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Abstract This research paper presents a novel sequential

wavelet-artificial neural network (ANN) with embedded

ANN-particle swarm optimization (PSO) for short-term

day-ahead forecasting of market clearing price (MCP) in

the Indian energy exchange. A precise price forecasting

helps suppliers to set up bidding strategies, make invest-

ment decisions and be cautious against risks. Conversely,

consumers can use price forecasting to exploit appropriate

power purchasing strategies for maximum utility utiliza-

tion. Here the most influential historical data, namely

purchase bid and MCP, are considered for training the

feed-forward back-propagation neural network. The pro-

posed model involves three sequential phases. Initially, the

raw historical data are smoothened by removing the high-

frequency components using a wavelet transform method

which may enable better training of neural network. Then,

ANN is used to train historical patterns. More number of

trials is carried out, and the final weights that give the least

training error are stored. In the final phase, the stored

weights that are obtained from various trials are used as the

initial population for the embedded ANN-PSO model. Here

the performance of the proposed forecasting model is

carried out using three error indices, namely mean absolute

percentage error, normalized mean square error and error

variance.

Keywords Artificial neural networks � Particle swarm

optimization � Wavelet transform � Mean absolute

percentage error

1 Introduction

Electricity pricing and forecasting is one of the important

functions in an electricity market since electricity has

become an essential commodity in the modern society. The

price signal is non-homogeneous, and its variations show a

little cyclic property. The electricity price signal is volatile

in nature due to volatility in fuel price, load uncertainty,

transmission congestion, behaviour of market participant,

market manipulations, etc. Because of the significant

volatility, it is difficult to make an accurate forecast. Based

on the literature, the accuracy of the price forecast varies

around 10 % as compared to 3 % for load forecasting [24].

However, price forecasting accuracy is not as stringent as

that of load forecasting. There are various electricity

markets, around the world, using different types of time

series models [11, 16, 18]. However, each market uses a

suitable forecast model for its own method of functioning.

As a result, it is necessary to develop an accurate fore-

casting model relevant to a particular electricity market.

Here, we had considered an Indian electricity market,

namely Indian Energy Exchange (IEX). In this market,

market clearing price (MCP) is forecasted, which depends

on the supply and demand of electricity in the power

market. It should also be noted that the accuracy in fore-

casting MCP depends on the intrinsic and extrinsic factors

that depend on each market. Therefore, MCP is a varying

price signal that mostly depends on the dynamic behaviour

of buyer and seller, analogous to the demand and supply in

the market, respectively. When electricity MCP is
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determined, every supplier whose offering price is below or

equal to the electricity MCP will be picked up by the

Independent System Operator (ISO) to supply electricity at

that hour. They will be paid at the same price, the elec-

tricity MCP and not at the price they offered. The reason

for this is to keep fairness of the market and to avoid

market manipulation [27].

Aggarwal et al. [2] investigated the state of price fore-

casting methodologies by reviewing 47 papers published

during 1997 to November 2006. The review is based on the

type of model used for forecasting, time horizon for pre-

diction, input variables, output variables, analysis of

results, data points used for analysis, pre-processing

employed and the model architecture. They have observed

that forecasting errors are still high from risk management

perspective and the results obtained by different price

forecasting methodologies are difficult to compare with

each other. Catalao et al. [7] had proposed a novel

approach combining wavelet transform, particle swarm

optimization and adaptive-network-based fuzzy inference

system to forecast short-term electricity prices forecasting

of Spain market. Dev et al. [10] have investigated exten-

sively on feed-forward back-propagation neural network

and extreme value distributions to model electricity pool

prices for the Australian National Electricity Market from

1998–2013. However, their work has shown that price

spikes can be well-modelled using extreme value distri-

butions, and this understanding based on their character-

istics is an important component of understanding the

extraordinary volatility of electricity spot prices. Gao et al.

[12] used a three-layered feed-forward back-propagation

artificial neural network method to forecast the Market

Clearing Pricing and Market Clearing Quantity for the

California day-ahead energy markets. The author discussed

on one of critical issues in training neural networks which

is over fitting. That is, it fitted the training set very well, but

did not generalize well to new data outside the training set.

Mandal et al. [17] had presented a hybrid intelligent

algorithm utilizing a data filtering technique. It is based on

wavelet transform (WT), an optimization technique based

on firefly (FF) algorithm and a soft computing model based

on fuzzy ARTMAP (FA) network. Here, it forecasts day-

ahead electricity prices in the Ontario market and was

evaluated against PJM market data. Aggarwal et al. [1] and

Pindoriya et al. [21] had used WT with neural network

(WNN) for short-term price forecasting for the day-ahead

prediction of the market clearing price (MCP) in the

Ontario, Spain and PJM electricity markets. The perfor-

mance of WNN was found to be encouraging, since the

data had been pre-processed by WT. The benefit of WT for

pre-processing is also found in [26] when it is used with

Extreme Learning Machine for electricity price forecast-

ing. Pousinho et al. [22] had proposed a hybrid PSO–

ANFIS (adaptive-network-based fuzzy inference system)

approach for short-term price forecasting. It is a combi-

nation of particle swarm optimization and adaptive-net-

work-based fuzzy inference system on the electricity

market of mainland Spain. The author demonstrated its

effectiveness regarding forecasting accuracy and reduced

computation time. Amjady [3] developed a fuzzy neural

network model for day-ahead electricity price forecasting

(EPF) for Spanish electricity market and claimed the model

to be satisfactory.

Sharma and Srinivasan [25] had proposed a hybrid

intelligent model based on the recurrent neural network

(RNN) and excitable dynamics for price prediction in the

deregulated electricity market. The developed model con-

sists of three components: a Fitz-Hugh Nagumo model

(FHN) model to mimic spiking behaviour, RNN unit to

regulate FHN and feed-forward neural network to model

the residue of RNN-FHN. Success of this synergistic

combination of RNN and coupled system of equations

presents exciting opportunities for future work in day-

ahead prediction in this time series system using multi-

scale system. Short-term electricity price forecasting (i.e.

day-ahead hourly electricity price forecasting) in case of

organized power exchanges in developing nations (like

India where power sector is getting deregulated due to

reforms such as Electricity Act 2003) is one of the direc-

tions for future research. The Central Electricity Regula-

tory Commission issued a discussion paper for setting up a

common platform for trading of electricity on February 6,

2007. After much debate and discussion, the plan for set-

ting up power exchanges within the country was formu-

lated. Applications from two exchanges, namely Power

Exchange of India and Indian Energy Exchange, were

submitted and approved by June and September 2008,

respectively [23]. Both these exchanges have active par-

ticipation from various utilities, and both provide elec-

tronic platforms for trading electricity on a day-ahead

basis. Indian electricity market is one of the primitive

electricity markets in the world which has much resistance

to completely deregulate the electricity market based on

the market equilibrium. There are very limited studies

related to short-term electricity price forecasting for

developing countries, particularly India, where electricity

markets are getting deregulated. With practical relevance

and stakes for implications of price forecasting for a

Generator/Indian Power Producer (IPP)/firm being high

(i.e. next-day price forecasting is a crucial need for pro-

ducers, consumers and energy service companies), accurate

forecasting tools and techniques is valued by power market

participants, especially in an emerging economy like India.

One of the directions for future research is developing a

Time Series Econometric forecasting model. The model

has to accurately forecast day-ahead hourly electricity

2278 Neural Comput & Applic (2017) 28:2277–2292

123



prices in Indian Electricity market. Therefore, the proposed

research work mainly focuses on developing ANN-based

forecasting tools for the Indian Energy Exchange Ltd.

(IEX) launched in June 2008.

In the literature, though similar-day approach is carried

out for electricity price forecasting [19], most of the neural

network-based research papers are using day-ahead elec-

tricity pricing approach [4, 6, 8, 15]. Here, the electricity

price data of the previous day (nth day) are mapped with

the next day (n ? 1)th day while training neural networks.

The reason may be that the strength of the correlation of

both linear and nonlinear parameters between nth and

(n ? 1)th day is stronger. For example, the MCP profile on

Monday of the previous day is mapped to Tuesday of the

next day. So when a test input of the nth day is fed into the

forecast model, the MCP of the (n ? 1)th MCP is fore-

casted. However, it should be noted the problem formula-

tion is short-term electricity price forecasting in which the

electricity price or MCP is forecasted for a day or a week.

2 Proposed work

The proposed research work focuses to develop a hybrid

ANN forecast engine solely to Indian Energy Exchange

(IEX), since only meagre work is carried out in this

market. Hybrid ANN models, which combine heuristic

search algorithms, such as genetic algorithms, particle

swarm optimization, artificial bee colony algorithms for

updating the weights, show some better performance.

Among these optimization algorithms, particle swarm

optimization [13, 14] is regarded as a promising method

in several engineering applications as is evident in the

literature. Therefore, the proposed research work develops

a novel ANN-based training scheme using PSO for fore-

casting the MCP. Even though similar-day and day-ahead

approaches are available in the literature, day-ahead

approach is found to be more appropriate. Therefore, this

research work investigates day-ahead training approach

for the electricity price forecasting. In day-ahead training,

the correlation is between nth and (n ? 1)th day. It is also

understood that the performance of forecasting accuracy

is improved by pre-processing of data before training.

Among the data processing techniques, WT method can

be pointed out as the prevailing approach [21] due to its

easy implementation and adaptive ability of time fre-

quency analysis. Therefore, WT is used for pre-processing

in the proposed work.

3 Indian energy exchange and its historical
database

IEX is India’s premier power trading platform. By pro-

viding a transparent, neutral, demutualized and automated

platform for physical delivery of electricity, IEX enables

efficient price discovery and price risk management for

participants in the electricity market, including industries

eligible for open access.

In this exchange, there are about 4000 participants across

utilities from 29 States, 5 Union Territories (UTs),

1000 ? private generators (both commercial and renewable

energy). More than 3000 open access consumers are lever-

aging the exchange platform tomanage their power portfolio

in the most competitive and reliable way. A typical market

snapshot of IEX can be obtained from http://www.iexindia.

com/marketdata/marketsnapshot.aspx. The most influential

historical data [20], namely hourly Purchase Bid (MW) and

Market Clearing Price (INR), are taken from the website for

the proposed work. The historical data considered for per-

formance analysis are taken for a time period from 4 January

2014 to 1 November 2014. The smoothing feature of the

Daubechies [9] wavelet of order 4 (db4) is used to remove

higher-frequency component. The PB andMCP for the same

time frame are shown in Figs. 1 and 2 without and with pre-

processing using WT technique.
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Fig. 1 Market clearing price
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The historical dataset is usually not used directly in

process modelling of ANNs due to the difference in mag-

nitude of the process variables. Therefore, the data need to

be scaled to a fixed range to prevent unnecessary domi-

nation of certain variables, and to prevent data with larger

magnitude from overriding the smaller and impede the

premature learning process. The choice of range depends

on the transfer function of the output nodes in ANN.

Typically, [0, 1] for sigmoid function and [-1, 1] for

hyperbolic tangent function. However, due to nonlinear

transfer function having an asymptotic limit, the range of

dataset is always set slightly less than the lower and upper

limits. In this work, since the sigmoid function is adopted,

the data are normalized in the range of [0.1, 0.9]. That is, if

x1 and x2 are the maximum and minimum values of the

training set, then the normalized data are given by N(x) as

in (1).

N xð Þ ¼ x� x1ð Þ � 0:1� 0:9ð Þ
x2 � x1ð Þ

� �
þ 0:9 ð1Þ

Here, the total number of input nodes for the feed-for-

ward back-propagation neural network is equal to 48. The

first 24 inputs represent the hourly PB in the day, and the

next 24 inputs represent the hourly MCP. The total number

of output nodes is 24 since MCP has to be forecasted using

day-ahead forecasting. According to literature, generally

one hidden layer is sufficient for most neural network

applications. The number of hidden neurons in the hidden

layer is fixed either by trial and error or by statistical

evaluation.

Generally, during ANN training, the weights are upda-

ted based on conventional gradient descent method. It

should be noted that the weights can be updated either in

incremental or in batch modes. In incremental mode of

training, weights are updated every time an individual

pattern in a training set is sent into the network. While in

batch mode of training, the weights are updated simulta-

neously for the entire training set. In order to choose

between either modes of training, performance analysis

between incremental and batch modes is carried out using

historical data of IEX from 12 October 2014 to 01

November 2014. The number of hidden nodes is varied

from 1 to 5. The final result is tabulated in Table 1. The

result from Table 1 infers that the average mean square

error (AMSE) and the time taken are found to be better for

batch mode of training. Therefore, in the proposed model,

batch mode training is used.

4 Proposed methodology

The proposed methodology involves three phases (Phase

A, Phase B and Phase C) of operation. In Phase A, the raw

data are pre-processed by removing the high-frequency

components as mentioned in Sect. 3. In Phase B, the

training of feed-forward back-propagation neural network

is carried out in the batch mode using the conventional

gradient-based neural network. Before the start of the

training, the weights are initialized randomly and the
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Fig. 2 Purchase bid price

Table 1 Batch mode versus incremental mode

Hidden

neurons

Batch mode Incremental mode

AMSE Time

taken (s)

AMSE Time

taken (s)

1 0.0013 337.51 0.0015 2.11E?03

3 0.0012 430.58 0.0012 2.13E?04

5 0.0012 503.19 0.0014 4.81E?03

Average 0.0012 423.76 0.0014 9.39E?03
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training is continued till the training error gets minimized

and no further improvement is possible. Then the final

weights obtained for the network are recorded. This phase

is repeated for a sufficient number of trials, and the final

weights obtained in each of the trials are recorded. In the

Phase C, the final weights obtained from the trials will be

the initial population for the ANN-based training using

PSO. The optimal number of population is fixed from the

number of trials carried out in the first phase of operation.

Since, it involves four techniques used in three phases of

operation; the model can be referred to as wavelet-based

ANN–ANN-PSO. The PSO algorithm will improve upon

the training of weights from the point where the conven-

tional gradient-based training gets stagnated. The proposed

wavelet-based ANN–ANN-PSO model improves upon the

PSO-based training in the right direction. The block dia-

gram shown in Fig. 3 gives an outline picture on the pro-

posed model.

4.1 Batch mode training algorithm for FFBPNN

The generalized architecture of FFBPNN (Phase B) is

given in Fig. 4.

Step 1 Set epoch ep = 1.

Step 2 Generate the weights (Vn 9 h, Wh 9 y) randomly

to small random values between 0 and 1 to ensure that the

network is not saturated by large values of weights. Let

I and T be the normalized input and target training vector

from set of P number of training patterns.

Step 3 For the training data, present one set of inputs and

outputs. Present the complete input matrix [I] to the input

layer.

[I]P 9 M input training set

Ip ¼ ði1; . . .; in; . . .; iMÞ pth input training vector

[T]P 9 O output target set

Tp ¼ ðt1; . . .; ty; . . .; tOÞ pth target training vector
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Step 4 Compute the inputs to the hidden layer by mul-

tiplying corresponding weights as in (2)

½sum�H�P ¼ BH�P þ ½V�TM�H � ½I�M�P ð2Þ

Step 5 Evaluate the hidden layer units’ output using the

sigmoidal function in (3)

f ðsumH�PÞ ¼
1

1þ expð�sumH�PÞ
: ð3Þ

Step 6 Compute the inputs to the output layer by mul-

tiplying corresponding weights of synapses as in (4)

½sum�O�P ¼ BO�P þ ½W �TH�O � f ðsumH�PÞ ð4Þ

Step 7 Let the output layer units evaluate the output

using sigmoidal function as in (5)

½K�O�P ¼ f ðsumO�PÞ ¼
1

1þ expð�sumO�PÞ
ð5Þ

Step 8 Calculate the squared error ½e�O�P, the difference

between the network output ½K�O�P and the desired target

½T�O�P, for all the training pairs as in (6) and then the

average mean squared error (AMSE) as in (7), which is

calculated for every epoch. Update ep = ep ? 1.

½e�O�P ¼ ½T �O�P � ½K�O�P

� �2 ð6Þ

AMSE ¼
PO

y¼1 ½e�O�P

P� O
ð7Þ

Step 9 Calculate the updation of weights (Wh 9 y)

between hidden layer and output layer.

d½ �O�P¼ 2� s� ½T �O�P � ½K�O�P

� �
� ½K�O�P

� ½T �O�P � ½K�O�P

� �
ð8Þ

½Y�H�O ¼ f ðsumH�PÞ � d½ �TO�P ð9Þ

½YB�O�P ¼ d½ �O�P�½1�P�P ð10Þ

½DW �epþ1
H�O ¼ l� ½Y �H�O þ a� ½Y�H�O ð11Þ

½DBW �epþ1
O�P ¼ l� ½YB�O�P þ a� ½YB�O�P ð12Þ

½W �epþ1
H�O ¼ W½ �H�O þ ½DW �epþ1

H�O ð13Þ

½BW �epþ1
O�P ¼ BW½ �O�P þ ½DBW �epþ1

O�P ð14Þ

Step 10 Calculate the updation of weights (Vn 9 h)

between input and hidden layer.

½e�H�P ¼ W½ �H�O � d½ �O�P ð15Þ

dx½ �H�P ¼ ½e�H�P � f ðsumH�PÞ � ½1� f ðsumH�PÞ� ð16Þ

½X�M�H ¼ ½I�M�P � dx½ �TH�P ð17Þ

½XB�H�P ¼ dx½ �H�Pþ½1�P�P ð18Þ

½DV �epþ1
M�H ¼ l� ½X�M�H þ a� ½X�M�H ð19Þ

½DBV �epþ1
H�P ¼ l� ½XB�H�P þ a� ½XB�H�P ð20Þ

½V�epþ1
M�H ¼ V½ �M�Hþ½DW �epþ1

M�H ð21Þ

½BV �epþ1
H�P ¼ BV½ �H�P þ ½DBV�epþ1

H�P ð22Þ

½V�tþ1 ¼ ½V�t þ ½DV�tþ1 ð23Þ

½W �tþ1 ¼ ½W �t þ ½DW �tþ1 ð24Þ

Step 11 Repeat steps 3 to 10, if ep\TE (total number

of epochs) or if AMSE has reached a desired minimum

value or if the validation error is increasing such that the

number validation checks is greater than the validation

count (VC), then stop the training.

4.2 Step-by-step algorithm of ANN–ANN-PSO

architecture

The iterative approach of PSO for ANN training (Phase C)

can be described by the following:

Step 1 Initialize the population size which is also equal

to the number of trials performed in Phase B. Get the

previously stored recorded weights and biases obtained in

Phase B. Also, initialize the positions and velocities of

agents

Step 2 Set the current best fitness achieved by particle p

as pbest. Set the pbest with best value as gbest, and store

the value

Step 3 Evaluate the desired optimization fitness function

fp for each particle as the AMSE over a given data set

Step 4 Compare the evaluated fitness value fp of each

particle with its pbest value. If fp\ pbest, then pbest = fp
and pbestxp = fp, xp is the current coordinates of particle p,

and pbestxp is the coordinates corresponding to particle p as

the best fitness so far

Step 5 Calculate objective function value for new

positions of each particle. If a better position is achieved by

an agent, pbest value is replaced by the current value. As in

step 2, gbest value is selected among pbest values. If the

new gbest value is better than the previous gbest value, the

gbest value is replaced by the current gbest value and this

value is stored. If fp\ gbest, then gbest = p, where gbest

is the particle having the overall best fitness over all par-

ticles in the swarm

Step 6 Change the velocity and location of the particle

according to Eq. (25) and (26), respectively [13, 14]
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Vi ¼ wVi�1 þ acc� randðÞ � ðbestxp � xpÞ þ acc� randðÞ
� bestxgbest � xp
� �

ð25Þ

where acc is the acceleration constant that controls how far

particles p move from one another, and rand() returns a

uniform random number between 0 and 1, Vi is the current

velocity, Vi-1 is the previous velocity,

xp ¼ xpp þ Vi ð26Þ

xp is the present location of the particle, xpp is the previous

location of the particle, and i is the particle index. Here, the

coordinates bestxp and bestxgbest are used to pull the parti-

cles towards the global minimum

Step 7 Fly each particle p according to Eq. (26)

Step 8 If the maximum number of predetermined itera-

tions is exceeded, then stop; otherwise, go to step 3 until

convergence

The flow chart for the proposed wavelet-based ANN–

ANN-PSO model is given in Fig. 5.

5 Performance evaluation

The experimental results in this case study are evaluated

based on three error indices. They are: mean absolute

percentage error (MAPE), normalized mean square error

(NMSE) and error variance (EV). The accuracy of the

forecasted results is evaluated by mean absolute percentage

error (MAPE) which is defined by the following Eq. (27).

MAPE ¼ 1

NH

XNH
i¼1

PFor tð Þ � AAc tð Þ
AAc tð Þ

����
���� ð27Þ

where PFor(t) and AAc(t) are the forecasted and actual data at

time t, respectively, andNH is the total number of predictions.

The normalized mean square error (NMSE) is an esti-

mator of the overall deviations between predicted and

measured values. Here, in the NMSE the deviations (ab-

solute values) are summed instead of the differences. For

this reason, the NMSE generally shows the most striking

differences among models. If a model has a very low

NMSE, then it is well performing both in space and in time.

On the other hand, high NMSE values do not necessarily

mean that a model is completely wrong. NMSE [5] is

defined by Eq. (28) given below

NMSE ¼ 1

D2NH

XNH
t¼1

PForðtÞ � AAcðtÞ
� �2" #

ð28Þ

where

D ¼ 1

NH� 1

XNH
t¼1

AAcðtÞ � AAve

� �2 ð29Þ

where AAve is average of actual data.

An index of the uncertainty of a model is the variability

of what is still unexplained after fitting the model, which

can be measured through the estimation of the variance of

the error term. The smaller the variance, the more precise

the prediction of prices [8]. EV [5] is defined by the fol-

lowing Eq. (30)

r2 ¼ 1

NH

XNH
i¼1

PFor tð Þ � AAc tð Þ
AAc tð Þ

����
�����MAPE

� �2

ð30Þ

6 Optimal ANN architecture and training

In order to obtain an accurate forecasting for training of

neural networks, the selection of a suitable ANN archi-

tecture with an optimal size of historical data becomes

important. During training, weights are updated simulta-

neously only when an epoch is completed. The perfor-

mance valuation can be accomplished by forecasting the

MCP for a particular week using day-ahead approach. The

ep ≤ 1000?

Start

Input: Price Bid  and Market Clearing Price 
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wavelet transform (db4)
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Store the weights and increment Trial No by +1

Train and Validate using ANN-PSO model

Test proposed Wavelet-based ANN-ANN-PSO model

Yes

Yes

No

Tr No ≤ 
1000?

ep ≤ 1000?

No

Yes

No

Phase A

Phase B

Phase C

Fig. 5 Flow chart for the proposed wavelet-based ANN–ANN-PSO

model
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same week is forecasted with various combinations of

hidden neurons and training size. Tables 2, 3 and 4 shown

below furnish statistical evaluation of the performance for

selecting the best ANN architecture and training size. The

number of trials and number of epochs performed for a

typical ANN architecture are fixed to 25 and 1000,

respectively, in order to have a reference platform for

better comparison. Having considered 1 week of training

data, Fig. 6 presents the best forecasted MCP for a week.

The italicized values in Tables 2, 3 and 4 provide the

optimal architecture of the neural network with 1, 3 and 1

hidden neurons, respectively and are compared with

respect to average MAEP obtained from all the 25 trials.

If the value of average MAEP is more, then the per-

formance is not found to be satisfactory. Therefore, the best

architecture is selected only if the average MAEP is min-

imal. It is inferred from Tables 2, 3 and 4 that as the

number of weeks is increased, i.e. the size of the training

data, the performance is not improving. Therefore, it is best

to consider the training data solely for 1 week.

Table 2 Statistical

performance measures for

1-week training data

No. of trials = 25, no. of epochs = 1000, without wavelet transform

Training data Source range 18–24 October 2014

Target range 19–25 October 2014

Test data Input range 25–31 October 2014

Output range 26 October 2014–01 November 2014

No. of hidden nodes Avg. MAEP

(for 25 trials)

Min. mean absolute error

percentage (MAEP)

Normalized mean

square error (NMSE)

Error variance

(EV)

1 15.0914 15.0135 5.71E-06 220.8800

3 16.8084 16.4807 6.20E-06 266.2247

5 17.3327 17.1081 6.82E-06 286.8803

7 18.5415 16.4600 5.81E-06 265.5519

9 21.9267 16.1963 6.54E-06 257.1161

11 24.9352 16.6153 7.03E-06 270.5952

13 25.9612 16.7656 8.09E-06 275.5155

15 26.4648 19.0757 8.73E-06 356.6609

20 26.1575 17.0041 6.55E-06 283.3991

Table 3 Statistical performance measures for 2-week training data

No. of trials = 25, no. of epochs = 1000, without wavelet transform

Training data Source range 11–24 October 2014

Target range 12–25 October 2014

Test data Input range 25–31 October 2014

Output range 26 October–01 November 2014

No. of

hidden

nodes

Avg.

MAEP

(for 25

trials)

Min. mean

absolute error

percentage

(MAEP)

Normalized

mean square

error (NMSE)

Error

variance

(EV)

1 25.7586 24.4491 1.07E-05 585.8902

3 18.9983 17.7463 6.27E-06 308.6750

5 22.4375 14.3346 4.54E-06 201.4031

7 26.9552 14.0058 5.44E-06 192.2738

9 28.4593 15.4736 5.93E-06 234.6831

11 28.2916 14.5007 6.91E-06 206.1069

13 27.7325 15.1655 6.34E-06 225.4317

15 29.6471 16.2006 6.80E-06 257.2529

20 29.3321 15.4846 6.01E-06 235.0181

Table 4 Statistical performance measures for 3-week training data

No. of trials = 25, no. of epochs = 1000, without wavelet transform

Training data Source range 27 September–24 October 2014

Target range 28 September–25 October 2014

Test data Input range 25–31 October 2014

Output range 26 October–01 November 2014

No. of

hidden

nodes

Avg.

MAEP

(for 25

trials)

Min. mean

absolute error

percentage

(MAEP)

Normalized

mean square

error (NMSE)

Error

variance

(EV)

1 37.4548 17.1723 5.26E-06 289.0378

3 75.5396 25.4230 1.32E-05 633.4905

5 73.2888 18.0471 5.88E-06 319.2302

7 70.1434 17.2489 5.36E-06 291.6219

9 67.3691 18.8415 6.52E-06 347.9541

11 57.7053 17.0209 5.22E-06 283.9588

13 64.133 17.4066 5.50E-06 296.9765

15 68.203 17.5463 5.62E-06 301.7608

20 71.6385 17.7191 5.76E-06 307.7312
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6.1 Implementation

Once the optimal architecture for ANN is finalized, the

performance analysis part is carried out in two parts. In the

first part, the raw data are taken as such, whereas in the

second part, the raw data are filtered for high-frequency

components using WT technique. The resolution of the

signal, which is a measure of the amount of detailed

information, is determined by filtering operations. Discrete

WT decomposes a time domain signal into approximations

and details by successive low-pass and high-pass filtering.

Here, Daubechies wavelet transform is used. This wavelet

offers an appropriate trade-off between wavelength and

smoothness, resulting in an appropriate behaviour for MCP

forecasting. A non-decimated wavelet function of type

Daubechies of order 4 (abbreviated as db4) and decom-

position level 4 is used as the mother wavelet.

Embedded ANN-PSO simulation in Phase C is carried out

using the weights obtained from all the trials from Phase B.

These weights are the initial population for ANN-PSO train-

ing. The architecture of the ANN-PSO is the same as that of

Phase B ANN architecture. Table 5 presents the controlling

parameters for the PSO algorithm. The parameter setting for

the PSO algorithm is fixed based on trial and error approach.

Here, the convergence of the error plot is not as smooth as that

of ANN Phase B training. The reason is the stochastic nature

of the particle search in finding the optimal weights for min-

imizing the MAPE while training and also satisfying the

validation check. A comparison is also made with Phase C

where only ANN-PSO training is carried out with the random

initialization of weights for ANN training using PSO.

7 Results and discussion

All the simulations are carried out using MATLAB pro-

gramming using MATLAB R2011b version. The hardware

details are as follows, Intel� Core i5-3210 M CPU @

2.50 GHz, 4.00 GB RAM, 64-bit OS, x64-based processor

using Windows 8.1 OS. Various samples are taken in order

to validate the better performance of the proposed model.

All trainings are carried out for 1000 epochs and 100 trial

runs. The following are the five types of ANN-based

forecast models used for the performance study.

(a) ANN

(b) ANN–ANN-PSO

(c) Wavelet-based ANN

(d) Wavelet-based ANN–ANN-PSO

(e) Wavelet-based ANN-PSO (random initialization)

The same data used in finding the optimal architecture of

ANN are again compared for all the five models (a–e). Here,

the source and the target for the training data are taken from27

September to 3 October 2014 and from 28 September to 4

October 2014, respectively. The source and the target for the

validation data are the same as those of the training datawhere

the validation error is evaluated based on MAPE. The verifi-

cation is carried out by giving a test input from4 to 10October

0 20 40 60 80 100 120 140 160 180
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2500
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3500

4000

4500
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5500
Forecasted Market Clearing Price (Batch Mode ANN) training without Wavelet transform

Period of a Week forecast in Hours (26th October 2014 to 01st November 2014)

M
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ke
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ar

in
g 
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R
) Forecasted MCP

Actual MCP

Fig. 6 Forecasted market

clearing price

Table 5 PSO parameter settings

Parameters No. of

population

Acceleration constant

(local)

Acceleration constant

(global)

Max.

velocity

Inertial weights

Initial

iteration

Final iteration

(3500)

Value 25 0.0005 0.9999 100000 0.9 0.1
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2014, and the forecasted resultant output is comparedwith the

actual MCP from 05 to 11 October 2014 for a period of

1 week using day-ahead forecasting. The performance of the

accuracy in forecasting is evaluated using the performance

indices explained in Sect. 5. Table 6 summarizes the results

of all the ANN-based models. Figures 7 and 8 show the

convergence plot and validation plot of the best trial for the

ANN-based forecast models, i.e. b, d and e, respectively. The

wavelet-basedANN–ANN-PSO training is found toconverge

better when compared with the other models b and e. The

convergence of ANN-PSO training with initial random ini-

tialization of weights is found to be non-satisfactory. The

random initialization ofweights ofANN-PSOwill not give an

immediate state of orientation of the weights or the particles

towards the near-global optima. However, during Phase B

operation, the recorded final weights of the batch mode ANN

training for all trials give the initialization of particles for the

PSO search to orient the weights towards the near-global

optimum. Thereby, fine tuning of weight updation gives a

better trained model without getting trapped in the local

minima. Hence, the performance due to ANN–ANN-PSO

model is better than the embedded ANN-PSO model. The

same performance is also reflected while validation during

training. The validation error is evaluated in terms of MAEP,

and the WT-based ANN–ANN-PSO model is able to give a

lower validation error of 9.25 % for the best trial.

Figures 9 and 10 show the forecastedMCPwith respect to

the actualMCP for the IEX from 5 to 11October 2014 for the

ANN models without wavelet pre-processing (i.e. a and b)

and with wavelet pre-processing (i.e. c and d), respectively.

However, the resultant forecasted ANN-PSO model with

random initialization (see Fig. 11) is found to perform poorly

with an averageMAEPof around 70 %.The total time (Phase

A ? Phase B) taken for training of WT-based ANN (no. of

trials = 100; no. of epochs = 1000) is 949 s. The average

time (PhaseC) taken for trainingofWT-basedANN-PSO(no.

of trials = 1) is 650 s. Therefore, the total approximate exe-

cution time for the proposed model is 1599 s. In order to

validate the proposed forecast model, somemore samples are

considered and the statistical results are tabulated in ‘‘Ap-

pendix’’ as Tables 7, 8 9. Also Figs. 12, 13, 14 give the

forecasting market clearing price for all these samples. The

resultant forecasted MCP validates the accuracy of the pro-

posed WT-based ANN–ANN-PSO hybrid model.

8 Conclusion

The pre-processing of wavelet by smoothening of raw data

by removing higher-frequency components helps the neu-

ral network to train better. The weights obtained from the

various trials of ANN training in Phase B helps a better

start for PSO search of weights for ANN training in Phase T
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C. The method is simple, and the performance of fore-

casting improves accuracy. Therefore, the proposed novel

sequential wavelet-ANN with embedded ANN-PSO hybrid

model can be used in the Indian energy exchange for a

better estimate of market clearing price.

9 Appendix

See Tables 7, 8 9 and Figs. 12, 13, 14.
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