to sweep previously unrecovered

oil between injection and production wells and maintain

reservoir pressure at levels above the bubble-point pressure

to prevent gas evolution from the oil phase. This is a critical

reservoir management practice for optimum recovery from

oil reservoirs. Optimizing water injection volumes and

optimizing well locations are both critical reservoir engi-

neering problems to address since water injection capacities

may be limited depending on the geographic location and

facility limits. Characterization of the reservoir connectivity

between injection and production wells can greatly con-

tribute to the optimization process. In this study, it is pro-

posed to use computationally efficient methods to have a

better understanding of reservoir flow dynamics in a water-

flooding operation by characterizing the reservoir connec-

tivity between injection and production wells. First, as an

important class of artificial intelligence methods, artificial

neural networks are used as a fully data-driven modeling

approach. As an additional powerful method that draws

analogy between source/sink terms in oil reservoirs and

electrical conductors, capacitance–resistance models are

also used as a reduced-physics-driven modeling approach.

After understanding each method’s applicability to charac-

terize the interwell connectivity, a comparative study is

carried out to determine strengths and weaknesses of each

approach in terms of accuracy, data requirements, expertise

requirements, training algorithm and processing times.

Keywords Waterflooding � Reservoir characterization �
Interwell connectivity � Data-driven modeling � Artificial
neural networks � Reduced-physics modeling �
Capacitance–resistance models

1 Introduction

Waterflooding is a secondary oil recovery method that is

applied after the oil has been produced from a reservoir

with its natural energy (known as the primary recovery

period). Based on industry experience, it is known that the

recovery factors (ratio of recovered oil volume to the

original oil volume in the reservoir) with primary recovery

ranges between 15–25 %, while a well-managed water-

flood can increase this to 40–50 % depending on the

reservoir characteristics and efficiency of the waterflooding

operation. Although it can be classified as a common

operation for secondary recovery, varying reservoir char-

acteristics and limited water supplies in some areas make it

critical to have a good understanding of the reservoir and

determining the optimum design schemes of the water-

flooding operation under consideration. Poorly managed

waterflooding operations result in underperforming reser-

voirs with reserves that are left behind, and thus, huge

losses in recovered oil and associated monetary income are

realized. Understanding reservoir flow dynamics to apply

proper reservoir management practices is a complex

problem with well data from isolated localities in an oil

field, data distributed spatially across the whole reservoir

and spanned tens of years of history. Current reservoir

management practices highly depend on numerical flow

simulation models that take months to develop and main-

tain, and cost millions of dollars with both significant

manpower and computational power requirements.
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Although being recognized scientifically as the most

powerful approach, full field-scale models do not easily

allow rapid reservoir analysis that results in right reservoir

management decisions.

Over the last two decades, petroleum industry has been

transformed significantly with the advancement of intelli-

gent field technologies that are mostly based on on-site

instrumentation and automation of field operations. Many

technologies have been adapted to collect significant vol-

umes of data in much shorter time frames. However, the

real challenge has been to convert these data into useful

information to make quick and reliable decisions that

generate value. This challenge can only be overcome by

utilizing proper knowledge management, data assimilation

and data analysis practices. The current paradigm in the

evolution of science also requires advanced data analysis to

synthesize all of the earlier empirical, experimental and

computational findings [1].

An efficient way of managing an hydrocarbon reservoir at

any stage of development is the closed-loop reservoir man-

agement approach [2]. As shown in Fig. 1, this approach

requires continuous updating ofmodels after collecting recent

data from the high-resolution and high-frequency sensors in

the oil field that record measurements of time-dependent

(dynamic) properties such as pressure, flow rate and temper-

ature. In this workflow, it is very important to have a model

that can respond to the following primary needs:

• A model that can be updated quickly when new data are

available.

• A model that is sufficiently accurate and representative

of the actual system (surface or subsurface) so that it

can be used for decision-making purposes.

There are a wide variety of modeling approaches presented

in the reservoir engineering literature. Each modeling

approach represents various complexities, advantages and

disadvantages. In order to find a model that serves to both

of the aforementioned objectives, it would be a better

approach to have access to different modeling options

readily available and choose the right modeling approach

depending on the problem type and scope.

In this study, two conceptually different modeling

approaches are investigated for the purpose of character-

izing interwell connectivity in a waterflooded reservoir:

1. Fully data-driven modeling: artificial neural networks

(ANN)—no functional relationship presumed.

2. Reduced-physics-driven modeling: capacitance–resis-

tance model (CRM)—physics are incorporated with

certain assumptions that simplify the problem.

Both methods have been proven to be potentially efficient

tools for reservoir engineering problems based on studies

presented in the literature. In this study, it is aimed to

investigate the characteristics of each method including

best practices and challenges associated with them to

characterize interwell connectivity between injection and

production wells. These would allow us to compare these

methods with each other from the practical point of view

and develop guidelines for the practicing engineer or asset

team who is responsible for developing an optimum

waterflooding plan. The primary objectives of the study can

be summarized as the following:

1. Utilizing two different modeling approaches: artificial

neural networks (as a data-driven modeling approach)

and capacitance–resistance models (as a reduced-

physics modeling approach) for quantifying interwell

connectivity between injection and production wells in

a waterflooded petroleum reservoir.

2. Assessing and comparing both methods (ANN and

CRM) from different perspectives to determine

strengths and weaknesses of each approach in terms

of accuracy, data requirements, training algorithm,

processing times and expertise requirements.

This study is the first attempt, to the best of our knowledge,

to compare these two modeling approaches for the purpose

of characterizing reservoir connectivity. This comparison

provides with the necessary insight for the practicing

engineer to implement either of these methods for a

waterflooded petroleum reservoir. These tools have great

advantages over other modeling approaches because of

requiring fewer inputs, being much more computationally

efficient and not being dependent on geological uncer-

tainties. Therefore, having the necessary insights would

help to decide which method is more practical for a par-

ticular problem. Based on the analysis performed during

this study, the decision of choice would be affected by the

expertise of the practicing engineer, availability of the data

and the time frame of the study.

System 
(reservoir, wells 
and facilities)

Sensors

Data 
assimilation 
algorithms

System models

Optimization 
algorithms

Geology, 
seismic, 
well logs, 
well tests, 
PVT, 
etc.

Measured 
output

Predicted 
output

InputNoise

Controllable
output

Output Noise

Fig. 1 Closed-loop reservoir management workflow [2]
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2 Methodology

2.1 Case study: a synthetic reservoir model

In this study, a synthetic streak case study [3] is selected to

implement the aforementioned methods. It is a synthetic

field that consists of 5 vertical injectors, I1 through I5, and

4 vertical producers, P1 through P4 (Fig. 2). The perme-

ability of the reservoir is 5 md, except two high-perme-

ability streaks:

1. Streak-1: 1000 md between I1 and P1 wells.

2. Streak-2: 500 md between I3 and P4 wells.

The porosity is constant and equal to 0.18. Total mobility

of oil and water (ko þ kw) is 0.45 and is independent of

saturation. Oil, water and rock compressibilities are

5 9 10-6 psi-1, 1 9 10-6 psi-1, 1 9 10-6 psi-1, respec-

tively. The model is constructed with 1 layer and 31 grid

blocks in each of the x and y directions with grid sizes of 80

ft 9 80 ft (Dx and Dy). The thickness of the reservoir is 12
ft (Dz).

This model has been built and run using a commercial,

numerical reservoir simulator [4] that utilizes black-oil

formulation, which is a common formulation used as a

robust approach for waterflooding problems. A variable

water injection rate scenario is implemented, in which

volumetric injection rates are varied significantly over a

period of 100 months (�10 years). It is aimed to charac-

terize the connectivity of the system through these rate

fluctuations [3]. The bottom-hole pressure (BHP) for pro-

ducing wells is fixed at 250 psia, and volumetric liquid

production rates are measured (Fig. 3). The volumetric

water injection rates are varied manually, while setting a

limit for maximum bottom-hole pressure of 5000 psia

(Fig. 4). Both injection and production rates are measured

at reservoir conditions (rbbl/day: reservoir barrels per day).

One hundred months of monthly injection/production his-

tory resulted in a sample size of 100 for each well. Other

descriptive statistics of volumetric injection rates for

injector wells, I1 through I5, and volumetric production

rates for producer wells, P1 through P4, are given in

Table 1.

Although the presented synthetic case has rather simple

permeability contrasts, it is a good example of a real

reservoir with high-permeability streaks that must be con-

sidered during a waterflood optimization study. Existence

of such streaks amplifies the importance of characterizing

the connectivity between wells, since they provide a con-

duit in the reservoir to transport the injected water. The fact

that results from a synthetic model are used should not

raise any concern regarding the validity of the methods

presented since both methods are proven to be successful in

real reservoir cases with a number of examples in the lit-

erature. CRMs were successfully applied to a number of

fields [5], and ANNs were successfully utilized for reser-

voir characterization problems with real-field data [6–9].

Since the main objective in this study is to perform a

comparison of two methods, a synthetic case would be

sufficient. However, it is anticipated that for a more com-

plex reservoir case with more heterogeneities and more

wells, more number of historical observations (more than

10 years of history) of injection and production rates might

be needed for capturing the fluid flow dynamics of the

reservoir.

2.2 Artificial neural networks

Intelligent systems have been applied to many different

types of optimization problems in the petroleum industry.

Most of these problems presented in the literature are based

on development of ANN-based proxy models that can

accurately mimic reservoir models within a reasonable

amount of accuracy and computational efficiency. In some

studies, these models are utilized to construct data-driven

predictive tools and these tools are coupled with evolu-

tionary algorithms to solve the optimization problem effi-

ciently. Several areas of application included reservoir

characterization [6–9], candidate well selection for

hydraulic fracturing treatments [10], field development

[11–13], well placement and trajectory optimization [14–

16], scheduling of cyclic steam injection process [17],

screening and optimization of secondary/enhanced oil

recovery[18–23], history matching [24–26], underground

gas storage management [27], reservoir monitoring and

management [26, 28] and modeling of shale-gas reservoirs

[29, 30].

1,000

500

5

Permeability (md)

Fig. 2 Synthetic reservoir model used in this study and its

permeability distribution: a reservoir with 2 high-permeability streaks

[3]
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In addition to petroleum engineering and many other

engineering disciplines, artificial neural networks and other

data-driven modeling approaches have been used in many

different kinds of applications such as spatial clustering

[31], cavity-filter optimization [32], electricity load fore-

casting [33], control, pattern recognition, signal processing,

medicine, speech recognition, speech production and

business [34].

The most common training algorithm and also the one

used in this study is the backpropagation algorithm. Also

known as the generalized delta rule, backpropagation

algorithm is a gradient-descent method that minimizes the

total squared error of the output computed by the network.

It played a major role in the re-emergence of neural net-

works in late 1980s. It was introduced as a training method

of multilayer networks to overcome the limitations of

single-layer networks [34]. Backpropagation algorithm is a

supervised training technique (i.e., mapping a given set of

inputs to a specified set of target outputs) and includes

three stages: (1) feedforward of the input training pattern,

(2) calculation and backpropagation of the error and (3)

adjustment of weights. The overall goal is to train the

network such that it can [34]:

• Respond correctly to the input patterns that are used for

training (memorization).

• Give reasonable responses to similar, but not identical,

input patterns (generalization).

Figure 5 shows a multilayer, fully connected network

with one hidden layer. There are n input neurons in the

input layer, p hidden neurons in the hidden layer and m

output neurons in the output layer. There are biases also

shown in this figure whose activation value is constant

during the training (1, in this case). While the number of

inputs and outputs is based on the nature of the problem

studied, the number of hidden neurons is a part of the

network design process and must be optimized by the

designer. A rule-of-thumb formula is presented to calculate

the number of the hidden neurons, which is mostly based

on experience [35]:

NHN ¼ NI þ NO

2
þ

ffiffiffiffiffiffiffiffi

NTP

p
ð1Þ

where NI is the number of inputs, NO is the number of

outputs, and NTP is the number of training patterns. It

should be noted that this is not a theoretical formula, and

this number would not necessarily be the best estimate of

the number of hidden neurons. However, it can be used as a

good start for the optimization process. Algorithm 1 shows

a step-by-step explanation of the backpropagation

algorithm.
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Table 1 Descriptive statistics

of volumetric injection and

production rates that are output

from the model and used in the

study

Injection well I1 I2 I3 I4 I5

Volumetric water injection rates (rbbl/day)

Mean 1,683.1 999.5 860.4 779.0 931.8

Standard error 55.5 20.9 28.3 21.5 28.1

Median 1,595.2 1,018.6 854.7 792.0 1,020.1

Standard deviation 554.7 208.8 283.4 215.3 280.5

Sample variance 307,638.1 43,595.6 80,313.9 46,345.7 78,686.5

Kurtosis 1.24 0.60 0.37 -0.07 -0.05

Skewness 0.71 -0.74 -0.27 0.04 -0.86

Range 3,258.7 1,053.0 1,288.9 1,034.2 1,128.5

Minimum 305.9 227.0 172.7 272.0 145.0

Maximum 3,564.6 1,280.0 1,461.6 1,306.3 1,273.5

Sum 168,313.9 99,945.2 86,043.1 77,896.8 93,179.6

Count 100 100 100 100 100

Production well P1 P2 P3 P4

Volumetric liquid production rates (rbbl/day)

Mean 2,494.9 157.1 274.3 2,386.1

Standard error 56.8 4.0 3.3 43.8

Median 2,458.5 158.1 272.3 2,354.8

Standard deviation 568.4 39.7 33.2 438.4

Sample variance 323,095.6 1,577.6 1,105.2 192,167.8

Kurtosis 0.34 0.23 0.30 0.41

Skewness 0.27 0.47 -0.33 0.52

Range 3,141.9 193.4 174.5 1,899.1

Minimum 917.5 85.0 182.5 1,509.9

Maximum 4,059.4 278.4 357.0 3,408.9

Sum 249,486.5 15,712.0 27,431.2 238,606.3

Count 100 100 100 100
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The iterative procedure for each training pair shown in

Algorithm 1 is repeated for all training patterns, until a pre-

specified stopping condition is achieved. Processing of

each training data is known as a training event or iteration.

When all training data are processed once, one epoch

(training cycle) is completed. Each training data can be

processed either by random selection, or by rotation. After

each training event, average mean-squared error is calcu-

lated. Achieving minimum mean-squared error of outputs

and maximum number of epochs is among most common

stopping conditions. Once the defined stopping criteria are

satisfied, weights on connection links achieve their opti-

mum states. Provided that the training performance is

satisfactory, the trained network with optimum weights can

be used as a predictive model.

In this study, mapping input–output relationships is

achieved with the inputs of injection rates from the water

injectors and the output of the liquid production rate of a

given producer. By analyzing the weights on connection

links of the trained neural network, interwell connectivity

is quantified. The optimized value of the weight on a given

connection link indicates the degree of influence of the

given input parameter on the output parameter. Therefore,

we propose that once the training is completed, the relative

values of connection links that connect each injector signal

to the producer can be used to quantify the connectivity.

There are individual neural networks for each producer

well in the field. A neural network for a given producer

would provide the connectivity of each injector to that

producer. Once all neural network models are trained, all

connectivities between all injector–producer pairs would

be quantified. This would provide insights about the

waterflood dynamics in the reservoir and help to under-

stand the overall reservoir connectivity to be used for

further optimization studies.

A feedforward artificial neural network is constructed

for each producing well in the reservoir. The training

algorithm used is the Levenberg–Marquardt backpropaga-

tion algorithm [36, 37], and due to the low number of total

input/output parameters (5 injectors and 1 producer: 6

parameters), only 1 hidden layer is used with 12 neurons.

The schematic of the architecture of the neural network is

shown in Fig. 6. Eighty percentage of the historical pro-

duction/injection are used for training, 10 % are used for

validation during the training to prevent over-training, and

10 % are used for blind-case testing.

2.3 Capacitance–resistance models

It was suggested that the development of an electrical

model offers the promise of rapid evaluation for non-

mathematical analysis of complex reservoir problems

including understanding of the waterflood performance [3,

38]. An analogy between the flow behaviors of electricity

in electric units and fluid in reservoir units was made

through an experimental study [38]. This analogy implies

that the electrical unit acts as a device which stores the

electrical charge just as reservoir rock is acting as the

storage of reservoir fluids [38]. After considering that the

current may be equivalent to fluid flow, and the pressure is

Fig. 5 Architecture of a

multilayer network
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equivalent to the electrical potential, oil reservoir, as a

porous continuum, is divided into small blocks so that the

material balance can be used assuming the reservoir fluid is

flowing in at one face of the block and out at the opposite

face [38]. Role of such models for rapid estimation of

waterflood performance and optimization was investigated

by calling them capacitance–resistance models (CRMs)

[3]. The base data necessary to run this model are pro-

duction/injection data and well bottom-hole pressure

(BHP) to calibrate the model against a specific reservoir.

CRMs were primarily used for the characterization of

interwell connectivity between injection and production

wells rapidly without needing a geological model [39, 40].

After characterizing the connectivity, they are then used to

optimize injection allocation and well locations in water-

flooded reservoirs. An integrated capacitance–resistance

model (ICRM) was presented that uses cumulative water

injection and cumulative total production instead of water

injection rate and total production rate while investigating

the advantages of a linear reservoir model over the non-

linear capacitance–resistance model [41, 42].

The main advantage of CRM is that it requires very few

inputs as little as the production/injection history. It is based

on the main assumption that reservoir properties can be

drawn only from production/injection history of wells. Also

it requires that no significant changes in the field are observed

during the analysis period. The primary application area is

for the fields that are observing a secondary recovery period

with water or gas injection. Its applications for primary and

tertiary recovery periods are still being developed.

In these applications, the method enables to quantify

connectivity between injector–producer pairs and aquifer

strength, through history matching the production history

by adjusting model parameters. After the capacitance

models were introduced to understand interwell connec-

tivity [43], CRMs for dynamic evaluation of waterfloods

were presented [5]. Being a simple and user-friendly tool,

the methodology proved to be very powerful in field

applications, especially by quantifying interactions

between injector and producer wells [44]. CRMs for

three different control volumes are presented with semi-

analytical formulations, with each of them having differ-

ent level of complexities [3]:

1. One producer’s control volume,

2. An injector–producer pair’s control volume,

3. A field’s control volume.

In this study, a producer-based control volume is consid-

ered to focus on production wells and how they are con-

nected to different injection wells. Considering Ni number

of injectors and Np number of producers, an in situ volu-

metric balance over the effective pore volume of the pro-

ducer is defined by the following differential equation [45]:

dqjðtÞ
dt

þ 1

sj
qjðtÞ ¼

1

sj

X

Ni

k¼1

fijiiðtÞ � Jj
dpwf ;j

dt
ð2Þ

where sj is the time constant for producer j and defined as a

function of total compressibility, ct, pore volume, Vp, and

productivity index, J, of the producer for its effective area:

sj ¼
ctVp

J

� �

j

ð3Þ

and, fij is defined as the fraction injection rate of injector, i,

toward producer, j:

fij ¼
qijðtÞ
iiðtÞ

ð4Þ

The solution of this equation, including a variation in the

producer’s bottom-hole pressure (BHP), is the following [43]:

qjðtnÞ ¼ qjðt0Þ e
� tn�t0

sj

� �
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which includes three components for representing the

production rate signal q(t) at any given time on the right-

hand side of the equation:

1. Primary depletion

2. Injection input signal

3. Variation in the producer’s bottom-hole pressure

(BHP)

By applying numerical integration, the integrals in the

above solution were evaluated by proposing two approaches

[45], which includes linear variation of BHP during the

consecutive time intervals, and either stepwise variation in

the injection rate (constant injection rate during a timestep),

or linearly varying injection rate during a timestep. In this

study, injection rates are kept constant during a timestep;

therefore, the former solution is utilized. For the case of

fixed injection rate of iðDtkÞ ¼ I
ðkÞ
i , and a linear BHP vari-

ation during time intervals Dtk, ðk ¼ 1; 2; . . .; nÞ, by

assuming a constant productivity index at any given time,

tn, total production rate of producer j can be written as:

qjðtnÞ ¼ qjðt0Þ e
� tn�t0

sj

� �

 !

þ
X

n

k¼1

e
� tn�tk

sj

� �

1� e
� Dtk

sj

� �

 !(

X

Ni

i¼1

fijI
ðkÞ
i

h i

� Jjsj
DpðkÞwf ;j

Dtk

" #)

ð6Þ

where I
ðkÞ
i and DpðkÞwf ;j represent injection rate of injector, i,

and changes in the BHP of the producer, j, during time

interval, tk�1 to tk, respectively. The stepwise variation in

injection rates is consistent with the discrete nature of field

data that are typically reported in monthly averages [3]. If

the bottom-hole pressure for producing wells does not

change with time, the equation becomes:

qjðtnÞ ¼ qjðt0Þ e
� tn�t0

sj

� �

 !

þ
X

n

k¼1

e
� tn�tk

sj

� �

1� e
� Dtk

sj

� �

 !

X

Ni

i¼1

fijI
ðkÞ
i

h i

" #( )

ð7Þ

The history-matching process is achieved by inputting

observed production and injection rates for liquids and by

changing the unknown parameters:

• Initial production rates, qjðt0Þ,
• Time constant for each producer, j, sj,
• Fraction injection rate of injector, i, toward producer, j,

fij (i.e., the connectivity between injector, i, and

producer, j.

Through an optimization routine, these parameters are

changed until the average error between observed and

calculated production rates is minimized. This error is

defined as:

MSE ¼
PNdata

n¼1 ðqobs � qestÞ2

Ndata

ð8Þ

where Ndata is the number of observations (sample size),

qobs is the observed flow rates, and qest is the flow rate

estimated by the model. The routine is initialized by

assuming values for the time constant and initial flow rates

and calculating the initial fractional flow parameter using

the inverse-distance method [46]:

fij ¼
1
dij

PNpro

j¼1
1
dij

ð9Þ

where dij represents the distance between each injector and

producer. After this initialization, the trust-region reflective

search algorithm [47–51] is used to search for the combi-

nation of parameters that provides the lowest range of error

between the observed and estimated rates. After a pre-

specified stopping criteria are met, then the solution is

accepted as the optimum solution. An error tolerance of

1e-07 and a maximum number of function evaluations of

10,000 are used as the convergence criteria. Then, the

system parameters (e.g., fractional flow) are used to char-

acterize the reservoir.

3 Results and discussion

Proposed methods, namely ANNs and CRMs, are applied

to the case study presented in the previous section. The

primary objective was to quantify the connectivity between

injector/producer pairs using both methods. This is

achieved by a contribution parameter derived from the

trained neural network weights, w, in the case of ANNs and

by the fractional flow parameter, f, in the case of CRMs. In

the following subsections, results obtained using these two

methods are presented and discussed.

3.1 Artificial neural networks

The history-matching results are shown in Fig. 7. These

figures show that the training was successful in matching the

historical rates observed. Once the training is completed, it is

expected that the neural networkwould capture the dynamics

of the reservoir system from observed data. Since no pre-

sumed physical laws are introduced, we call such models

data-drivenmodels. Themodel, during the training, captures

the physics of the process through the neural network train-

ing, which is an iterative procedure. After the training is

completed by satisfying certain stopping criteria, weights

remain in their optimum state, at which the neural network

can predict the output (production rate) within high levels of

accuracy. In that case, the optimum set of weights would
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represent the contribution of each injection well to the pro-

ducingwell’s production, which can be used as a proxy to the

connectivity between injection and production wells. Higher

quantity of weights indicate stronger contribution and thus

stronger connectivity, and lower quantity weights indicate

weaker contributions and weaker connectivity. Contribution

factors calculated in this case are given in Table 2. After

calculating these contribution factors, a connectivity map is

drawn which represents the strength of connection between

each producing and injector well (Fig. 8). This figure is very

similar to the actual reservoir grid in which the permeabili-

ties are shown (Fig. 2). Since the neural network was able to

capture the high-permeability streaks in the reservoir system,

this gives us the confidence that artificial neural networks can

be used to characterize the connectivity of an oil reservoir

system which goes through water injection.

3.2 Capacitance–resistance models

The history-matching results are shown in Fig. 9. These

figures show that the training was successful in matching

the historical rates observed. Based on the CRM formula-

tion, the search process includes searching for the optimum

combination of initial production rates, fraction of flow and
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Fig. 7 History matching of the producing wells during ANN training
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time constant parameters. The fraction of flow parameter is

used as a proxy to the interwell connectivity between each

injector and producer. The values obtained after the opti-

mization routine is completed are given in Table 3. Using

these values, similar to the ANN case, a connectivity map is

drawn which represents the strength of connection between

each producing and injector well (Fig. 10). As in the case

with ANN, CRM was able to capture both high-perme-

ability streaks in the reservoir model which are shown in

the reservoir grid (Fig. 2). Therefore, we also conclude that

in a similar fashion with artificial neural networks, capac-

itance–resistance models can also be used to characterize

the connectivity of an oil reservoir system which goes

through water injection.

3.3 Comparison of data-driven and reduced-physics

modeling approaches

One of the main objectives of this study is to provide a

comparison of these two methods for the practicing

reservoir engineer or asset team with respect to a number of

aspects. Table 4 shows a comparison of these two methods

in different aspects, and a discussion of each aspect is

presented as the following:

Accuracy Prediction capabilities of each method can be

analyzed by comparing each method’s ability to inden-

tify high-connectivity zones in the reservoir. When all of

the 20 interwell connectivities between each of the five

injectors and four producers are ranked, upper 10 values

can be classified in the high-connectivity category, while

lower 10 values can be classified in the low-connectivity

category. One can approximate the connectivity values

for the numerical simulation model, by utilizing the

average permeability between two wells and normaliz-

ing the permeability by the distance between two wells

(if two wells are close to each other and have a high-

permeability streak between them, their connectivity

would be the highest). These values are given in Table 5.

After sorting the connectivity values in the numerical

model together with the predictions of data-driven and

the reduced-physics models, it is seen that the data-

driven and the reduced-physics models were able to

correctly estimate 80 and 70 % of each connectivity

category, respectively. These acceptable accuracy levels

indicate that both methods have similar prediction

capabilities, while the data-driven model has a slightly

better performance.

Data requirements Data-driven modeling approach (ar-

tificial neural networks) is better since it does not have

any limitation regarding the types of input/output data

set used. In this study, only injection and production

rates are used. This can be considered as a minimum

required set of data, since a set of signals would be

needed to be able to relate the connectivity between

wells, and production/injection rates are the most

commonly available data set that can be incorporated.

Meanwhile, the data included can be expanded, by

including well locations, known reservoir properties and/

or pressure data. Artificial neural networks are very

advantageous in terms of flexibility and can be modified

or restructured depending on the reservoir, wells, or any

other known aspects of the field that are studied. On the

other hand, capacitance–resistance models have a certain

formulation and require the data in that formulation

(production/injection rates, bottom-hole flowing pres-

sures, well locations). These are common type of data

available in any oil field; therefore, this does not create a

significant problem in implementing the method. How-

ever, it does not have the flexibility to incorporate more

data, if needed. In that case, the formulation needs to be

modified and redeveloped, which is not practical to do

for a quick application of the method but can be done in

Table 2 Contribution values obtained from weights, w, after ANN

training which is a proxy to the interwell connectivity

f P1 P2 P3 P4

I1 1.000 0.250 0.293 0.204

I2 0.117 0.177 0.521 0.165

I3 0.206 0.205 0.184 0.561

I4 0.239 0.903 0.373 0.438

I5 0.213 0.239 0.402 0.405
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Fig. 8 Connectivity map of injectors/producers using the contribu-

tion values derived from the trained neural network
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the long term to have a suite of CRMs. This also can be

explained with the modeling approach utilized in each

method. ANNs are purely data-driven, and CRMs are

reduced-physics-driven as explained earlier.

Training algorithm ANNs offer a number of different

training algorithms, and all of them are purely data-

driven algorithms. The choice of the algorithm requires

subject-matter expertise in ANNs. ANNs do not limit the

use of any training algorithm and provide the flexibility

in choosing from the available options. With CRMs, the
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Fig. 9 History matching of the producing wells during CRM training

Table 3 Fraction of flow, f, values obtained after CRM training

which is a proxy to the interwell connectivity

f P1 P2 P3 P4

I1 1.000 0.002 0.003 0.005

I2 0.548 0.003 0.137 0.303

I3 0.057 0.010 0.033 0.974

I4 0.117 0.178 0.001 0.662

I5 0.126 0.001 0.106 0.766
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training is basically an optimization process, in which

the optimization algorithm and parameters can be

modified. Therefore, CRMs are also can be trained with

a different number of optimization-related options.

Training speed Both methods are promising as the

training of both models took\30 s of CPU time. Even

for more complex reservoir systems, it is fair to expect

training times not more than a few minutes, which is a

reasonable amount of time for decision-making

purposes.

Expertise requirements Both methods are considered to

be moderate in terms of expertise requirements. In

developing a tool that utilizes either of the method, both

methods require significant expertise in certain subjects.

ANNs require to be familiar with the ANN theory and

terms; CRMs require the knowledge of CRM formula-

tion and reservoir engineering concepts. To train a

readily available tool using available data, ANNs still

require to be familiar with the related theory to

determine the neural network architecture and training

parameters. For training of CRMs, although not neces-

sary, knowledge of optimization algorithms and param-

eters would help to find the best optimization approach.

4 Summary and conclusions

In this study, two methods of different modeling approa-

ches, ANNs and CRMs, are studied to quantify the inter-

well connectivity between water-injecting wells and oil-

producing wells for a petroleum reservoir that has gone

through a reasonably long period of waterflooding. The

methods were tested on a synthetic reservoir case, in which

there are two high-permeability streaks (500 and 1000 md)

in a reservoir having a permeability of 5 md, elsewhere.

After calculating the connectivities from the model

parameters, two methods are compared with each other

considering various aspects from the practical points of

view.

Only liquid production and injection rates as well as

well locations are used as the data input to the two meth-

ods. Among these methods, artificial neural networks are

purely data-driven, with no assumption regarding the

governing laws of physics made. The other method,

capacitance–resistance models, can be defined as reduced-

physics-driven. The reason is that the physical laws

included in the formulation require a large number of

assumptions regarding the fluid flow. Both methods require

a training process, in which the developed model learns

from observed data, to capture the actual dynamics in the

reservoir. Therefore, success of both methods depends on

data quality and quantity. It was observed that for a known

reservoir scenario with 2 high-permeability streaks, both

methods were able to capture these streaks within reason-

able ranges of accuracy. Since both methods are practical

and easy to implement, a recommendation can be made

that both methods are applicable for such applications.

The key conclusions obtained from this study can be

summarized as follows:
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Fig. 10 Connectivity map of injectors/producers using the contribu-

tion values derived from the trained capacitance–resistance model

Table 4 Characteristics of data-driven and reduced-physics modeling approaches in various aspects

Data-driven modeling (ANN) Reduced-physics modeling (CRM)

Accuracy (based on the specific example presented in this study) 80 % 70 %

Data requirements Flexible Fixed

Modeling approach Flexible data-driven model Physics-based, include assumptions

Training algorithm Flexible Flexible

Training speed Fast Fast

Expertise requirements Moderate Moderate

To develop the tool ANN background needed Reservoir eng. background needed

To train ANN background needed Optimization knowledge (for fine-tuning)
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1. Both ANNs and CRMs can be used to quickly estimate

the interwell connectivity between injection wells and

production wells in a reservoir. These tools have great

advantages over numerical modeling because of

requiring fewer inputs and being much more compu-

tationally efficient, while also providing the ability to

utilize available historical data and not being depen-

dent on geological uncertainties.

2. In the example presented here, 10 years of production/

injection history was sufficient for training and

achieving an accurate history matching. For more

complicated reservoir cases (with more number of

wells), higher duration of production and injection

histories might be needed.

3. Both methods are efficient in terms of CPU time

requirements with training times\30 s reported for the

example used in this study. Even for more complex

reservoir systems, this time is not expected to be

greater than a few minutes.

4. In terms of data requirements and modeling approach,

ANNs are more flexible than CRMs, since ANNs are

purely data-driven and do not require any presumed

functional relationship between process variables.

Instead, it derives the relationships through training

of observed data.

5. In both methods, some degree of knowledge is needed

for fine-tuning of results during the training process

which involves optimization of weights or the frac-

tional flow parameter.
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