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Abstract Imperialist competitive algorithm is a nascent

meta-heuristic algorithm which has good performance.

However, it also often suffers premature convergence and

falls into local optimal area when employed to solve

complex problems. To enhance its performance further, an

improved approach which uses mutation operators to

change the behavior of the imperialists is proposed in this

article. This improved approach is simple in structure and

is very easy to be carried out. Three different mutation

operators, the Gaussian mutation, the Cauchy mutation and

the Lévy mutation, are investigated particularly by exper-

iments. The experimental results suggest that all the three

improved algorithms have faster convergence rate, better

global search ability and better stability than the original

algorithm. Furthermore, the three improved algorithms are

also compared with other two excellent algorithms on some

benchmark functions and compared with other four exist-

ing algorithms on one real-world optimization problem.

The comparisons suggest that the proposed algorithms have

their own specialties and good applicability. They can

obtain better results on some functions than those con-

trastive approaches.

Keywords Optimization method � Imperialist

competitive algorithm � Mutation operators � Numerical

experiments

1 Introduction

Optimization is the process which aims to find a more

appropriate set of parameters for a given problem, in order

to obtain a more desirable outcome. It is necessary for

many problems which can be found in diverse fields, such

as scientific, social, economic and engineering [1]. Among

all kinds of optimization problems, continuous optimiza-

tion problems take up a large proportion [2, 3]. In recent

decades, using meta-heuristic algorithms to deal with such

problems has attracted more and more attention and has

become an important branch of optimization methodology.

Imperialist competitive algorithm (ICA) is a new pop-

ulation-based meta-heuristic algorithm proposed by

Atashpaz-Gargari and Lucas in 2007, inspired by the his-

torical phenomenon of imperialism and colonialism [4].

Due to its competitiveness over other meta-heuristics in

terms of convergence rate and global search ability, the

ICA has received significant interests within the short time

period since its advent and has been successfully applied to

a wide range of optimization tasks, which come from

various fields such as mechanical engineering [5–8], elec-

trical engineering [9–12], industrial engineering [13–18],

civil engineering [19, 20], petroleum engineering [21–23]

and computer engineering [24–30]. However, similar to

other population-based meta-heuristic algorithms, it also

often suffers premature convergence and falls into local

optimal area, especially when the problem is complicated,

high dimensional or multipeak [31–34].

Several improved approaches have been proposed to

enhance the algorithm’s performance. Bahrami et al. [31]

proposed a method which utilizes chaotic maps instead of

the original uniform distribution to adjust the angle of

colonies’ movement toward imperialist, to help the algo-

rithm escaping from local optima; Abdechiri et al. [32]
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proposed an adaptive ICA, in which a probability density

function is introduced and used to dynamically adapt the

angle, to balance the exploration ability and exploitation

ability of the algorithm. Arish et al. [35] proposed a fuzzy

version, in which, in the absorption policy, colonies are

moved toward the resulting vector of all imperialists with

the aid of a fuzzy membership function. Kaveh and

Talatahari [20, 36] presented an improved approach with

two new defined movement steps and used the redefined

algorithm to optimize the design of skeletal structures and

to solve other engineering optimization problems. As a

further work, Talatahari et al. [34] proposed a method

which utilizes chaotic variables to replace the random

variables in the assimilation equation which guides the

colonies’ movements. They proposed a total of three

replacement approaches and investigated seven different

chaotic maps to generate the chaotic variables.

All the improved approaches mentioned above are

focused on enhancing the performance of the original

algorithm through changing the moving mode of the

colonies. Some modifications which are quite complicated

are needed, bringing some difficulties to the implementa-

tion and application of these improved approaches. In this

article, we propose a novel improved method which is

simple in structure and is very easy to be carried out. The

main idea of the proposed approach is to enhance the

algorithm’s performance by changing the moving mode of

the imperialists through applying mutation operators to

them. Three different mutation operators, the Gaussian

mutation, the Cauchy mutation and the Lévy mutation, are

investigated particularly through numerical experiments.

The rest of this article is structured as follows. In

Sect. 2, a brief introduction about the basic ICA is given.

In Sect. 3, the proposed improved approach is set out in

detail. In Sect. 4, the numerical experiments, results, rela-

ted discussions and the comparisons with other algorithms

are given. And in Sect. 5, a conclusion of this work and the

key areas of the future works are provided.

2 Basic imperialist competitive algorithm

The ICA simulates the colonial competition in human

society. Its implementation can be divided into the fol-

lowing steps [4].

2.1 Initialize the empires

Similar to other population-based meta-heuristic algo-

rithms, ICA also begins with a randomly generated popu-

lation which contains N initial solutions. In ICA, each

individual is called a ‘country.’ For an Nvar-dimensional

optimization problem, a country is a 1 9 Nvar array whose

elements are randomly generated in the allowable range of

the corresponding parameters, as:

country ¼ p1; p2; p3; . . .; pNvar
½ �

After, the cost of each country is calculated by the cost

function.

cost ¼ f ðcountryÞ ¼ f ðp1; p2; p3; . . .; pNvar
Þ

Then, all the initial countries would be divided into two

classes. Some best countries among them would be regar-

ded as ‘imperialists,’ and the rest countries would be

regarded as ‘colonies.’ After that, the cost of every impe-

rialist is normalized by Eq. (1) [4], where Cn and cn stand

for the normalized cost and the cost of the nth imperialist,

respectively. And then, the normalized power of each

imperialist is calculated by Eq. (2) [4], where pn stands for

the normalized power of the nth imperialist and Nimp stands

for the total number of imperialists.

Cn ¼ cn � max
i

cif g ð1Þ

pn ¼
Cn

PNimp

i¼1 Ci

�
�
�
�
�

�
�
�
�
�

ð2Þ

ICA uses the concept of ‘empire’ to proceed with sub-

sequent processes. Here, an empire is made up of one

imperialist and some colonies. The initial solutions will

form several empires. Every initial colony would be dis-

tributed to one and only one imperialist. How many colo-

nies an imperialist can obtain is proportional to its power

and calculated by Eq. (3) [4], where N.C.n and Ncol stand

for the number of the colonies distributed to the nth

imperialist and the total number of the colonies, respec-

tively. For each imperialist, N.C.n colonies are randomly

selected from the initial population and distributed to it.

N:C:n ¼ round pn � Ncolf g ð3Þ

2.2 Assimilation, revolution and uniting

After empires are initialized, within each empire, colonies

would be moved toward the imperialist. This process is

called ‘assimilation,’ as illustrated in Fig. 1. Each colony is

Fig. 1 Assimilation process
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moved x units to the relevant imperialist every time.

Meanwhile, a random amount of deviation (the h in Fig. 1)

is added to the movement direction, to enhance the

exploration ability of the algorithm. x and h are defined as

shown in Fig. 1, where d is the distance between colony

and the relevant imperialist; b is a number which is[1 and

makes the colony to get closer to the imperialist from both

sides, and c is a parameter whose value determines the size

of the deviation added to the original direction. Usually, a

value of about 2 for b and a value of about p/4 (rad) for c
can get a good performance [4].

Meanwhile, some colonies would be randomly selected

out according to a preset rate and then be replaced with an

equal number of new randomly generated countries. This

process is called ‘revolution.’ The revolution process is

similar to the mutation operator in the genetic algorithm,

used to enhance the algorithm’s ability to escape from local

optima and to avoid premature convergence. The rate is

called ‘revolution rate’ [4].

In the processes mentioned above, if a colony becomes

better than the relevant imperialist, their roles will be

exchanged. Meanwhile, if two imperialists are moved to a

similar position (the distance between them is smaller than

a preset threshold distance), the two relevant empires

would be united to one empire. The new empire would take

over all the colonies of the two previous empires and take

one of the two previous imperialists as its imperialist [4].

2.3 Competition between empires

Competition between empires is the core of the ICA. In this

stage, firstly, the total cost of every empire is calculated by

Eq. (4) [4], on the basis of the cost of its imperialist and

colonies. Then they would be normalized by Eq. (5) [4].

Here, T.C.n and N.T.C.n stand for the total cost and the

normalized total cost of the nth empire, respectively, and n
is a decimal fraction, whose value determines the weight of

the colonies’ cost in the total cost.

T :C:n ¼ CostðimperialistnÞ þ n
� meanfCostðcolonies of empirenÞg ð4Þ

N:T:C:n ¼ T :C:n � max
i
fT :C:ig ð5Þ

Then, the weakest colony of the weakest empire would

be picked out and become a temporary independent

country. Other empires would contend for control of this

independent country. Every imperialist may but only one

can succeed finally. The success probability of each empire

is proportional to its power, as that given by Eq. (6) [4].

PPn
¼ N:T:C:n

PNimp

i¼1 N:T :C:i

�
�
�
�
�

�
�
�
�
�

ð6Þ

The ICA realizes the competition process described

above in the following method. Firstly, the success prob-

ability of each empire would be used to constitute a vector

P, as Eq. (7) [4]. And then, a vector R with the same size as

P and whose elements are randomly generated in the

interval [0,1] is created as Eq. (8) [4]. Then, a vector D is

obtained by subtracting R from P as Eq. (9) [4]. Finally,

the empire whose relevant index in D is largest will obtain

the mentioned colony. This handling method is similar to

but quicker than the conventional roulette wheel method in

the genetic algorithm.

P ¼ pP1
; pP2

; pP3
; . . .; pPNimp

h i
ð7Þ

R ¼ r1; r2; r3; . . .; rNimp

� �
where ri �Uð0; 1Þ and

1� i�Nimp

ð8Þ

D ¼ D1;D2;D3; . . .;DNimp

� �
¼ P� R

¼ pP1
� r1; pP2

� r2; pP3
� r3; . . .; pPNimp

� rNimp

h i
ð9Þ

In each generation of the ICA, the processes of assim-

ilation, revolution and competition are carried out in

sequence. As iteration proceeds, the weak empire steadily

loses its colonies and the powerful empire obtains more

and more colonies. In this process, the empire which loses

all its colonies will be collapsed. The ultimate result is that

there is only one empire left in the solution population. The

imperialist of the empire is the solution obtained by the

algorithm. Usually, a preset iterative number can be used as

a termination condition. Figure 2 illustrates the entire

process of the original ICA.

3 The improved ICA combined with mutation
operators

3.1 Analysis of the basic ICA

At the early stage of iterations, the colonies of every

empire are dispersed in the whole search space and can be

moved in a wide range in the assimilation process.

Meanwhile, the competition between multiple empires

gives the colonies a chance to be transferred from one

empire to another. These two aspects can ensure the

diversity of the population. Moreover, though the imperi-

alists are the best individuals in the current population,

their qualities are still poor at this stage. So a colony has a

big possibility to become better than the relevant imperi-

alist and then replace it. Once an imperialist is replaced, the

movement directions of all the colonies it controls would

be changed. Thus, the diversity of the population can be

enhanced further. However, as the algorithm proceeds, the
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colonies gradually move closer and closer to the relevant

imperialists. Accordingly, their movement ranges also

become smaller and smaller. Meanwhile, the competition

process would decline the number of empires. When there

is only one empire left, all the colonies can only move

toward the same imperialist. Obviously, at this time, the

diversity of the population would decline greatly. If the

remained imperialist is located on a local optimal area, the

algorithm would not have enough ability to jump out.

From what have been discussed above, it can be possible

to conclude that maintaining the diversity of the population

is essential for enhancing the global search ability of the

algorithm and avoiding premature convergence. Applying

mutation operators to the individuals in the iterative pro-

cess is a good choice. However, how to implement the

mutation operators is the key question. From the descrip-

tion about the mechanism of the ICA, we can find that the

imperialists play key roles during the search process. They

are the best found solutions, and they would share their

location information to other solutions. Therefore, we

prefer to apply mutation operators on them (Fig. 3). In

addition to directly increasing the diversity of the popula-

tion, the mutation operators applied to the imperialists can

also give them self-exploration ability. In the original

algorithm, the imperialists are stationary, unless they are

replaced by other better colonies. After the application of

mutation operators, the imperialists can take the initiative

to explore new better positions. Therefore, the algorithm

would get more opportunities to keep away from

stagnation.

3.2 Various mutation operators

Many different mutation operators have been proposed and

applied to various meta-heuristic algorithms, such as

Gaussian mutation [37–40], Cauchy mutation [37, 38, 41],

Lévy mutation [42–44], exponential mutation [45], t muta-

tion [46], chaotic mutation [47] and mixed or hybrid

mutation [48, 49]. Among them, Gaussian mutation, Cau-

chy mutation and Lévy mutation are the most widely used

approaches. Therefore, in our work, these three mutation

operators are investigated particularly.

Though mutation operators have various forms, they share

such a same basic idea: forcing the algorithm to search in new

regions by the means of using random generated numbers to

change the positions of the current candidate solutions. How

to generate the random numbers is the main difference

between different mutation operators. On the other hand,

even a same kind of mutation operation can be implemented

by various specific forms. In our study, mutation operators are

applied to the basic ICA according to Eq. (10).

X
j0
i ¼ X

j
i � ð1 þ k � NrandomÞ where j ¼ 1; 2; 3; . . .;Nvar;

ð10Þ

where X
j
i is the jth variable of the ith imperialist, k is an

additional scale parameter, and Nrandom indicates that a

random number which is generated based on the mutation

operators and generated anew for each variable. As already

mentioned previously, three different mutation operators

are investigated in our work. In them, Nrandom is generated

according to different kind of random distributions.

3.2.1 Gaussian mutation

In the Gaussian mutation, the random numbers are gener-

ated based on the Gaussian distribution, whose one-di-

mensional probability density function can be given as

Eq. (11) [50]

fl;r2ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
�ðx�lÞ2

2r2 ; ð11Þ

where l is the mean value and r2 is the variance. For

convenience, Gaussian distribution can be described as

N(l, r2). In our work, the standard Gaussian distribution

with l = 0 and r = 1, described as N(0,1), is used to

generate random numbers.

Fig. 2 Process of the original

ICA
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3.2.2 Cauchy mutation

In the Cauchy mutation, the random numbers are generated

based on the Cauchy distribution, whose one-dimensional

probability density function can be given as Eq. (12) [50]

ftðxÞ ¼
1

p
t

t2 þ ðx� x0Þ2
; ð12Þ

where x0 is a location parameter which specifies the loca-

tion of the peak of the distribution and t is a scale

parameter which specifies the half width at half maximum.

For convenience, Cauchy distribution can be described as

C(t, x0). In our work, the standard Cauchy distribution with

t = 1 and x0 = 0, described as C(1, 0), is used to generate

random numbers.

3.2.3 Lévy mutation

In the Lévy mutation, the random numbers are generated

based on the Lévy distribution. In a sense, Lévy distribu-

tion is a generalization of Gaussian distribution and Cau-

chy distribution. Its probability density function can be

given as Eq. (13) [38, 43, 44]

La;c ¼
1

p

Z 1

0

e�cqa cosðqyÞdq; ð13Þ

where c is the scaling factor satisfying c[ 0 and a satisfies

0\ a\ 2 and controls the shape of the distribution. In our

work, we use the Lévy distribution with c = 1 and

a = 1.3, according to that recommended in the literature

[51], and adopt the algorithm proposed by Mantegna [52]

to obtain Lévy random numbers.

Figure 4 diagrams the difference between the probabil-

ity density functions of the standard Gaussian distribution,

the standard Cauchy distribution and the Lévy distribution

with c = 1 and a = 1.3. From Fig. 4, it can be observed

that these three distributions have different characteristics.

The standard Gaussian distribution tends to generate ran-

dom numbers which are closer to 0, the standard Cauchy

distribution tends to generate random numbers which are

farther from 0, and the Lévy distribution lies between the

standard Gaussian distribution and the standard Cauchy

distribution. Therefore, it can be expected that the three

different mutation operators could bring different effects.

As mentioned previously, in our work, the mutation

operators are applied on the imperialists. Specifically, in

every iteration, the selected mutation operator is applied to

every imperialist dimension by dimension. The elements of

the imperialist are updated one by one, according to

Eq. (10). If the new element exceeds its domain, it will be

restricted on the search boundaries. After finishing the

update, the newly obtained solution would be evaluated

immediately. Then, a greedy strategy is applied to decide

whether to accept this update or not. If the new solution is

better than the previous one, the update would be accepted,

or otherwise the update would be abandoned.

Fig. 3 Mutation operator

brings the imperialist self-

exploration ability

Fig. 4 Comparisons between the probability density functions of the

standard Gaussian distribution, the standard Cauchy distribution and

the Lévy distribution (c = 1, a = 1.3)
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Figure 5 shows the pseudo-code of the mutation oper-

ators. In our method, this procedure is inserted between

step 8 and step 9 in Fig. 2.

4 Numerical experiments, results and discussion

The three different mutation operators produce three dif-

ferent improved algorithms. For convenience, in the fol-

lowing paragraphs, the basic ICA, the improved ICA with

Gaussian mutation, the improved ICA with Cauchy muta-

tion and the improved ICA with Lévy mutation will be

abbreviated as BICA, IICA-G, IICA-C and IICA-L,

respectively.

4.1 Benchmark functions

In order to demonstrate the improved effects, all the four

algorithms are tested together and then compared on nine

widely used minimized benchmark functions. The dimen-

sion of every function is set to 30 in our study. The name,

formula, variable range and theoretical optimal value of

these benchmark functions are listed in Table 1. These

functions have different characteristics: F1, F2, F4, F5 and

F6 are unimodal; F5 is discontinuous; F7, F8 and F9 are

multimodal functions; the number of local minima

increases exponentially with the problem dimension [37].

4.2 Experiments settings

All the four algorithms are implemented in MATLAB

R2012a, under a PC with Pentium 4 at 2.9 GHZ, 4 GB

RAM and Windows 7 Ultimate Operating system. On

every function, every algorithm is run 30 independent trials

to eliminate the influence caused by the randomness of the

algorithms. Meanwhile, the maximum number of fitness

function evaluations (MAX_NFFEs) is used as a termina-

tion condition. Every trial ends when the MAX_NFFEs is

reached. The MAX_NFFEs is set to 150,000 for F1, F5, F6

and F8, 200,000 for F2 and F7, 500,000 for F3 and F4 and

300,000 for F9, according to relevant literatures [37, 53].

To be fair, all the common parameters in the four

algorithms are set to same, as:

1. The number of initial countries is set to 100.

2. The number of initial empires is set to 3.

3. The revolution rate is initialized to 0.3 and exponen-

tially declines with the number of iterations, as that

illustrated by Eq. (14).

revolution rate ¼ 0:3 � 0:99iteration number ð14Þ

4. The n in the formula 4 is set to 0.02.

The number of initial countries and the number of initial

empires are set through lots of experiments. These two

parameters have great influences on the quality of obtained

results. If they are set too small, the algorithms would be

easily trapped into local optimum and obtain bad results

finally, because the diversity of population cannot be

guaranteed. On the other hand, if they are set too large, the

fitness evaluations would be exhausted very quickly, and

the algorithms also cannot obtain satisfactory results. The

revolution rate and the n are set according to the sugges-

tions given by the authors. These two parameters would

also influence the performance of the algorithms, but the

effects brought by them are relatively small.

The scale factor k in the mutation operators is set as:

1. For the Gaussian mutation, the standard Gaussian

distribution is used and the scale factor k is set to 0.5.

2. For the Cauchy mutation, the standard Cauchy distri-

bution is used and the scale factor k is set to 0.1.

3. For the Lévy mutation, a is set to 1.3 and the scale

factor k is set to 0.2.

The values of the scale factor k are also determined

through experiments. In a whole, a larger value of k means

that the positions of the imperialist would be changed

greatly after the mutation operator is applied. We tested the

improve algorithms with different values of k on these

Fig. 5 Pseudo-code of the

applying process of the

mutation operators
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functions and finally determined the values mentioned

above. In what follows, a further illustration about the

influence of the value of k is given.

It should be pointed out that the parameters we used

here are effective, but they are not the best for specific

functions. During our previous experiments, we found that

for some specific functions, using other parameters could

obtain better results. Without loss of generality, in our

tests, fixed parameters are used for the tests on different

functions. We have not made more effort in finding the best

parameter settings for every specific function, because this

work has exceeded the scope of this article.

4.3 Influence of the scale factor

For meta-heuristic algorithms, the values of the parameters

would influence the performance greatly. The proposed

approach introduces a new parameter: the scale factor k. To

investigate the effect of this parameter to the performance

of the proposed approach, we tested the proposed algo-

rithms with different values of k on these functions and the

results obtained on two benchmark functions: The Sphere

function and the Griewank function are given here. Due to

the different characteristics of the three mutation operators,

the IICA-G is tested on the situations of k = 0.25, k = 0.5,

and k = 0.75, and the IICA-C and the IICA-L are tested on

the situations of k = 0.1, k = 0.2, and k = 0.3. For each

value of k, every algorithm is tested for 20 times on each

function and the results are arranged in Tables 2, 3 and 4,

respectively.

From Tables 2, 3 and 4, it can be seen that the value of

the scale factor k would influence the obtained results

obviously. On the Sphere function, the obtained results

become better and better along with the increase in the

scale factor. On the Griewank function, the situation is

different. The largest values of k have not produced best

results. On other functions which have not been listed here,

the values of k also affected the quality of the results.

Based on an overall consideration of the quality of results

Table 1 Benchmark functions used in the experimental study

Function Name Variable range Optimal

value

F1ðxÞ ¼
PD

i¼1 x
2
i

Sphere [-100, 100]D 0

F2ðxÞ ¼
PD

i¼1 xij j þ
QD

i¼1 xij j Schweel 2.22 [-10, 10]D 0

F3ðxÞ ¼
PD

i¼1

Pi
j¼1 xj

� �2 Schweel 1.2 [-100, 100]D 0

F4ðxÞ ¼ max
D

i¼1
fjxijg Schweel 2.21 [-100, 100]D 0

F5ðxÞ ¼
PD

i¼1 xi þ 0:5½ �2 Step [-100, 100]D 0

F6ðxÞ ¼
PD

i¼1 x
2
i þ

PD
i¼1 0:5ixi

� 	2þ
PD

i¼1 0:5i � xi
� 	4 Zakharov [-5, 10]D 0

F7ðxÞ ¼ 1
4000

�
PD

i¼1 x
2
i �

QD
i¼1 cos xiffi

i
p

� �
þ 1 Griewank [-600, 600]D 0

F8ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

Pn
i¼1 x

2
i

q� �
� exp 1

D

Pn
k¼1 cos 2pxk

� 	
þ 20 þ e

Ackley [-32, 32]D 0

F9ðxÞ ¼
PD

i¼1 ½x2
i � 10 cosð2pxiÞ þ 10� Rastrigin [-5.12, 5.12]D 0

Table 2 Comparisons of the results of the IICA-G with different

values of k on the Sphere function and the Griewank function

Function Stats. k = 0.25 k = 0.5 k = 0.75

Sphere Min 4.1420e-112 5.0790e-296 0.0000e?000

Mean 5.9443e-106 6.3494e-274 0.0000e?000

Median 2.1288e-107 5.4620e-279 0.0000e?000

Std 1.5247e-105 0.0000e?000 0.0000e?000

Griewank Min 0.0000e?000 0.0000e?000 0.0000e?000

Mean 5.1093e-002 5.4299e-002 7.7021e-002

Median 5.6407e-002 5.9864e-002 5.9924e-002

Std 9.2840e-002 4.1284e-002 6.3694e-002

Table 3 Comparisons of the results of the IICA-C with different

values of k on the Sphere function and the Griewank function

Function Stats. k = 0.1 k = 0.2 k = 0.3

Sphere Min 1.7771e-106 4.7143e-175 4.4994e-211

Mean 6.6147e-088 1.1638e-149 1.7939e-200

Median 5.1793e-097 1.1760e-165 1.3926e-202

Std 2.0896e-087 3.6803e-149 0.0000e?000

Griewank Min 0.0000e?000 0.0000e?000 3.4335e-002

Mean 5.8997e-002 3.3568e-002 8.7684e-002

Median 6.5948e-002 2.7064e-002 8.8157e-002

Std 4.0419e-002 3.5881e-002 4.3512e-002
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obtained on these functions, we determined to set these

parameters to 0.5 for the IICA-G, 0.1 for the IICA-C and

0.2 for the IICA-L, to guarantee the overall performance of

the proposed algorithms.

4.4 Results and discussion

The statistic results of the four algorithms are arranged in

Table 5, where ‘Min(best),’ ‘Mean,’ ‘Median,’ ‘Max(-

worst)’ and ‘Std’ represent the best obtained result, the

average value of all the obtained results, the median value

of all the obtained results, the worst obtained result and the

standard deviation of all the obtained results of the corre-

sponding algorithm, respectively; ‘Run time’ denotes the

average computation time of the 30 trials for every func-

tion, reflecting the computational complexity of the algo-

rithms. The best results have been detached in bold.

From Table 5, it can be observed that all the three

mutation operators bring the basic algorithm effective

improvements. On every tested function, compared with

the results obtained by the BICA, the results obtained by

the IICA-G, the IICA-C and the IICA-L are closer to the

theoretical optimal value. Meanwhile, the three improved

algorithms show better stability and robustness. The results

obtained by them are more stable than that obtained by the

BICA. For instance, on F1, the results obtained by the

BICA vary from 2.2725e-002 (the best result) to

2.0000e?004 (the worst result), which is a relatively large

range, while the results obtained by the three improved

algorithms are more concentrated. A similar situation can

also be observed on the F2, F3, F5, F7 and F9.

There are some differences between the results obtained

by the three improved algorithms. On F1, F2 and F4, the

results obtained by the IICA-G are significantly better than

that obtained by the IICA-C and the IICA-L; on F3, F5 and

F6, the results obtained by the IICA-C are much better; on

F7, all the three improved algorithms obtained the theo-

retical optimal value, and the difference between their

results is very slightly because they are located on the same

order of magnitude; on F8, the results obtained by the three

improved algorithms also have the same order of magni-

tude, and the results obtained by the IICA-C are slightly

better. Only on F9, there is no difference between the

finally results obtained by the three algorithms. All the

three algorithms obtained the theoretical optimal value in

every run.

Meanwhile, it can also be observed that though the three

improved algorithms show superiority than the BICA on

every function, the improvements shown on different

function are different. On F1, F2, F3, F4, F5, F8 and F9, the

improvements are significant, while on F6 and F7, they are

not so significant.

Furthermore, from Table 5, it can also be observed that

the mutation operators increase the cost time, while at the

same time enhancing the performance of the BICA.

However, the increases are slight and acceptable.

In order to further study the difference among the

behaviors of the four algorithms, the convergence curves of

the four algorithms on every function are given in Fig. 6.

The convergence curve is obtained by averaging the vari-

ations of the best obtained result with the NFFEs over the

30 runs.

From Fig. 6, it can be observed that there are significant

differences between the convergence curves of the four

algorithms. Compared with the convergence curves of the

BICA, the convergence curves of the three improved

algorithms are steeper, indicating that the improved algo-

rithms have faster convergence rate than the BICA. On F1–

F6, the curves of the BICA become flat before the

Max_NFFEs is reached, indicating that the BICA has got

trapped into local optimum, while the curves of the three

improved approaches decline steadily throughout the

whole solving process. It can be predicted that if the

Max_NFFEs is increased, the BICA cannot improve the

obtained solutions further, while the three improved

approaches with mutation operators can do that. On F7 and

F8, all the curves of the four algorithms become flat before

the Max_NFFEs is reached. However, the curves of the

three improved algorithms converge faster and converge to

more accurate solutions finally. On F9, the curve of the

BICA becomes flat soon after the trials begin, while the

curves of the three improved algorithms decline steadily.

Finally, the curve of the IICA-G converges to the theo-

retical optimal value after about 50,000 NFFEs, and the

curves of the IICA-C and the IICA-L also converge to the

theoretical optimal value after about 150,000 NFFEs and

about 120,000 NFFEs, respectively.

Meanwhile, it can be observed that on every function

except F5 and F6, the IICA-G shows the fastest conver-

gence rate, the IICA-L occupies the second position, and

the IICA-C shows slowest convergence rate. On F5 and F6,

Table 4 Comparisons of the results of the IICA-L with different

values of k on the Sphere function and the Griewank function

Function Stats. k = 0.1 k = 0.2 k = 0.3

Sphere Min 8.6590e-072 4.4194e-140 1.1545e-193

Mean 9.7231e-063 1.2557e-135 1.1556e-179

Median 1.3851e-064 2.6002e-136 9.7218e-186

Std 2.3844e-062 1.9439e-135 0.0000e?000

Griewank Min 0.0000e?000 0.0000e?000 2.9459e-002

Mean 5.6822e-002 5.4070e-002 6.6354e-002

Median 5.0315e-002 4.2991e-002 6.3717e-002

Std 4.7137e-002 4.7780e-002 2.4397e-002
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Table 5 Comparisons of the

results obtained by the BICA,

the IICA-G, the IICA-C and the

IICA-L on the tested benchmark

functions

Function Stats. BICA IICA-G IICA-C IICA-L

F1 Min(best) 2.2725e-002 5.8865e-295 8.9250e-105 2.0952e-143

Mean 3.0014e?003 7.9783e-270 3.0161e-085 4.2975e-125

Median 1.4174e?000 2.4519e-281 1.1919e-094 4.0116e-135

Max(worst) 2.0000e?004 2.0760e-268 8.9934e-084 1.2864e-123

Std 5.3492e?003 0.0000e?000 1.6416e-084 2.3484e-124

Run time(s) 8.8156e?000 1.0710e?001 9.8775e?000 1.0301e?001

F2 Min(best) 4.0001e?001 3.9419e-208 6.9182e-074 3.5339e-100

Mean 8.4001e?001 1.6277e-188 7.4268e-063 4.1246e-086

Median 8.5007e?001 8.9486e-199 9.2948e-068 4.2744e-094

Max(worst) 1.2000e?002 4.2967e-187 1.8805e-061 1.2373e-084

Std 2.2221e?001 0.0000e?000 3.4476e-062 2.2591e-085

Run time(s) 1.2293e?001 1.5327e?001 1.4224e?001 1.4760e?001

F3 Min(best) 5.0001e?003 2.1446e-002 1.9041e-006 5.0878e-004

Mean 3.2697e?004 8.1017e-001 4.6869e-004 3.6854e-002

Median 3.4167e?004 5.3242e-001 1.8374e-004 8.9871e-003

Max(worst) 6.1667e?004 5.6179e?000 3.5259e-003 2.2999e-001

Std 1.4282e?004 1.1145e?000 7.4389e-004 5.7622e-002

Run time(s) 8.2037e?001 1.0697e?002 1.0186e?002 1.0442e?002

F4 Min(best) 7.3937e-001 1.9000e-025 2.8627e-012 5.3067e-014

Mean 1.3653e?000 2.2029e-023 5.4118e-011 4.2560e-013

Median 1.3252e?000 9.4330e-024 3.8589e-011 1.9079e-013

Max(worst) 2.3747e?000 2.2938e-022 1.7137e-010 1.6640e-012

Std 4.0130e-001 4.2625e-023 4.6253e-011 4.6041e-013

Run time(s) 1.4207e?001 1.6222e?001 1.7371e?001 1.7632e?001

F5 Min(best) 4.4430e-002 3.3098e-008 2.7614e-009 3.6218e-009

Mean 2.3309e?003 1.2741e-007 8.6985e-009 2.1788e-008

Median 4.1674e-001 1.1570e-007 7.4352e-009 1.8753e-008

Max(worst) 2.0201e?004 3.0886e-007 3.0155e-008 6.8125e-008

Std 5.0486e?003 7.5029e-008 5.9357e-009 1.5291e-008

Run time(s) 1.3179e?001 1.5015e?001 1.4151e?001 1.4620e?001

F6 Min(best) 3.7284e?002 2.5406e?001 6.7272e?000 2.1371e?001

Mean 5.7281e?002 8.9470e?001 2.8515e?001 4.6687e?001

Median 5.7082e?002 8.3778e?001 2.6689e?001 4.6148e?001

Max(worst) 8.5021e?002 1.6394e?002 5.9512e?001 9.1294e?001

Std 1.2545e?002 3.7148e?001 1.1570e?001 1.7290e?001

Run time(s) 1.5978e?001 2.0093e?001 1.8302e?001 1.9177e?001

F7 Min(best) 7.6503e-003 0.0000e?000 0.0000e?000 0.0000e?000

Mean 2.7179e?001 6.4241e-002 6.4898e-002 6.2983e-002

Median 9.0283e-002 5.6283e-002 5.4035e-002 5.6289e-002

Max(worst) 1.8098e?002 1.8528e-001 1.9265e-001 1.8761e-001

Std 4.8312e?001 5.0310e-002 5.0447e-002 5.0348e-002

Run time(s) 2.0534e?001 2.3581e?001 2.2442e?001 2.3043e?001

F8 Min(best) 6.9381e-002 3.2863e-014 2.5757e-014 3.2863e-014

Mean 1.6654e?001 5.3113e-014 4.7902e-014 5.3350e-014

Median 1.7791e?001 5.0626e-014 5.0626e-014 5.0626e-014

Max(worst) 1.9963e?001 7.9048e-014 7.5495e-014 7.5495e-014

Std 4.9684e?000 1.1584e-014 1.0584e-014 1.1145e-014

Run time(s) 1.4359e?001 1.5986e?001 1.5265e?001 1.5680e?001

F9 Min(best) 7.8672e?001 0.0000e?000 0.0000e?000 0.0000e?000

Mean 1.3836e?002 0.0000e?000 0.0000e?000 0.0000e?000
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Table 5 continued
Function Stats. BICA IICA-G IICA-C IICA-L

Median 1.3855e?002 0.0000e?000 0.0000e?000 0.0000e?000

Max(worst) 1.9842e?002 0.0000e?000 0.0000e?000 0.0000e?000

Std 3.3194e?001 0.0000e?000 0.0000e?000 0.0000e?000

Run time(s) 2.2699e?001 2.3123e?001 2.4582e?001 2.3395e?001

Fig. 6 Convergence curves of the four algorithms on every function
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the situation is the opposite. The IICA-C shows the fastest

convergence rate, while the IICA-G shows the slowest

convergence rate.

As what have been mentioned, the improvement effects

brought by the three mutation operators are significant on

some functions but not significant on some others. Mean-

while, the three improved algorithms show different

behaviors on different functions. This is caused by the

different characteristics of different functions. As we know,

though meta-heuristic algorithms have the characteristics

of generality, a specific meta-heuristic algorithm cannot be

suitable to every benchmark function. In other words, the

inherent characteristics would influence the performance of

one algorithm greatly.

4.5 Comparison with other works

In this section, we compare the proposed approach with

two other works. The first contrastive algorithm is the

imperialist competitive algorithm combined with chaos

(CICA), which is proposed in the literature [34] and used

here as a representative of the previous improved approa-

ches of the basic ICA; the second contrastive algorithm is

the real coded genetic algorithm approach with random

transfer vectors-based mutation (RCGA-RTVM), which is

proposed in the literature [54] and used here as a repre-

sentative of various meta-heuristic algorithms, due to its

outstanding performance which has been proven in the

literature [54].

In the literature [34], the CICA is tested on four

10D benchmark functions. To compare the IICAs we

proposed with the CICA, we also test the IICAs on these

four functions. Meanwhile, the results given in the litera-

ture [34] are directly taken into the comparisons, and every

improved ICA we proposed is run 30 independent trials. To

be fair, we use the same iterations number and search

ranges given in the literature [34]. And the other parame-

ters we used are as same as that used in Sect. 4.2. The

results are arranged in Table 6. The best results have been

detached in bold.

From Table 6, it can be clearly observed that on the

Griewank function and the Rosenbrock function, the CICA

shows better performance than the three IICAs proposed in

this work. The results of the CICA are more accurate.

While on the Rastrigin function and the Ackley function,

the IICAs obtained better results: On Rastrigin function,

the three improved algorithms proposed in this work

obtained the optimal value in every trial; on Ackley

function, the three IICAs also obtained better results and

showed better stability.

In the literature [54], the RCGA-RTVM is tested on four

30D functions and one 2D function. To make the com-

parisons, we also tested the IICAs on these five functions.

Each IICA is also run 30 independent trials on each

function, and the MAX_NFFEs of each trial, the search

range and the number of initial solutions are as same as

those used in the literature [54]. The other parameters in

the IICAs are as same as that presented in Sect. 4.2. The

results of the comparison are arranged in Table 7, where

the results of the RCGA-RTVM are directly taken from the

literature [54], and the best results have also been detached

in bold.

From Table 7, it can be seen that on the Rosenbrock

function and the Step function, the improved ICAs

obtained better results. The results are closer to the

theoretical optimal value. On the Schweel 1.2 function

and the Schweel 2.21 function, the RCGA-RTVM per-

forms better than the three different IICAs. The results it

obtained are significantly more accurate. On the Six-

hump camel-back, because this function is relatively

simple, all the four algorithms show satisfactory perfor-

mances, and there is no significant difference between

their results.

In summary, the proposed IICAs show better perfor-

mance than the CICA and the RCGA-RTVM on some

functions and show worse performance on some other

functions. Each algorithm has its own specialties and is

more suitable for some problems. In practice, when using

meta-heuristic algorithm to deal with problem, usually the

problem is regarded as a black box, and its characteristics

cannot be obtained. Usually, different algorithms should be

tried until a satisfactory solution is obtained. In these cases,

the improved algorithms proposed in this work can be used

as options.

4.6 An application of the proposed algorithms

In this section, we use a real-world optimization case to

demonstrate the applicability of the proposed algorithms.

This problem is a classical benchmark problem which aims

to minimize the total weight of a simple gear box, which is

shown in Fig. 7. It involves seven design variables, the face

width b (x1), module of teeth m (x2), number of teeth on

pinion z (x3), length of first shaft between bearings l1 (x4),

length of second shaft between bearings l2 (x5), diameter of

first shaft d1 (x6) and diameter of second shaft d2 (x7).
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Moreover, this problem involves seven nonlinear and four

linear constraints, limitations on the bending stress of gear

teeth, surface stress, transverse deflections of shafts 1 and 2

due to transmitted force and stresses in shafts 1 and 2. Due

to the fact that the third design variable (the number of

teeth on pinion) should only be integral, this problem is a

mixed integral-continuous constrained problem. The

mathematical formulation of this problem can be summa-

rized as follows [55]:

Table 6 Comparisons of the

results obtained by the CICA

[34], the IICA-G, the IICA-C

and the IICA-L on four different

functions

Function Stats. CICA IICA-G IICA-C IICA-L

Griewank Min(best) 1.17e-16 2.95e-02 1.23e-02 7.39e-03

Mean 3.48e-14 4.40e-02 4.08e-02 5.26e-02

Max(worst) 2.58e-12 5.90e-02 7.38e-02 9.34e-02

Std 5.07e-15 1.13e-02 1.91e-02 2.62e-02

Rosenbrock Min(best) 1.82e-04 2.27e-02 2.22e-01 5.09e-01

Mean 2.42e-02 1.72e?00 9.04e-01 1.03e?00

Max(worst) 7.18e-02 3.84e?00 1.89e?00 2.06e?00

Std 2.19e-02 1.42e?00 6.05e-01 4.97e-01

Rastrigin Min(best) 0 0 0 0

Mean 9.34e-09 0 0 0

Max(worst) 1.07e-07 0 0 0

Std 3.43e-08 0 0 0

Ackley Min(best) 5.80e-08 7.99E-15 7.99E-15 7.99E-15

Mean 1.02e-07 1.23E-14 1.30E-14 1.37E-14

Max(worst) 5.14e-06 2.93E-14 1.51E-14 2.93E-14

Std 1.24e-07 6.86E-14 3.43E-15 7.34E-15

Table 7 Comparisons of the

results obtained by the RCGA-

RTVM [54], the IICA-G, the

IICA-C and the IICA-L on five

different functions

Function Stats. RCGA-RTVM IICA-G IICA-C IICA-L

Rosenbrock (30D) Mean 2.8988E?01 2.5075e?01 2.3115e?01 2.4363e?01

Std 6.7394E-01 1.4043e?00 8.9919e-01 4.0048e-01

Schweel 1.2 (30D) Mean 7.5456E-242 9.3308E-37 4.4802E-02 4.4267E-03

Std 0 2.6685e?00 5.0505E-02 1.2639E-02

Step (30D) Mean 2.0000E-04 1.5568e-08 2.4265e-10 6.3296e-10

Std 1.4142E-02 3.6954e-08 3.1147e-10 4.3038e-10

Six-hump camel-back (2D) Mean -1.0316E?00 -1.0316E?00 -1.0316E?00 -1.0316E?00

Std 2.8796E-11 2.8547e-06 5.4013E-07 6.7907E-07

Schweel 2.21 (30D) Mean 7.4950E-24 4.8494e-11 7.5750e-05 3.3035e-06

Std 1.0434E-23 4.4586e-11 7.8729e-05 1.5067e-06

Fig. 7 Structure of the gear box to be optimized
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To handle the constraints that exist in this problem, the

penalty function method is adopted. Penalty function

method is a commonly used constraint-handling method

which can transform a constrained problem to an uncon-

strained problem by the aid of a self-defined penalty

function. In this work, the penalty function is defined as

Eq. (15).

FðxÞ ¼ f ðxÞ þ D �
XN

i¼1

maxð0; giðxÞÞ2; ð15Þ

where F(x) is the fitness value of a solution x in the

transformed problem; f(x) is the original objective function

value; N is the total number of constraints; D is the penalty

factor, and it is set to 1e20 in our work.

The BICA, the IICA-G, the IICA-C and the IICA-L are

tested together on this problem and then compared with

other four algorithms. Because the dimension of this

problem is relatively low, in our study, the number of

countries is set to 25, the number of imperialists is set to 2,

the maximum number of fitness function evaluations is set

to 20,000, and every algorithm is tested 10 independent

times. The results of the four algorithms are arranged in

Table 8.

As a classical benchmark case, this problem has been

solved by many different algorithms. In our study, we

compared the best solutions obtained by the three improved

ICAs with that obtained by other four existing algorithms,

the society and civilization algorithm (SCA) [56], the

Evolution Strategy (l ? k-ES) [57], the artificial bee col-

ony algorithm (ABC) [55] and the cuckoo search algorithm

(CS) [58]. The parameter and constraint values of the best

solutions obtained by different algorithms are arranged in

Table 9.

From Table 9, it can be observed that the results

obtained by the three improved ICAs are better than that

obtained by the other algorithms. Though all the best

solutions obtained by the algorithms listed in the table are

feasible because no any constraint is violated, the corre-

sponding objective function value of the solutions obtained

by the IICA-G, the IICA-C and the IICA-L is smallest.

This case suggests that the proposed algorithms have good

applicability.

5 Conclusion and future work

In this work, an improved method for the imperialist

competitive algorithm to enhance its performance is pro-

posed by introducing mutation operators into the original

algorithm. In the proposed approach, the mutation opera-

tors are applied on the imperialist to change their behaviors

and then to obtain better performance. The proposed

approach is simple in structure and easy to be carried out.

Based on the proposed method, three improved algorithms

are obtained by using three different mutation operators,

the Gaussian mutation, the Cauchy mutation and the Lévy

mutation, and then are investigated particularly by exper-

iments. The experimental results suggest that they can

effectively improve the performance of the original algo-

rithm. Compared with the original ICA, the three obtained

Table 8 Comparisons of the results obtained by the BICA, the IICA-

G, the IICA-C and the IICA-L on the gear box design problem

Stats. BICA IICA-G IICA-C IICA-L

Best 3007.436552 2994.471066 2994.471066 2994.471066

Mean 3085.818289 2994.471066 2994.471066 2994.471066

Std 7.4198e?01 1.8686e-11 2.9240e-11 3.6929e-11
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improved algorithms have faster convergence rate, better

global search ability and better stability and would not

dramatically increase the time consumption.

Meanwhile, the three improved algorithms are also

compared with two other excellent algorithms. The com-

parative results suggest that the proposed algorithms have

their own advantages. They can obtain better results than

the contrastive algorithm on some functions. Therefore, the

proposed algorithms can be used as an option in practical

applications.

Finally, the three improved algorithms are tested on a

real-world optimization case and compared with other four

existing algorithms. The results suggest that the proposed

algorithms have good applicability. All the three variants

with different mutation operators can obtain better solu-

tions than the four contrastive algorithms.

This work suggests that changing the behavior of the

imperialists can enhance the performance of the original

algorithm. Therefore, more attention should be paid to the

behavior of the imperialists in future work. Additionally,

the proposed improved algorithms should be used to solve

more real-world optimization problems in future.

Acknowledgments We sincerely appreciate the supports offered by

the Specialized Research Fund for the Doctoral Program of Higher

Education (Grant No. 20110131110042), and the National High

Technology Research and Development Program 863 (No.

2008AA04Z130). Meanwhile, we sincerely appreciate editor and

anonymous reviewers for their valuable comments and suggestions.

References

1. Antoniou A, Lu W-S (2007) Practical optimization: algorithms

and engineering applications, 2007th edn. Springer, New York

2. Fletcher R (2000) Practical methods of optimization, 2nd edn.

Wiley, Great Britain

3. Sun W, Yuan Y-X (2006) Optimization theory and methods:

nonlinear programming, vol 1. Springer, New York

4. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive

algorithm: an algorithm for optimization inspired by imperialistic

competition. In: 2007 IEEE congress on evolutionary computa-

tion, CEC 2007, Singapore 25–28 Sept 2007. IEEE Computer

Society, Piscataway, United States, pp 4661–4667

5. Hadidi A, Hadidi M, Nazari A (2012) A new design approach for

shell-and-tube heat exchangers using imperialist competitive

algorithm (ICA) from economic point of view. Energy Convers

Manag 67(2):66–74

6. Karami A, Rezaei E, Shahhosseni M, Aghakhani M (2012)

Optimization of heat transfer in an air cooler equipped with

classic twisted tape inserts using imperialist competitive algo-

rithm. Exp Thermal Fluid Sci 38(4):195–200

7. Mozafari H, Ayob A, Kamali F (2012) Optimization of functional

graded plates for buckling load by using imperialist competitive

algorithm. Proc Technol 1:144–152

8. Yousefi M, Darus AN, Mohammadi H (2012) An imperialist

competitive algorithm for optimal design of plate-fin heat

exchangers. Int J Heat Mass Transf 55(11–12):3178–3185

9. Lucas C, Nasiri-Gheidari Z, Tootoonchian F (2010) Application

of an imperialist competitive algorithm to the design of a linear

induction motor. Energy Convers Manag 51(7):1407–1411

10. Mohammadi-Ivatloo B, Rabiee A, Soroudi A, Ehsan M (2012)

Imperialist competitive algorithm for solving non-convex

dynamic economic power dispatch. Energy 44(1):228–240 (As

the access to this document is restricted, you may want to look for

Table 9 Comparisons of the parameter and constraint values of the best solutions obtained by the SCA [56], the (l ? k)-ES [57], the ABC [55],

the CS [58], the IICA-G, the IICA-C and the IICA-L for the gear box design problem

SCA (l ? k)-ES ABC CS IICA-G IICA-C IICA-L

x1 3.500000 3.499999 3.499999 3.5015 3.500000 3.500000 3.500000

x2 0.700000 0.699999 0.7 0.7000 0.700000 0.700000 0.700000

x3 17 17 17 17 17 17 17

x4 7.327602 7.300000 7.3 7.6050 7.300000 7.300000 7.300000

x5 7.715321 7.800000 7.8 7.8181 7.715320 7.715320 8.300000

x6 3.350267 3.350215 3.350215 3.3520 3.350215 3.350215 3.350215

x7 5.286655 5.286683 5.287800 5.2875 5.286654 5.286654 5.286859

g1 -0.073915 -0.073915 -0.073915 -0.0743 -0.073915 -0.073915 -0.073915

g2 -0.197999 -0.197998 -0.197999 -0.1983 -0.197999 -0.197999 -0.197999

g3 -0.493501 -0.499172 -0.499172 -0.4349 -0.499172 -0.499172 -0.499172

g4 -0.904644 -0.901472 -0.901555 -0.9008 -0.904644 -0.904644 -0.904644

g5 0.000000 0.000000 0.000000 -0.0011 -0.000000 -0.000000 -0.000000

g6 0.000633 0.000000 0.000000 -0.0004 0.000000 0.000000 0.000000

g7 -0.7025 -0.702500 -0.7025 -0.7025 -0.702500 -0.702500 -0.702500

g8 0.000000 0.000000 0.000000 -0.0004 0.000000 0.000000 0.000000

g9 -0.583333 -0.583333 -0.583333 -0.5832 -0.795833 -0.795833 -0.795833

g10 -0.054889 -0.051325 -0.051326 -0.0890 -0.023790 -0.023790 -0.023790

g11 0.000000 -0.010852 -0.010695 -0.0130 0.000000 0.000000 0.000000

f(x) 2994.744241 2996.348094 2997.058412 3000.9810 2994.471066 2994.471066 2994.471066

1680 Neural Comput & Applic (2017) 28:1667–1682

123



a different version under ‘‘Related research’’ (further below) or

for a different version of it)

11. Shabani H, Vahidi B, Ebrahimpour M (2013) A robust PID

controller based on imperialist competitive algorithm for load-

frequency control of power systems. ISA Trans 52(1):88–95

12. Tamimi A, Sadjadian H, Omranpour H (2010) Mobile robot

global localization using imperialist competitive algorithm. In:

Advanced computer theory and engineering (ICACTE), 2010 3rd

international conference on, 2010, pp V5-524–V525-529

13. Bagher M, Zandieh M, Farsijani H (2011) Balancing of stochastic

U-type assembly lines: an imperialist competitive algorithm. Int J

Adv Manuf Technol 54(1–4):271–285

14. Banisadr AH, Zandieh M, Mahdavi I (2013) A hybrid imperialist

competitive algorithm for single-machine scheduling problem

with linear earliness and quadratic tardiness penalties. Int J Adv

Manuf Technol 65(5–8):981–989

15. Behnamian J, Zandieh M (2011) A discrete colonial competitive

algorithm for hybrid flowshop scheduling to minimize earliness

and quadratic tardiness penalties. Expert Syst Appl 38(12):

14490–14498

16. Karimi N, Zandieh M, Najafi AA (2011) Group scheduling in

flexible flow shops: a hybridised approach of imperialist com-

petitive algorithm and electromagnetic-like mechanism. Int J

Prod Res 49(16):4965–4977

17. Nazari-Shirkouhi S, Eivazy H, Ghodsi R, Rezaie K, Atashpaz-

Gargari E (2010) Solving the integrated product mix-outsourcing

problem using the imperialist competitive algorithm. Expert Syst

Appl 37(12):7615–7626

18. Sadigh AN, Mozafari M, Karimi B (2012) Manufacturer–retailer

supply chain coordination: a bi-level programming approach.

Adv Eng Softw 45(1):144–152

19. Kaveh A, Talatahari S (2010) Optimum design of skeletal

structures using imperialist competitive algorithm. Comput Struct

88(21):1220–1229

20. Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic impe-

rialist competitive algorithm for optimum design of truss struc-

tures. Struct Multidiscip Optim 46(3):355–367

21. Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ (2013)

Evolving artificial neural network and imperialist competitive

algorithm for prediction oil flow rate of the reservoir. Appl Soft

Comput 13(2):1085–1098

22. Berneti SM (2013) A hybrid approach based on the combination

of adaptive neuro-fuzzy inference system and imperialist com-

petitive algorithm: oil flow rate of the wells prediction case study.

Int J Comput Intell Syst 6(2):198–208

23. Berneti SM, Shahbazian M (2011) An imperialist competitive

algorithm artificial neural network method to predict oil flow rate

of the wells. Int J Comput Appl 26(10):47–50

24. Jula A, Othman Z, Sundararajan E (2015) Imperialist competitive

algorithm with PROCLUS classifier for service time optimization

in cloud computing service composition. Expert Syst Appl

42(1):135–145

25. Duan H, Xu C, Liu S, Shao S (2010) Template matching using

chaotic imperialist competitive algorithm. Pattern Recogn Lett

31(13):1868–1875

26. Ebrahimzadeh A, Addeh J, Rahmani Z (2012) Control chart pat-

tern recognition using K-MICA clustering and neural networks.

ISA Trans 51(1):111–119

27. Mahmoudi MT, Taghiyareh F, Forouzideh N, Lucas C (2013)

Evolving artificial neural network structure using grammar

encoding and colonial competitive algorithm. Neural Comput

Appl 22(1 Supplement):1–16

28. Mousavi SM, Tavakkoli-Moghaddam R, Vahdani B, Hashemi H,

Sanjari MJ (2013) A new support vector model-based imperialist

competitive algorithm for time estimation in new product

development projects. Robot Comput Integr Manuf 29(1):

157–168

29. Niknam T, Taherian Fard E, Pourjafarian N, Rousta A (2011) An

efficient hybrid algorithm based on modified imperialist com-

petitive algorithm and K-means for data clustering. Eng Appl

Artif Intell 24(2):306–317. doi:10.1016/j.engappai.2010.10.001

30. Razmjooy N, Mousavi BS, Soleymani F (2013) A hybrid neural

network imperialist competitive algorithm for skin color seg-

mentation. Math Comput Model 57(3–4):848–856

31. Bahrami H, Faez K, Abdechiri M Imperialist competitive algo-

rithm using chaos theory for optimization (CICA). In: Computer

modelling and simulation (UKSim), 2010 12th international

conference on, 2010, pp 98–103

32. Abdechiri M, Faez K, Bahrami H. Adaptive imperialist compet-

itive algorithm (AICA). In: Cognitive informatics (ICCI), 2010

9th IEEE international conference on, 2010. IEEE, pp 940–945

33. Jun-Lin L, Hung-Chjh C, Yu-Hsiang T, Chun-Wei C. Improving

imperialist competitive algorithm with local search for global

optimization. In: Modelling symposium (AMS), 2013 7th Asia,

23–25 July 2013, pp 61–64. doi:10.1109/AMS.2013.14

34. Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi A

(2012) Imperialist competitive algorithm combined with chaos

for global optimization. Commun Nonlinear Sci Numer Simul

17(3):1312–1319

35. Arish S, Amiri A, Noori K (2014) FICA: fuzzy imperialist

competitive algorithm. J Zhejiang Univ Sci C 15(5):363–371

36. Kaveh A, Talatahari S (2010) Imperialist competitive algorithm

for engineering design problems. Asian J Civil Eng 11(6):

675–697

37. Yao X, Liu Y, Lin G (1999) Evolutionary programming made

faster. Evolut Comput IEEE Trans 3(2):82–102

38. Gong W, Cai Z, Ling CX, Li H (2010) A real-coded biogeog-

raphy-based optimization with mutation. Appl Math Comput

216(9):2749–2758

39. Tinós R, Yang S (2011) Use of the q-Gaussian mutation in

evolutionary algorithms. Soft Comput 15(8):1523–1549

40. Xinchao Z (2011) Simulated annealing algorithm with adaptive

neighborhood. Appl Soft Comput 11(2):1827–1836

41. Ali M, Pant M (2011) Improving the performance of differential

evolution algorithm using Cauchy mutation. Soft Comput

15(5):991–1007

42. Chen M-R, Lu Y-Z, Yang G (2007) Population-based extremal
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