
ORIGINAL ARTICLE

A density invariant approach to clustering

Manish Kashyap1 • Mahua Bhattacharya1

Received: 20 May 2015 / Accepted: 21 December 2015 / Published online: 4 January 2016

� The Natural Computing Applications Forum 2016

Abstract Organizing data into sensible groups is called as

‘data clustering.’ It is an open research problem in various

scientific fields. Neither a universal solution nor an absolute

strategy for its evaluation exists in the literature. In this

context, through this paper, we make following three con-

tributions: (1) A new method for finding ‘natural groupings’

or clusters in the data set is presented. For this, a new term

‘vicinity’ is coined. Vicinity captures the idea of density

together with spatial distribution of data points in feature

space. This new notion has a potential to separate various

type of clusters. In summary, the approach presented here is

non-convex admissive (i.e., convex hulls of the clusters

found can intersect which is desirable for non-convex

clusters), cluster proportion and omission admissive (i.e.,

duplicating a cluster arbitrary number of times or deleting a

cluster does not alter other cluster’s boundaries), scale

covariant, consistent (shrinking within cluster distances and

enlarging inter-cluster distances does not affect the clus-

tering results) but not rich (does not generates exhaustive

partitions of the data) and density invariant. (2) Strategy for

automatic detection of various tunable parameters in the

proposed ‘Vicinity Based Cluster Detection’ (VBCD)

algorithm is presented. (3) New internal evaluation index

called ‘Space-Density Index’ (SDI) for the clustered results

(by any method) is also presented. Experimental results

reveal that VBCD captures the idea of ‘natural groupings’

better than the existing approaches. Also, SDI evaluation

scheme provides a better judgment as compared to earlier

internal cluster validity indices.

Keywords Data clustering � Classification � Density

invariant clustering � Pattern recognition � Cluster validity

indices � Internal cluster evaluation � Cluster validity

indices

1 Introduction

Finding natural groupings present in a given data set is one

of the most fundamental tasks in various sciences. This

process is referred to as data clustering. It is trivial for

human brain to find natural groupings in the data set. Due

to the fact that our understanding of how human brain

works is limited, imitating the human brain is difficult if

not impossible.

Clustering algorithms present in the literature can be

broadly classified into two categories—Hierarchical and

Partitional. Hierarchical algorithms try to find clusters by

starting with the individual points as clusters in the data set

and then grouping them with other nearby and similar

points. However, partitional algorithms do not impose any

such structure on the data and try to find the partitions at

once. Popular algorithms used in each of these categories

are ‘complete-link’ and ‘K-means,’ respectively.

To be able to do clustering successfully, one needs to be

very clear about what their definition of cluster is. What

features will they be using for measuring similarity

between two data points? Does the data that they are using

have any clustering tendency? How many clusters are

expected? Such fundamental challenges were first high-

lighted in [1]. Answering these questions is a matter of

choice w.r.t. the philosophy used to construct the clustering

& Manish Kashyap

Manishkashyap.iiit@gmail.com

Mahua Bhattacharya

mb@iiitm.ac.in

1 Department of ICT, ABV-Indian Institute of Information

Technology and Management, Gwalior, India

123

Neural Comput & Applic (2017) 28:1695–1713

DOI 10.1007/s00521-015-2145-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2145-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-2145-z&domain=pdf

algorithm. For example, FCM recognizes every data point

as belonging to one or the other cluster while DBSCAN

treats data points in extremely low-density regions as noise.

Hence, they differ in their definition. Similarly the distance

measure between two data points may be any of Pearson’s

correlation coefficient, minimum ratio, Euclidean distance

or otherwise as given in [2]. FCM forcibly clusters the data.

Methods like DBSCAN may declare the complete data as

noise or a single cluster if density does not vary. Further

FCM requires no. of clusters to be supplied by the user

while DBSCAN and other density-based methods do not.

There are numerous algorithms for clustering in the liter-

ature. Despite the above fact, there is no ‘universally

accepted’ or ‘correct in all aspects’ algorithm for cluster-

ing. A good survey of clustering algorithms can be found in

[3]. Nevertheless, we make a mention of two most popular

algorithms that are used even today (may be their different

variants). One of them is among the category of algorithms

that try to find clusters based on density and called as

DBSCAN [4]. This algorithm searches for connected and

dense regions in the data. The density is calculated over a

small neighborhood around the point to be processed. If the

density is above certain threshold, the point being pro-

cessed is declared to be in cluster and marked appropri-

ately. To address the issue of nested clusters and variable

density, a variant of the said algorithm was proposed in [5].

However, when the data size is large, density-based

methods usually fail to distinguish between high- and low-

density regions. The second algorithm called K-means falls

under the category of objective function-based methods.

These methods try to find out the clusters iteratively till an

objective function is maximized or minimized. K-means

has a shortcoming that it fails to detect non-convex and

nested clusters. Despite this fact, its fuzzy variant called

Fuzzy C-means is widely used in engineering applications.

Evaluation of clustering algorithms is a subjective issue.

It is often measured by using cluster validity indices. They

were defined in [1] as internal, relative and external.

Evaluation based on internal indices is done by using the

data alone and by measuring the goodness of fit in terms of

inter- and intra-cluster variance, etc. Some popular exam-

ples of internal indices are—Dunn Indices [6], DB Index

[7] and Silhouette Index [8]. Relative indices compare the

results of various clustering algorithms on the same data.

External indices are used when truth maps or class labels

are available. Recently, to address the issue of overlapping

clusters, new cluster validity index is proposed in [9].

Proposed index is non-distance based and uses the rela-

tionship of membership for measuring intra-cluster com-

pactness and inter-cluster distance. A survey of cluster

validity indices is given in [10].

Among the recent developments, in [11] the problem of

clustering large sized data is addressed where the authors

have first found cluster centers by sampling the data using

large sampling size and then estimated the actual cluster

centers within that sample. While doing so, linear space

and time complexity is incurred. In [12], cellular automata-

based clustering algorithm is presented. In [13], issue of

rounding (How many eigenvectors of data similarity matrix

are to be used) in spectral clustering is addressed using

latent tree models. In [14], Bee colony optimization was

used to automatically detect the number of clusters.

Dimension selection, dimension weighting and data

assignment are three circular dependent essential tasks for

high dimensional data clustering. Integrated constraint-

based clustering (ICBC) algorithm is proposed in [15] to

address all the three issues simultaneously. An empirical

evaluation of cluster quality measures is presented in [16].

Results from various clustering algorithms to same data

sets are combined using long-term behavior of a dynamical

system in [17]. Meta data learning (what type of algorithms

solves what type of problems) in context of selecting

appropriate algorithms for clustering is done in [18] for

making recommendations to select or reject one algorithm

over another. Ad hoc work in case of handwriting recog-

nition is done in [19]. A recent variant of FCM is presented

in [20]. Hybrid clustering methods like in [21] utilize

desirable properties of two or more algorithms. In [21],

global search capability of ‘Bacterial foraging algorithm’

and local search capability of FCM is utilized. Similarly in

[22], for brain MRI images, a variant of FCM is proposed

which combines FCM and probabilistic C-means using

Gaussian weights to indicate spatial extent of neighbor-

hood. For big data, clustering using ‘Local Sparse Repre-

sentation’ is proposed in [23]. In [24], an improved version

of ‘Incremental FCM’ is proposed to handle the same

problem. Divide and conquer approach to FCM by using

seeds at different locations for clustering for parallel

computing and speedup is proposed in [25]. To achieve the

same, membrane computing is used in [26]. The problem

of seed initialization in efficient way is addressed in [27].

When the data comes from several interconnected mani-

folds, subspace clustering techniques are useful. One such

technique is given in [28] which used curvature connec-

tivity for various initial landmarks. The issue of noise for

subspace density is addressed in [29]. Sensitivity of spec-

tral clustering methods have been taken care of in [30]

using newly proposed ‘Density Adaptive Neighborhood’

technique. Similarly neighborhood-based clustering is done

in [29].

Motivated by the problems of density invariance, auto-

matic detection of number of clusters, computational

complexity and nesting of clusters and a better evaluation

strategy, in this work we propose a method to identify

natural groupings in data (unsupervised) based on mecha-

nisms like DBSCAN and its variants. A new term called

1696 Neural Comput & Applic (2017) 28:1695–1713

123

vicinity is defined which takes into consideration density as

well as the spatial distribution of feature points around the

point being processed. The power of this notion in context

above-mentioned problems is revealed in Sect. 4. The

method developed here is applicable to n-dimensional

clustering problem. However, results in this work are

illustrated on two-dimensional data sets for visualization of

feature space, and therefore intuitively viewing the

expected clustering results in advance. Further, a new

internal evaluation index called ‘Space-Density Index’

(SDI) for the clustered results (by any method) is also

presented.

So, the main contributions of this paper are—New

algorithm for clustering the data is proposed (Vicinity

Based Cluster Detection) together with automation of their

tunable parameters and new evaluation index for clustering

is proposed (SDI). Rest of the paper is organized as fol-

lows—In Sect. 2, related work is presented. Fuzzy

C-means, DBSCAN and EnDBSCAN algorithms are dis-

cussed in detail as some of the definitions will be used in

the proposed work too. In Sect. 3, we present the proposed

work together with the automation of tunable parameters

and algorithm speed up. Section 4 presents the experi-

mental results and also proposed SDI for evaluating the

clustering results for any arbitrary clustering algorithm.

Section 5 is for discussion and conclusion. It also provides

necessary future directions.

2 Related work in the field of clustering

In this section, the two most popular techniques for clus-

tering ‘Fuzzy C-means’ and ‘DBSCAN,’ in their funda-

mental forms, are discussed. However, there are numerous

variants of these techniques addressing various issues in

them or making their generalizations. Along with

DBSCAN, its variant called EnDBSCAN is also discussed

as the framework it uses is also utilized in the proposed

work. EnDBSCAN addresses the issue of nested variable

density clusters in DBSCAN.

2.1 Fuzzy C-means

The objective of fuzzy C-means algorithm, given the

number of clusters to be detected a priori in a data set, is to

assign each data point in the data set a number between

zero and one corresponding to every cluster such that the

number represents the membership of that data point in a

particular cluster. This is followed by hardening (for a data

point, setting the highest membership value to 1 and rest all

to 0) for crisp classification.

A notation for this technique (by no means unique) is

given as follows—Data set X with n elements as

X ¼ x1; x2; x3; . . .; xnf g. Each data sample xi defined by m

features, i.e., xi ¼ xi1; xi2; xi3. . .ximf g (normalized to uni-

form scale). Number of clusters = c.

Now since the number of clusters ‘c’ is predefined,

cluster centers are randomly initialized. Then following an

iterative procedure, distances from every data point to the

cluster centers are calculated and hence their membership

values. Then, the energy function or the value of objective

function for that particular solution is determined. If it is

above some threshold, new cluster centers are calculated

and this iteration is continued till the solution converges.

This is followed by hardening of the fuzzy result by

appropriate threshold. The objective function, formula for

distance, formula for updating cluster centers and mem-

bership values at next iteration are given below

1. The Objective Function to be minimized is:

Jm U; vð Þ ¼
Pn

k¼1

Pc
i¼1 likð Þm0

d2
ik

2. Distance calculation formula: dik ¼ d xi � við Þ ¼
Pm

j¼1 xkj � vij

� �2
h i1=2

3. Updating of cluster centers: vij ¼
Pn

k¼1
lm0

ik
�xkiPn

k¼1
lm0

ik

4. Optimum value selection: J�
m U�; v�ð Þ ¼ minMfc

Jm

U; vð Þ
With Jm as the objective function U as the partitioning

matrix (size c 9 n), lik is the membership value of kth data

point in the ith cluster, dik is the distance of kth data point

to the ith cluster, vij is the jth coordinate of the ith cluster

center, xik is the kth coordinate of ith data point. ‘*’ on any

script indicates optimum value.

FCM fails to detect non-convex nested or partially

nested clusters however detecting dense regions is its forte.

Since it is iterative in nature, it is computationally com-

plex. It forcibly detects clusters in the input data irre-

spective of the fact that the input data can or cannot be

clustered. It requires number of clusters to be detected as

an input which violates the idea of ‘natural groupings.’

However, it acts as foundation to its various variants which

address some of the above issues.

2.2 Density-based spatial clustering of applications

with noise (DBSCAN and EnDBSCAN)

The objective of DBSCAN algorithm is to discover natural

groupings in a given data set. Not every point needs to be

classified as a data point belonging to cluster. There will be

some data points belonging to cluster (which appear in

relatively dense regions) and some points not belonging to

any (called as noise points).

Authors have defined Eps—neighborhood of a point p in

database, MinPts is the minimum number of points a data

point must be surrounded by to be included in that cluster.

Neural Comput & Applic (2017) 28:1695–1713 1697

123

A point p is directly density-reachable from a point

q w.r.t. Eps and MinPts if p [N Eps qð Þð Þ and

N Eps qð Þð Þj j C MinPts (core point condition). A point p is

density-reachable from a point q w.r.t. Eps and MinPts if

there is a chain of points p1; p2; p3; . . .; pn with p1 = q,

pn = p such that pi þ 1 is directly density-reachable from

pi. A point p is density connected to a point q w.r.t. Eps and

MinPts if there is a point o such that both, p and q are

density-reachable from o w.r.t. Eps and MinPts.

To find a cluster, DBSCAN starts with an arbitrary point

p and retrieves all points density-reachable from p with

respect to Eps and MinPts. If p is a core point, this pro-

cedure yields a cluster with respect to Eps and MinPts. If p

is a border point, no points are density-reachable from p

and DBSCAN visits the next point of the database.

The complexity of a neighborhood query processing is

O nð Þ. The use of a spatial index such as R�-tree, reduces it

to Oðlogm nÞ where m is the number of entries in a page of

R�-tree and n is the size of the data set. The complexity of

the DBSCAN becomes Oðn logm nÞ on use of spatial index,

otherwise it is Oðn2Þ. The algorithm can handle large

amounts of data. DBSCAN can identify all shapes of

clusters; however, it cannot identify complex cluster

structures over variable density space.

In EnDBSCAN algorithm, to address the problem of

Global settings of Eps (Tunable) and nested clusters,

authors in [5] proposed to extend DBSCAN in the fol-

lowing way. They used a term called ‘core distance’ from a

popular algorithm Ordering Points to Identify the Cluster-

ing Structure (OPTICS) which says ‘The core distance of

an object p is the smallest e0 value that makes p a core

object (a core object is an object with at least MinPts in its

neighborhood of predefined size). If p is not a core object,

the core distance of p is undefined’. Then they defined core

neighbor in the same way as neighbor in DBSCAN and

other definitions similar to DBSCAN. Intuitively, it simply

means that despite of the neighborhood size considered,

core distance is independent of it and core neighbors agree

on certain range of density. The advantage of using such a

modification was detection of nested clusters. However, it

leads to introduction of additional tunable parameter called

e0. The complexity is same as DBSCAN, i.e., Oðn logm nÞ.

3 Proposed work on vicinity based notion
of clusters

Intuitively, in context of density-based algorithms, the idea

behind inclusion of a data point in a cluster is presence of

at least a pre-specified minimum number of other data

points (MinPts) in a neighborhood (defined by Eps) cen-

tered on it. On similar grounds in context of vicinity-based

notion of clusters, the idea behind inclusion of a data point

in a cluster is same accept the fact that we bring into

picture how the points in the said neighborhood are dis-

tributed. To better understand this, consider the following

example (refer to Fig. 1).

Let’s say we define the MinPts (as per the EnDBSCAN

algorithm) to be 9. Then, the core distance (the minimum

size of neighborhood around a feature point which contains

MinPts) of the feature point under processing (the center

one in both the patches) will be calculated for a 5 9 5

window. No other smaller square window will contain 9

points. The core distance for both the center data points is

then as 2H2 (Considering the distance between two

neighboring diagonal points as H2 and between two

neighboring non-diagonal points as 1, and consecutive

distances are measured from center of cell to center of

another). However, the two patches are structurally dif-

ferent. The first one is uniformly distributed but the second

is not. Therefore, to distinguish the two center points, we

propose a new term called as vicinity in Definition 2. But

prior to that lets define Eps-Neighborhood in Definition 1

below. We will return to the calculation of vicinity for the

above patches shortly.

Definition 1 (Eps-neighborhood of a feature point p) The

Eps-neighborhood of a feature point p is denoted by NEpsðpÞ
and is defined by NEpsðpÞ ¼ fq 2 Fjdistanceðp; qÞ\Epsg.

Note that this definition is over the feature space F and not

over data points themselves.

The essence of the proposed algorithm lies in the fact

that here calculations are made for every data point, but in

the feature space F while most of the other algorithms

operate only on data points not in feature space. Also note

that feature space is infinite in extent. We make calcula-

tions in a limited region of it such that all the data points

are accommodated.

Definition 2 (Vicinity) Vicinity V ið Þ of a feature point

at location i (i being an n-dimensional vector) in

1 1 1 1 1

1

1 1 1 1 1 1

1

1 1 1 1 1

Fig. 1 Two 5 9 5 patches from a two-dimensional feature space of

certain data set with cells marked 1 corresponding to data points. The

feature point in the center of both, i.e., the ones with location (3, 3)

are the feature points under consideration

1698 Neural Comput & Applic (2017) 28:1695–1713

123

n-dimensional feature space F, labeled by data points in

such a way that the label at a point in feature space rep-

resents frequency of that data point in the data set D con-

cerned, is defined as

V ið Þ ¼ F ið Þ
a

þ
X

j2W

F jð Þ
d i; jð Þ ð1Þ

d i; jð Þ is Euclidian distance. Any other radial, strictly

decreasing function will also do.

Where V ið Þ is the vicinity of ith point in the feature

space (note that whether a point belongs to data space or

not, vicinity is calculated for every point in feature space as

it will help in finding some connected objects as explained

later), FðiÞ is the frequency (label) of the ith point in fea-

ture space (calculated from the given data set), d i; jð Þ is the

distance (any suitable distance measure could also be used)

between ith and jth feature point in feature space. Consider

the distance of a point from itself as an arbitrary number

‘a’. Also, 0\a� 1. The first term on RHS of equation may

become infinite if we choose a ¼ 0, therefore we choose

a ¼ 1. ‘a’ in Eq. 1 affects the data points only as for other

points in the feature space, FðiÞ ¼ 0. So, if we choose a

near 0, the vicinity value for neighboring points will be

discontinuous (very high) owing to high value of 1=a and

this is undesirable. To maintain continuity, any value near

1 will do. So we choose a ¼ 1 which signifies that

immediate neighbors are equally important as pixel under

processing). For an illustration of vicinity on one-dimen-

sional data see Fig. 2a, b.

Apparently the more close the feature points are to the

point being processed, higher is the vicinity. It is to be

noted that while calculating vicinity values for a particular

point, it is not necessary to consider the contribution of all

the other feature points [due to inverse of distance term in

the vicinity equation and due to this window size W ,

centered on FðiÞ, comes into play]. So a suitable neigh-

borhood will suffice. If we threshold the ‘vicinity image’

(an n-dimensional array for n-dimensional feature space)

containing the vicinity values of all points in feature space)

by a suitable threshold such that points whose vicinity is

below the ‘vicinity threshold,’ are set to zero (as vicinity is

a positive quantity we don’t have negative values) we get a

binary image (array for n-dimensional case) containing

some components. These components are called as clusters

(for the case when the density of feature points is nearly

uniform). However, the issue of non-uniform density (to

achieve density invariance) is addressed in the coming

sections. Also coming sections provide a faster way of

calculating vicinity values and addresses the problem of

automating the tunable parameters like vicinity threshold

and window size for neighborhood.

Returning to the calculation of vicinity for the two

patches in Fig. 1 (for center feature points), we get the

vicinity values of 0.0518 and 0.0653 for the two patches,

respectively. This provides some sort of discrimination

which is desired. Let’s now define some more useful terms

and definitions that will lead to theoretical foundations of

the proposed method.

Definition 3 (Direct vicinity connected) A point ‘p’ is

directly vicinity connected to a point ‘q’ with respect to

Eps, MinPts and vicinity threshold ‘k’ if it satisfies

1. p 2 N8 qð Þ—(8 neighborhood of point q)

2. V pð Þ[k and V qð Þ[k

Fig. 2 Illustration of vicinity values for one-dimensional data. a Red

colored curve shows the grouped data points and blue curve shows the

vicinity values. Clusters 1 and 2 are well separated. Hence there is no

interaction in vicinity values. Different is the case with clusters 3 and

4. Cluster 5 is relatively thick w.r.t. 6 that is why vicinity value

magnitude differs. b Less dense clusters are 1 and 2. 3 is a cluster with

F ið Þ ¼ 2 for some points. Corresponding difference is noted in

vicinity values (color figure online)

Neural Comput & Applic (2017) 28:1695–1713 1699

123

Definition 4 (Vicinity Connected) A point ‘p’ is vicinity

connected to a point ‘q’ with respect to Eps, MinPts and k
if there is a chain of points p1; p2; p3; . . .; pn such that piþ1

is directly vicinity connected to pi, ðp; q 2 FÞ.

We are now in a position to define vicinity based cluster

in a feature space. Intuitively, a cluster in feature space is

defined as a set of vicinity connected points in feature

space which is maximal with respect to vicinity connect-

edness. Ether is similarly defined as set of points in feature

space not belonging to any cluster.

Definition 5 (Cluster) Let F be the feature space of

feature points labeled with frequency of each point in the

data set D and has a vicinity value as calculated by Defi-

nition 2. A cluster C in feature space F is a non-empty

subset of F satisfying:

1. 8p; q if p 2 C and q is vicinity connected to p w.r.t.

Eps, MinPts and k then q 2 C (maximality)

2. 8p; q 2 C, p is vicinity connected to q w.r.t. Eps,

MinPts and k (connectedness)

Definition 6 (Ether) Let C;C2;C3; . . .Cn be the clusters

in feature space F w.r.t. parameters Eps, MinPts and k,

points in feature space F which do not belong to any cluster

are called as ether points.

Definition 7 (Data Cluster and Noise) For a particular

cluster Ci ði 2 f1 : kgÞ in F, data cluster is defined by all

those points in Ci 2 D. Rest of the points in Ci are

possible locations of another observations in the same

cluster. Similarly data points in ‘ether’ are called as noise

points.

To validate the correctness of the proposed work, we

have the following two lemmas.

Lemma 1 Let ‘p’ be a point in F satisfying v pð Þ[k.

Then the set O ¼ fojo 2 F and o is vicinity connected

to p w:r:t Eps; MinPts and kg is a cluster w.r.t. Eps and k.

Lemma 2 Let C be the cluster w.r.t. Eps;MinPts and k,

then C equals to the set O ¼ fojo 2 F and o is

vicinity connected to p w:r:t Eps; MinPts and kg.

3.1 Algorithm for proposed work on Vicinity Based

Cluster Detection

Keeping above definitions in mind, a new algorithm called

Vicinity Based Cluster Detection, for detecting natural

groupings in data, is now proposed. We present the pseudo

code followed by explanation of every step.

• Step 1 (Calculating the feature space dimensions) Data set

DMXN is a two-dimensional array of size M � N with rows

corresponding to data points and columns corresponding

to features. Feature space will have same number of

dimensions as number of columns inD i.e.N. Lð�Þ denotes

the length of any set inside it. D :; jð Þ is the set of all jth

dimension data point from data vector D. Length is cal-

culated using the following formulation L xð Þ ¼
Xmax � Xminj j where j � j is used to calculate absolute

value.

• Step 2 (Create the feature space) Initialize an array ‘F,’

with all zeros, having size ¼ LðDð1; jÞÞ; LðDð2; jÞÞ;
LðDð3; jÞÞ; . . .; LðDðN; jÞÞ:

• Step 3 (Label the feature space by mapping data points

onto it) To map data points from data set to feature

space, we use FðDði; 1Þ;Dði; 2Þ; . . .;Dði;NÞÞ ¼
FðDði; 1Þ;Dði; 2Þ; . . .; Dði;NÞÞ þ 1. With this step, all

the data points are mapped to feature space such that

value at ith point in the feature space FðiÞ represents the

frequency of the data point in the data set.

• Step 4 (Calculate the Vicinity values for every point in

the feature space) Initialize an array ‘V,’ called vicinity

array, with all zeros, having same size as F. Make use

of Eq. (1) i.e. VðiÞ ¼ FðiÞ
a
þ
P

j2W
FðjÞ
dði;jÞ to calculate the

vicinity value corresponding to each point in feature

space. This step seems to be computationally complex.

However, to speed up the algorithm, alternative mech-

anism is suggested in coming sections. Also, automatic

detection of window size ‘W’ is a topic of interest of

Sect. 3.3.

1700 Neural Comput & Applic (2017) 28:1695–1713

123

• Step 5 (Thresholding) For a particular vicinity

threshold k, one may obtain various partitions of

the vicinity array. Every connected component of

thresholded vicinity array is then, a cluster. This

automatically raises a question—what should be a

good value of vicinity threshold? The answer lies in

the Sect. 3.2.2 where threshold curve and its inter-

pretation is given.

• Step 6 (Labelling) Label the connected points of the

binary array (Thresholded vicinity array) to get con-

nected components (These are the desired clusters).

• Step 7 (Back Mapping) Back-map the labels to their

corresponding data points in a separate result array ‘R’

having size M � 1.

3.2 Selecting the tunable parameters in density

invariant way

This section addresses the problem of automatic selec-

tion/detection of the tunable parameters of VBCD

algorithm.

3.2.1 Estimating the neighborhood (window) size

The density of points in feature space is variable. So, it is

hard to select a single window size arbitrarily. By window

size, we mean circular neighborhood. Even if rectangular

windows are used, due to the definition of vicinity, their

weights will form a radial pattern. So, the terms window

and neighborhood size are used interchangeably. In this

section, we present a method to get an estimate of window

size automatically and independent of the fact that the

average density of various clusters present may vary. The

estimated window size is—‘Median of effective core dis-

tance’. To understand the meaning of this, following defi-

nition of ‘core objects’ and ‘core distance’ from [31] will

be used.

Core objects Core objects are those points in feature

space which are surrounded by at least a pre-specified

number of other feature points (called MinPts).

Core distance For a particular core point, the minimum

distance within which those MinPts are contained is called

as the core distance of that core point.

A general way to select the window size is then to take

the average (or any measure of central tendency) of all the

core distances for all the core points. However, while using

this procedure to estimate the window size, the following

problem may be encountered.

In Fig. 3a, three types of feature points (core points)

are marked. (1) Point which is well within the cluster. (2)

Point which is on the boundary of the cluster. (3) Point

which is near the boundary of the cluster (but still inside

the cluster such that the core distance is same as point of

type 1). Core distance is represented by drawing a circular

window with core points as centers and core distance as

radius. It is expected that core distance of points well

inside the cluster is less than the points on the boundary.

Hence, if we take average or any measure of central

tendency, it will be affected by core distance of boundary

points also. But, an important observation is, point 2

(boundary point) lies in the core distance of point 3 (point

inside the boundary). Hence, it is not necessary to include

the window size of points at boundary for calculating the

average. Because it is connected to the cluster through a

smaller window size of point 3. Therefore, alternatively,

we may define effective core distance of any core points

as follows:

Fig. 3 a Various type of feature points w.r.t. core distance are shown, b illustration for effective core distance

Neural Comput & Applic (2017) 28:1695–1713 1701

123

Effective core distance Effective core distance of a core

point under consideration is defined as the minimum of all

the core distances of the core points contained within the

core distance of the feature point under consideration.

Referring to Fig. 3b, one may argue that as in case of

point 1, the point with minimum core distance in the core

neighborhood of it (which happens to be point 2) may not

contain the point under consideration (point 1). This should

imply that effective core distance should not be the mini-

mum. But we still take the effective core distance as the

minimum. The reason for this is high probability of inter-

section between the selected minimum window size as

shown by another thin boundary window centered around 1

(but with size equal to that of 2) with window at point 2.

This guarantees a positive vicinity in the region of inter-

section (shown shaded) and hence connectivity within the

cluster. Of course when this does not happen, the points are

disconnected. But in Sect. 4, as observed, the possibility of

such an event is rare.

For Feature space of Fig. 3a, we calculate core distance

and effective core distance for every point, sort them in

ascending order and then plot them as shown in Fig. 4.

Same general observations can be made from plots of

Fig. 4 (in Fig. 3a). Y-axis corresponds to the window size

required. We can easily see that the swing on Y scale for

effective core distance curve is much smaller than core

distance curve. So there is less ambiguity in selecting the

window size. We propose to select median of effective core

distance as a suitable window size for obvious advantages

associated with median. The median is of central impor-

tance in robust statistics, as it is the most resistant statistic,

having a breakdown point of 50 %, i.e., even if half the

data are changed, the median will not give an arbitrarily

large result.

For feature space of Fig. 10b, the plots are shown in

Fig. 5a. Notice the variation of curves. Although the den-

sity of both spirals in the feature space happens to be

almost same, but due to presence of huge boundaries, the

core distance on Y-axis has a very big swing. But intu-

itively, it is evident that a single window size is suitable for

the feature space. Same fact is reflected in effective core

distance curve. It is almost a straight line (two major line

segments with little difference, shown in red). Similarly in

Fig. 11, corresponding plot is shown in Fig. 5b. Here, four

different stable regions can be seen. However, it is exper-

imentally seen that median of effective core distance still

works for high value of MinPts and due to the reasons

explained above.
Fig. 4 Core distance and effective core distance curve for feature

space of Fig. 3a

Fig. 5 Effective core distance and core distance curves for feature space of a Fig. 10b, b Fig. 10c

1702 Neural Comput & Applic (2017) 28:1695–1713

123

3.2.2 Selection of vicinity threshold

Vicinity threshold(s) for a particular feature space is (are)

those value(s) of vicinity (vicinities) for which the number

of big objects remains constant in number of big object

versus vicinity threshold curve. To explain the process, we

consider a two-dimensional feature space as shown in

Fig. 5 with the expected result. Note that there are four

clusters of different density. The first step is to calculate the

vicinity array/image by using the window size calculated in

the previous section. Then, we threshold it step by step

starting from a high threshold. The process is shown in

Fig. 7 for feature space of Fig. 6.

Some general observations from Fig. 7

Let’s first look at the densest cluster out of the four

present. A study of its formulation (by decreasing the

thresholds on vicinity image) revels the following.

1. At very high threshold, only feature points with very

high vicinity appear in the resultant image [as is the

case with 1st tile in Fig. 7 where vicinity threshold (k)

is kept = 231].

2. On decreasing the threshold further, more points which

are spatially near and have vicinities greater than the

threshold are added to form bigger object (as is the

case with tile 2 and 3 with vicinity thresholds = 193

and 184, respectively).

3. From tile 4 onwards, since the connected component for the

densest cluster is completely identified, there is no change

in the boundary of the identified cluster; i.e., the cluster

boundary is now stable w.r.t. variation in vicinity threshold.

4. Meanwhile the formation and stabilization of densest

cluster, while lowering the vicinity threshold, clusters

at low vicinity started appearing (refer to tile 5 of

Fig. 7 where cluster 2 and 3 also started forming).

5. However, due to the formation or starting phase, there

were initially very small connected regions (relatively

small in size) and consequently they transformed to big

cluster similar to the 1st cluster (refer to tiles 5 onwards).

In order to achieve density invariance, we plot number

of ‘Big Objects’ detected versus vicinity threshold as

shown in Fig. 8. Big objects mean those objects that have

size greater than certain predefined threshold. This is done

to avoid counting newly formed small clusters as matured

or stable clusters.

Interpretation of ‘number of objects’ versus ‘vicinity

threshold’ curve

For Figs. 6 and 7, the said plot is shown in Fig. 8 in blue

color. Red ‘stem’ plots are the markers corresponding to

the starting points of horizontal (or flat) regions in the

blue curve. The magnitude of red markers gives us the

relative range of thresholds for which the blue curve

remains flat. Starting from a very high vicinity threshold

(i.e., from the right of X-axis), and moving toward the

low thresholds, several peaks and flat regions in blue

curve are obtained. There is a correlation between peaks

and formation of small objects in Fig. 7 and finally their

merging into one object. Flat regions correspond to the

range of vicinity thresholds over which cluster boundary

become stable and/or new small patches of other clusters

are in the process of formation. One can similarly cor-

relate the other four flat regions and four peaks corre-

sponding to four clusters of Fig. 6. In order to find the

final clustering results, we need to combine the results of

only those thresholded vicinity images where the flat

Fig. 6 A two-dimensional

feature space having four

variable density clusters and the

corresponding clustering result

by VBCD

Neural Comput & Applic (2017) 28:1695–1713 1703

123

region in the curve begins. And that too for only those flat

regions which are considerably bigger in range (higher in

magnitude) than the others.

Similarly for the feature space of Fig. 10d, the curve is

shown in Fig. 9. It can be verified that the number of

clusters in the stable region is always one. However, due to

the fact that two stable regions are separated by one peak,

the density varies in the cluster. And hence two different

nested clusters are detected. It is shown in results in Fig. 4.

So, to select a vicinity threshold, one must keep in mind

that for a data set with no to very low outliers, almost all

data points need to be classified in one or the other clusters.

For this to happen, threshold must be selected from the left

side of the said curve. But if certain other regions are

stable (shown by high red marker values) and lie to the

right side of the curve too, one may threshold the vicinity

array multiple number of times and combine the results

(demonstrated in Sect. 4) to obtain nested clusters.

Fig. 7 9 9 9 tiles (to be read from left to right and top to bottom)

representing various stages of detecting clusters at various vicinity

thresholds. Clusters are differentiated by different grayscale colors.

Note that as a result of applying VBCD, complete feature space is

partitioned into clusters. After complete process, the data points in

one particular cluster are colored by one color

1704 Neural Comput & Applic (2017) 28:1695–1713

123

3.3 Algorithm speed up

Step 4 in the algorithm discussed above is computationally

expensive. Vicinity of every point in feature space (and not

just data space) is to be calculated for this purpose as

vicinity values for non-feature points in feature space helps

in establishing the connectedness in thresholded image

obtained after using vicinity threshold. This is good when

data points are all different and we have a very large data

set. But when few clusters are hanging in feature space, this

step is very time-consuming. To speed up the algorithm,

we make use of the following property of distance metric

and one very important observation.

Property d x; yð Þ ¼ d y; xð Þ

Observation In the light of above property the following

two processes are equivalent.

(i) Spatial filtering approach for calculation of vicinity

values in feature space Based on the Eps-neigh-

borhood selected, design a suitable spatial filter

which meets the requirement of Eq. 1 and by using

it, filter the complete feature space to obtain

vicinity values of every point in feature space.

(ii) Gravity inspired approach Inspired by the gravita-

tional field, if a mass exists in isolation, its effect in

the regions surrounding it can be felt by test mass in

gravitational field produced by original mass. The

field is known to follow inverse square law, but we

are using only inverses for our calculations in Eq. 1.

For several discrete masses co-existing in the same

space, the resultant at a location is the vector sum

due to all masses. By using the same analogy,

instead of doing calculation (spatial filtering in

Observation 1) for every point in the feature space,

we do calculations for labeled points only (i.e., the

points belonging to data set). With the help of these

points transformed to feature space, vicinity value

of every other non-data point in feature space can

also be calculated as follows—(please note that the

total number of these points will be either less than

or equal to the total points in data set, equality when

all data points are different in feature space). For

each such labeled point, and using the same spatial

filter described earlier in observation (i), first

multiply the filter by the label value (scalar) and

then add the filter coefficients so obtained to the

corresponding positions in ‘vicinity feature space’

(an n-dimensional array containing vicinity values

initialized to zero) keeping center of the filter

matched to the point being processed location.

This will reduce the complexity drastically as now, we

are making calculations for number of points either equal

to or less data points. Also in spatial filtering method, for

each point, filter elements have to be multiplied with all

corresponding locations in ‘feature space’ then they have to

be added together and finally divided by normalizing factor

to give a single value for each location in feature space

(normal filter operation). But by the new method, only

addition of filter elements to the corresponding elements is

to be done. The complexity is thus less than or equal to

linear (BO(M) in ‘Big O’ notation, M = total number of

data points). Before the speed up process, the complexity

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Vicinity Threshold

N
um

be
r o

f s
ta

bl
e

(B
ig

) o
bj

ec
ts

 d
et

ec
te

d
Plot for detection of density invariant clusters

Number of Objects
Stable region beginning and duration

Fig. 8 Graph of number of objects versus vicinity threshold (in blue

color) and markers for beginning of flat regions (horizontal in blue

graph) with their magnitude representing the relative length of flat

regions (color figure online)

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Vicinity Threshold

N
um

be
r o

f s
ta

bl
e

(B
ig

) o
bj

ec
ts

 d
et

ec
te

d

Plot for detection of density invariant clusters

Number of Objects
Stable region beginning and duration

Fig. 9 Graph for feature space shown in Fig. 10d having nested

clusters

Neural Comput & Applic (2017) 28:1695–1713 1705

123

was OðKÞ where K is the total number of points in the

feature space which is significantly larger than M.

4 Experimental results

Experimental setup Results here are produced on

MATLAB software installed on desktop machine having

Intel core i7 processor with 4 GB RAM. The results are

organized in 4 set of two-dimensional feature space data set

named WELL SEPERATED DATASET (WSD) (having

well-separated, uniform-density clusters), NON-CONVEX

DATASET (NCD) (having uniform density, non-convex

clusters), VARIABLE DENSITY DATASET (VDD)

(having well-separated, non-uniform density clusters) and

NESTED DATASET (ND) (having nested clusters). They

are shown in Fig. 10a–d, respectively, with following

organization: In each figure, the leftmost tile shows the

feature space having clusters followed by tiles showing

result of application of FCM, DBSCAN, EnDBSCAN and

VBCD. A cluster in results is marked by a single color.

Note that in the result of application of VBCD, the cluster

is shown with a background color. The background color

represents the extent of connectedness of feature points

thresholded at automatically detected vicinity threshold.

Fig. 10 Original and result of FCM, DBSCAN, EnDBSCAN and VBCD on a well-separated, uniform density clusters, b uniform density, non-

convex clusters, c well-separated, non-uniform density clusters and d nested clusters (color figure online)

1706 Neural Comput & Applic (2017) 28:1695–1713

123

However, in data set ND, since there are two thresholds,

such a representation is not shown.

Tables 1, 2, 3 and 4 summarizes the details of tunable

parameters used, processing times (in seconds) and the

acceptability of results for algorithms FCM, DBSCAN,

EnDBSCAN and VBCD.

The corresponding threshold curves are shown in the

following figures.

In feature space WSD, well-separated, uniform density

clusters are present. All algorithms produce the desired

results. However, with or without automatic detection of

window size and vicinity threshold, VBCD is the fastest.

For feature space NCD, all algorithms accept FCM pro-

duces correct results. This is expected because FCM is not

a suitable algorithm for non-convex cluster detection.

Similarly for variable density clusters, DBSCAN, EnD-

BSCAN and VBCD produce the correct results, VBCD

being the fastest. For the typical case of ND only VBCD

tends to produce correct results. For EnDBSCAN, if small

clusters and feature points at boundary between two clus-

ters are ignored, it produces correct results otherwise one

can notice several small clusters there. The threshold curve

shown for feature space of VDD in Fig. 11c is different

from what is shown in Fig. 8. This is because in Fig. 8,

there was no automatic detection of the window size. It is

to be noted that automatic detection of tunable parameters

in algorithms other than VBCD is also an open area of

research. Results in this paper are produced using those

tunable parameters with which the output matches the

desired intuitive clustering. Recently, for DBSCAN, in [32]

automation for tunable parameters of DBSCAN was done

using differential evolution techniques producing good

results. Our experiments reveal that VBCD performs best

out of the tested algorithms.

4.1 Evaluation of results using internal cluster

validity indices

Internal evaluation of clustering is done by considering the

results of clustering on a particular data set alone. No prior

classification is necessary. There are various internal

cluster validity indices in the literature. Popular ones are

Dunn index and Silhouette index. We first discuss the

mathematical formulation of these indices, discuss the

problems in them and then propose the new SDI.

Dunn Index Let the result of clustering a data set is such

that there are m clusters C1;C2;C3; . . .;Cm. The Dunn

index is then defined as

DIm ¼
min1� i\j�m d Ci;Cj

� �

max1� k�m Dk

where dðCi;CjÞ is inter-cluster distance metric and Dk is

intra-cluster distance metric. A high Dunn index usually

indicates better clustering. However, as the data size grows

larger, the calculation of Dunn index becomes computa-

tionally complex. One of the drawbacks of using this index

is the denominator term containing Dk. This intra-cluster

distance metric (frequently called as diameter of the clus-

ter) can be defined in many ways. In Euclidian space, it can

be the distance between two most distant points in the

cluster or average of all pair wise distances or distance of

each data point from cluster centroid, etc. This creates a

problem when the clusters are either nested or non-convex.

For example, in feature space NCD, both the clusters have

same centroid approximately. Even if one calculates the

diameter, since the cluster is non-convex, the diameter will

Table 1 Details of FCM

Data set N Time Results

WSD 4 0.166 Good

NCD 2 0.285 Unacceptable

VDD 4 0.271 Unacceptable

ND 2 0.173 Unacceptable

N no. of clusters desired

Table 2 Details of DBSCAN

Data set Eps MinPts Time Results

WSD 11.909 10 0.329 Good

NCD 8.97 5 0.681 Good

VDD 29.574 10 0.204 Unacceptable

ND 10.3515 10 0.345 Unacceptable

Table 3 Details of EnDBSCAN

Data set Geps MinPts Alpha Time Results

WSD 30 20 2 0.225 Good

NCD 30 15 2 0.574 Good

VDD 20 2 2 0.193 Good

ND 30 15 1 0.152 Unacceptable

Table 4 Details of VBCD

Data set W k T1 T2 Results

WSD 11 0.04 0.15 1.58 Good

NCD 11 0.04 0.521 2.822 Good

VDD 13 0.04 0.199 1.439 Good

ND 15 0.1, 1.8 0.162 1.03 Good

T1 is the processing time without window size and threshold detection

and T2 is with it

Neural Comput & Applic (2017) 28:1695–1713 1707

123

pass through non-cluster region also and will be unneces-

sarily large.

Silhouette Index For clusters C1;C2;C3; . . .Cm of a particular

data set, the silhouette value for ith data point is defined as

sðiÞ ¼ bðiÞ � aðiÞ
max aðiÞ; bðiÞf g

where aðiÞ is the average dissimilarity measure of the ith data

point to other points in the same cluster and bðiÞ is the

minimum dissimilarity measure of the ith data point to all the

other clusters. Obviously �1� sðiÞ� 1 and it is a measure of

how well ith data point is assigned to a particular cluster. sðiÞ
close to 1 means that the ith data point is properly clustered.

A value of -1 indicates that it could have been assigned to

the neighboring cluster and a value of 0 means that the point

is on the boundary of two clusters. The mean value of sðiÞ is

taken as a measure of tightness of the grouped data. This

index also suffers the problem of ‘bad indication’ when the

clusters are nested or non-convex. We now show two cases of

failure of Silhouette index in Fig. 17.

In Fig. 12, results of Silhouette index evaluation are

plotted for feature space of NCD for FCM and VBCD. On

the X-axis, we have silhouette values and on Y-axis, we

have clusters and their corresponding elements. It is known

beforehand that results on FCM are unacceptable and that

of VBCD are correct. But silhouette plots show otherwise.

As seen from FCM results in Fig. 12, there are negligible

values in the range B0 for sðiÞ values but for VBCD, there

are plenty values in the negative range. The average sil-

houette values for FCM and VBCD are 0.515 and 0.041

which implies, as per silhouette, FCM produces better

clustering than VBCD. But the reality is just opposite. This

happened due to non-convex nature of clusters in NCD and

partial nesting.

Proposed Space Density Index (SDI) The concept behind

SDI is that it demands clusters in the clustered results to

possess ‘good separation’ in either ‘space’ or ‘densities’ or a

combination of both. Separation in space means that the

minimum spacing between two arbitrary clusters should be

large enough. Same thing applies to separation in density. In

Fig. 11 Threshold plot for feature space of data set a WSD, b NCD, c VDD, d ND

1708 Neural Comput & Applic (2017) 28:1695–1713

123

the light of above, let’s revisit feature spaces of Fig. 10a–d.

In data set WSD, before clustering, it is apparent that there

are four same-density, well-separated clusters. After apply-

ing FCM however, the results do not match up to the

expectations. We observe two clusters having same density

and no separation. Results of VBCD however are as expec-

ted. So, VBCD should possess a high SDI value than FCM.

Similarly, in data set ND, due to nesting of clusters, spatial

separation is very low but separation in densities is very

good. For NCD and VDD, clusters appear to be separated in

density as well as space. We therefore propose the following

definition for SDI.

Definition 8 (Space Density Index) Let a clustering

algorithm produces m clusters C1;C2;C3; . . .;Cm. Let

dminðCi;CjÞ be the minimum distance between cluster Ci

and Cj. Let XðCiÞ denote the average density of cluster Ci.

Then the SDI is defined as follows

lðiÞ ¼ minj

ffi

dminðCi;CjÞ2 þ XðCiÞ � XðCiÞf g2
q� �

SDI ¼ medianm
i¼1 lðiÞf g

lðiÞ is the minimum space-density separation of cluster Ci

with all the other clusters. Above definition of SDI is the

worst-case indicator due to minjð�Þ term. However, to get

the average case indicator, one should use avgjð�Þ instead.

Obviously 0� SDI�1. We now present comparative

results of application of Silhouette index and SDI on the

feature spaces of Fig. 10a–d (refer to Table 5).

It is clear form Table 5 that the performance evaluation

is better when SDI is used instead of Silhouette index. In

case when only one cluster is detected by a particular

algorithm, internal evaluation becomes unnecessary. Such

cases are marked with N.A. in Table 5.

4.2 External evaluation

To validate the method using external evaluation, we

use ‘KEEL’ (Knowledge Extraction based on Evolu-

tionary Learning) [33] which is an open-source data set

repository. ‘Banana’ standard classification data set is

used (An artificial data set where instances belong to

several clusters with a banana shape). The validation

procedure was suggested in [34]. It has two attributes,

two classes (marked by experts of the field) and no

missing values. Following are the details of attributes

Attribute 1 is real within range [-3.09, 2.81]

Attribute 2 is real within range [-2.39, 3.19]

Fig. 12 Silhouette plots for

feature space of NCD. First tile

is for FCM and second is for

VBCD

Table 5 Comparative

performance evaluation of

Silhouette index and SDI

D. set Silhouette Index Space-Density Index

FCM DBSCAN EnDBSCAN VBCD FCM DBSCAN EnDBSCAN VBCD

WSD 0.84 0.84 0.84 0.84 44.52 44.52 44.52 44.52

All algos. perform same All algos. perform same

NCD 0.51 0.04 0.04 0.04 3 36.87 36.87 36.87

FCM[DBSCAN = EnDBSCAN = VBCD FCM\DBSCAN = EnDBSCAN = VBCD

VDD 0.5 0.77 0.77 0.77 6.04 29.42 29.42 29.42

FCM\DBSCAN = EnDBSCAN = VBCD FCM\DBSCAN = EnDBSCAN = VBCD

ND 0.47 N.A. -0.66 0.01 3 N.A. 3.67 9.316

FCM[VBCD[EnDBSCAN FCM\EnDBSCAN\VBCD

N.A. indicates only one cluster detected

Neural Comput & Applic (2017) 28:1695–1713 1709

123

A feature space is constructed from the obtained data (as

shown in Fig. 13, tile 1), and the results are then discussed.

Threshold curve is shown for feature space of Fig. 13 in

Fig. 14.

The feature space in Fig. 13, tile 1 contains the feature

points from the said database. The feature space so

obtained has variable density. It is also not convex. The

desired result, which is crafted by experts, is shown in tile

2. Same color in the result indicates clusters found at one

density scale (with possibly some tolerance). The order of

percentage match of results of various algorithms shown is

VBCD[EnDBSCAN[DBSCAN[FCM

4.3 Admissibility criteria analysis

Fisher and Van Ness [35] analyzed clustering algorithms

with the objective of comparing them and providing

guidance in choosing clustering procedure. They defined a

set of admissibility criteria for clustering algorithms that

test the sensitivity of clustering algorithms with respect to

the changes that do not alter the essential structure of the

Fig. 13 Tile 1—feature space constructed from the ‘Banana Dataset’

obtained from KEEL data set repository. Tile 2—the desired classifi-

cation (manually made). Tile 3, 4, 5, 6 are the results of application of

FCM, DBSCAN, EnDBSCAN and VBCD. Clearly VBCD produces

results close to the desired. Note that one color in the results indicates

various clusters identified at same density scale (color figure online)

Fig. 14 Object versus vicinity threshold curve for Fig. 13. The

results for VBCD in Fig. 12 are generated by using Thresholds 116

and 5. Because threshold at 42 shows some nested cluster and

threshold at 160 is capable of identifying further high-density cluster

which is not required as the already available classification data has

clusters at only two densities

1710 Neural Comput & Applic (2017) 28:1695–1713

123

data. A clustering is called ‘A’ admissible if it satisfies

criterion ‘A.’ Similarly, Kleinberg [36] addressed a similar

problem, where he defined three criteria: Scale invariance,

richness and consistency. He showed that it is impossible to

construct an algorithm that satisfies all these properties

simultaneously. However, any two of them can be satisfied

simultaneously.

The proposed work is

Not convex admissible Convex hulls of clusters can

intersect for, e.g., in case of nested clusters. This is a

desirable property. However, if convex hulls of clusters

do not intersect, we call the algorithm convex admissi-

ble. Refer to Fig. 15 for two spiral clusters which are

well separated (Red and Blue). But their convex hulls

intersect. The proposed method separates the two

clusters; however, FCM is convex admissible as it does

not separate the two clusters.

Cluster proportion/omission admissible On replicating

some of the clusters and/or deleting some of them,

remaining cluster’s boundaries do not get altered. This

property is referred to as cluster proportion admissibility

(for replicating) and cluster omission admissibility (for

deletion of cluster). This property is also desirable and is

possessed by the proposed work. The reason behind

satisfaction of this property is vicinity values are

calculated from a neighborhood instead of considering

all data points. Even if we consider infinite neighbor-

hood size, the effect of deletion of clusters (which are

after a certain distance) is negligible. Refer to Fig. 16 for

an example.

Scale covariance, consistency and richness It can be

easily seen that the algorithm is scale covariant (invari-

ance is a frequently used term in literature but it is more

appropriate to use covariance), rotation invariant and

mostly robust to affine changes. To prove this let us

assume the affine transformation equation to be

x0

y0

� �

¼ a b

c d

� �
x

y

� �

þ e

f

� �

which maps points x; yð Þ to points x0; y0ð Þ. The distance

between two points x1; y1ð Þ and x2; y2ð Þ before trans-

formation is d ¼
ffi
x1 � x2ð Þ2þ y1 � y2ð Þ2

q
and let

the position and distance between those points

after transformation is— x01; y01
� �

, x02; y02
� �

and

d0 ¼
ffi

x01 � x02
� �2þ y01 � y02

� �2
q

. If we choose the affine

transform matrix as
a b

c d

� �

¼ S 0

0 S

� �

where S repre-

sents uniform scaling parameter, it can be easily shown

that d0 ¼ S � d (independent of translation parameters e

and f). When S ¼ 1, only translation is present. Since

the result is independent of translation parameters, so

is the method. Similarly, if we choose
a b

c d

� �

¼

cos h � sin h
sin h cos h

� �

we can show that d0 ¼ d (indepen-

dent of translation parameters e and f). Now it is evident

from Eq. 1 that vicinity values depend on distance

between two points. So, in case of rotation as d0 ¼ d, we

can say that VBCD is independent of rotating the feature

space. In case of uniform scaling, relative vicinity values

remain the same as d0 ¼ S � d except for scaling of

vicinity threshold and window size.

An example of affine robustness is shown in Fig. 17. No

simple formulation for affine distortions in general can be

derived as above. Still the algorithm is robust to affine changes.

In Fig. 17, as compared to the feature space of Fig. 16, the

second cluster is shear mapped. Still the results remain unal-

tered. Similarly the algorithm is consistent. The clustering

results are unaffected by shrinking within cluster distances

and increasing between-cluster distances. The algorithm is,

however, not rich as it does not produce all possible partitions

of the input data set. This is also desired for clustering appli-

cations as all possible partitions are of little use.

5 Discussion, conclusion and future scope

Clustering is a subjective field. Two individuals or appli-

cations might differ on the definition of cluster. This is the

reason why there are many clustering algorithms. Due to

this fact, a universal judgment criteria is also absent for the

clustered results. However, all clustering methods agree

that a cluster is essentially that region in feature space

where there is a high density of features. There are many

Fig. 15 Two clusters in two-dimensional feature space with their

convex hulls (shown in dark lines) intersecting each other (color

figure online)

Neural Comput & Applic (2017) 28:1695–1713 1711

123

approaches to discover natural groupings as discussed

earlier. They have ad hoc goals to be accomplished—ex-

haustive partitioning of data set, identification of severely

dense regions, computational complexity, density invari-

ance, etc. Some approaches like FCM force the data to be

clustered irrespective of any clustering tendency and some

approaches let the data points to be free from belonging to

any cluster by calling them noise points.

Through this paper a new approach to detect natural

groupings in data is presented. The approach works on

regular as well as typical cases of non-convex and

nested or partially nested clusters on which previous

approaches didn’t give desired results. Technique for

automatic detection of various tunable parameters is

also suggested. New internal cluster validity index is

also proposed which works well as shown in Sect. 4.

The time complexity is also low if the technique is used

without automatic threshold detection, otherwise it is

comparable to previous methods.

Obviously when the data size and dimensionality are

increased, density-based methods become computationally

complex. In VBCD technique, however, one additional

Fig. 16 Cluster proportion/

omission admissibility. As seen,

on replicating cluster arbitrary

number of times or deleting

some of them, the individual

cluster boundaries are

unaffected

Fig. 17 Shear mapped clusters

1712 Neural Comput & Applic (2017) 28:1695–1713

123

constraint is present construction of feature space, which

requires large blocks of contiguous memory locations for

sparse data. Big data handling techniques can be used to

improve the method. Also density invariance requires the

algorithm to run of all possible parameter values which is

the topic of research for reduction in time complexity.

References

1. Jain AK, Dubes RC (1988) Algorithms for clustering data.

Prentice Hall, Englewood Cliffs

2. Goshtasby AA (2012) Image registration: principles, tools and

methods. Springer, Berlin

3. Jain AK (2010) Data clustering: 50 years beyond K-means.

Pattern Recognit Lett 31(8):651–666

4. Ester M, Kriegel PH, Sander J, Xu X (1996) A density-based

algorithm for discovering clusters in large spatial databases with

noise. In: Proceedings of 2nd KDD. AAAI Press

5. Roy S, Bhattacharyya DK (2005) An approach to find embedded

clusters using density based techniques. In: ICDCIT 2005, LNCS

3816. Springer, Berlin, pp 523–535

6. Dunn JC (1973) A fuzzy relative of the ISODATA process and its

use in detecting compact well-separated clusters. J Cybern

3(3):32–57

7. Davies DL, Bouldin DW (1979) A cluster separation measure.

IEEE Trans Pattern Anal Mach Intell 1(2):224–227

8. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the inter-

pretation and validation of cluster analysis. Comput Appl Math

20:53–65

9. Chen J, Pi D (2012) A cluster validity index for fuzzy clustering

based on non-distance. In: 2013 fifth international conference on

computational and information sciences (ICCIS). IEEE

10. Kirkland O, De La Iglesia B (2013) Experimental evaluation of

cluster quality measures. In: 2013 13th UK workshop on com-

putational intelligence (UKCI). IEEE

11. Lu Z-M, Feng J-M, Fan D-M, Yang P, Tian Y (2014) Novel

partitional clustering algorithm for large data processing. Syst

Eng Electron 36(5):1010–1015

12. de Lope J, Maraval D (2013) Data clustering using a linear cel-

lular automata-based algorithm. Neurocomputing 114:86–91

13. Liu AH, Poon LKM, Liu T-F, Zhang NL (2014) Latent tree

models for rounding in spectral clustering. Neurocomputing

144:448–462

14. Kuo RJ, Huang YD, Lin C-C, Wud Y-H, Zulvia FE (2014)

Automatic kernel clustering with bee colony optimization algo-

rithm. Inf Sci 283:107–122

15. Liu X, Li M (2014) Integrated constraint based clustering algorithm

for high dimensional data. Neurocomputing 142(22):478–485

16. Kirkland O, De La Iglesia B (2013) Experimental evaluation of

cluster quality measures. In: 13th UK workshop on computational

intelligence, UKCI

17. Meyer CD, Wessell CD (2012) Stochastic data clustering. SIAM

J Matrix Anal Appl 33(4):1214–1236

18. Ferrari DG, de Castro LN (2012) Clustering algorithm recom-

mendation: a meta-learning approach. In: SEMCCO 2012.

Springer, Berlin

19. Cetişli B, Edizkan R (2015) Use of wavelet-based two-dimen-

sional scaling moments and structural features in cascade neuro-

fuzzy classifiers for handwritten digit recognition. Neural Com-

put Appl 26(3):613–624

20. Mahdipour H-A, Khademi M, Sadoghi HY (2012) Model-based

fuzzy c-shells clustering. Neural Comput Appl 21(1):29–41

21. Niu B, Duan Q, Liang J (2013) Hybrid bacterial foraging algo-

rithm for data clustering. In: Intelligent data engineering and

automated learning—IDEAL 2013. Springer, Berlin, pp 577–584

22. Altameem T, Zanaty EA, Tolba A (2014) A new fuzzy C-means

method for magnetic resonance image brain segmentation. Con-

nect Sci 1:1–17. doi:10.1080/09540091.2014.970126

23. Wu S, Quan M, Feng X (2012) Spectral clustering algorithm

based on local sparse representation. In: Intelligent data engi-

neering and automated learning—IDEAL 2013. Springer, Berlin,

pp 628–635

24. Wang Y, Chen L, Mei J-P (2014) Incremental fuzzy clustering

with multiple medoids for large data. IEEE Trans Fuzzy Syst

22(6):1557–1568

25. Abdelghaffar NM, Lotfy HMS, Khamis SM (2014) A multi-

agent-based approach for fuzzy clustering of large image data.

J Real-Time Image Process. doi:10.1007/s11554-014-0473-3

26. Peng H et al (2015) An automatic clustering algorithm inspired

by membrane computing. Pattern Recognit Lett 68:34–40

27. Stetco A, Zeng X-J, Keane J (2015) Fuzzy C-means??: fuzzy

C-means with effective seeding initialization. Expert Syst Appl

42(21):7541–7548. doi:10.1016/j.eswa.2015.05.014

28. Babaeian A et al (2015) Nonlinear subspace clustering

using curvature constrained distances. Pattern Recognit Lett

68:118–125

29. He R et al (2015) Robust subspace clustering with complex noise.

IEEE Trans Image Process 24(11):4001–4013

30. İnkaya T (2015) A parameter-free similarity graph for spectral

clustering. Expert Syst Appl 42(24):9489–9498

31. Ankerst M, Breuing MM, Kriegel HP, Sander J (1999) OPTICS:

ordering points to identify the clustering structure. In: ACM-

SIGMOD’99, pp 49–60

32. Karami A, Johansson R (2014) Choosing DBSCAN parameters

automatically using differential evolution. Int J Comput Appl

91(7):1–11

33. Alcalá-Fdez J, Fernandez A, Luengo J, Derrac J, Garcı́a S,

Sánchez L, Herrera F (2011) KEEL data-mining software tool:

data set repository, integration of algorithms and experimental

analysis framework. J Multiple-Valued Logic Soft Comput

17(2–3):255–287

34. Moreno-Torres JG, Sáez JA, Herrera F (2012) Study on the

impact of partition-induced dataset shift on k-fold cross-valida-

tion. IEEE Trans Neural Netw Learn Syst 23(8):1304–1313

35. Fisher L, VanNess J (1971) Admissible clustering procedures.

Biometrika 58(1):91

36. Kleinberg J (2002) An impossibility theorem for clustering. NIPS

15:463–470

Neural Comput & Applic (2017) 28:1695–1713 1713

123

http://dx.doi.org/10.1080/09540091.2014.970126
http://dx.doi.org/10.1007/s11554-014-0473-3
http://dx.doi.org/10.1016/j.eswa.2015.05.014

	A density invariant approach to clustering
	Abstract
	Introduction
	Related work in the field of clustering
	Fuzzy C-means
	Density-based spatial clustering of applications with noise (DBSCAN and EnDBSCAN)

	Proposed work on vicinity based notion of clusters
	Algorithm for proposed work on Vicinity Based Cluster Detection
	Selecting the tunable parameters in density invariant way
	Estimating the neighborhood (window) size
	Selection of vicinity threshold

	Algorithm speed up

	Experimental results
	Evaluation of results using internal cluster validity indices
	External evaluation
	Admissibility criteria analysis

	Discussion, conclusion and future scope
	References

