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Abstract Traditional machine learning methods usually

minimize a simple loss function to learn a predictive model

and then use a complex performance measure to measure

the prediction performance. However, minimizing a simple

loss function cannot guarantee an optimal performance. In

this paper, we study the problem of optimizing the complex

performance measure directly to obtain a predictive model.

We proposed to construct a maximum likelihood model for

this problem, and to learn the model parameter, we mini-

mize a complex loss function corresponding to the desired

complex performance measure. To optimize the loss

function, we approximate the upper bound of the complex

loss. We also propose to impose the sparsity to the model

parameter to obtain a sparse model. An objective was

constructed by combining the upper bound of the loss

function and the sparsity of the model parameter, and we

develop an iterative algorithm to minimize it by using the

fast iterative shrinkage-thresholding algorithm framework.

The experiments on optimization on three different com-

plex performance measures, including F-score, receiver

operating characteristic curve, and recall precision curve

break-even point, over three real-world applications, air-

craft event recognition of civil aviation safety, intrusion

detection in wireless mesh networks, and image

classification, show the advantages of the proposed method

over state-of-the-art methods.

Keywords Machine learning � Complex multivariate

performance � Sparse learning � Maximum likelihood �
Civil aviation safety

1 Introduction

Machine learning aims to train a predictive model from a

training set of input-out pairs and then use the model to

predict an unknown output from a given test input [1, 13,

14, 17, 31, 34, 37]. In this paper, we focus on the machine

learning problem of binary pattern classification. In this

problem, each input is a feature vector of a data point, and

each output is a binary class label of a data point, either

positive or negative [5, 19, 21, 26, 28–30]. To learn the

predictive model, i.e., the classification model, we usually

compare the true class label of data point against the pre-

dicted label using a loss function, for example, hinge loss,

logistic loss, and squared ‘2 norm loss. By minimizing the

loss functions over the training set with regard to the

parameter of the classification model, we can obtain an

optimal classification model. To evaluate the performance

of the model, we apply it to a set of test data points to

predict their class labels and then compare the predicted

class labels to their true class labels. This comparison can

be conducted by using some multivariate performance

measures, for example, prediction accuracy, F-score, area

under receiver operating characteristic curve (AUROC) [2,

7, 22, 23], and precision–recall curve break-even point

(PRBEP) [18, 20, 27, 33]. A problem of such machine

learning procedure is that in the training process, we

optimize a simple loss function, such as hinge loss, but in
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the test process, we use a different and complex perfor-

mance measure to evaluate the prediction results. It is

obvious that the optimization of the loss function cannot

lead to an optimization of the performance measure. For

example, in the formulation of support vector machine

(SVM), the hinge loss is minimized, but usually in the test

procedure, the AUROC is used as a performance measure.

However, in many real-world applications, the optimiza-

tion of a specific performance measure is desired. To solve

this problem, direct optimization of some complex loss

functions corresponding to some desired performance

measures is studied. These methods try to optimize a

complex loss function in the objective function, and the

loss functions are corresponding to the performance mea-

sure directly. By minimizing the loss function directly to

obtain the predictive model, the desired performance

measure can be optimized by the predictive model directly.

In this paper, we study this problem and propose a novel

method based on sparse learning and maximum likelihood

optimization.

1.1 Related works

Some existing works proposed to optimize a complex

multivariate loss function are briefly introduced as follows.

• Joachims [8] proposed to learn a support vector

machine to optimize a complex loss function. In the

proposed model, the complexity of the predictive

model is reduced by minimizing squared ‘2 norm of

the model parameter. To minimize the complex loss, its

upper bound is approximated and minimized.

• Mao and Tsang [16] improved the Joachims’s work by

integrating feature selection to support vector machine

for complex loss optimization. A weight is assigned to

each feature before the predictive model is learned.

Moreover, the feature weights and the predictive model

parameter are learned jointly in an iterative algorithm.

• Li et al. [12] proposed a classifier adaptation method to

extend Joachims’s work. The predictive model is a

combination of a base classifier and an adaptation

function, and the learning of the optimal model is

transferred to the learning of the parameter of the

adaptation function.

• Zhang et al. [36] proposed a novel smoothing strategy

by using Nesterov’s accelerated gradient method to

improve the convergence rate of the method proposed

by Joachims [8]. This method, according to the results

reported in [36], converges significantly faster than

Joachims’s method [8], but it does not scarify gener-

alization ability.

Almost all the existing methods are limited to the sup-

port vector machine for multivariate complex loss function.

This method uses a linear function to construct the pre-

dictive model and seek both the minimum complexity and

loss.

1.2 Contribution

In this paper, we propose a novel predictive model to

optimize a complex loss function. This model is based

on the likelihood of a positive or negative class given an

input feature vector of a data point. The likelihood

function is constructed based on a sigmoid function of a

linear function. Given a group of data points, we orga-

nize them as a data tuple, and the predicted class label

tuple is the one that maximizes the logistic likelihood of

the data tuple. The learning target is to learn a predictive

model parameter, so that with the corresponding pre-

dicted class label tuple, the complex loss function can be

minimized. Moreover, we also hope the model parameter

can be as sparse as possible, so that only the useful can

be kept in the model. To this end, we construct an

objective function, which is composed of two terms. The

first term is the ‘1 norm of the parameter to impose the

sparsity of the parameter, and the second term is the

complex loss function to seek the optimal desired per-

formance measure. The problem is transferred to a

minimization problem of the objective function with

regard to the parameter. To solve this problem, we first

approximate the upper bound of the complex as a logistic

function of the parameter and then optimize it by using

the fast iterative shrinkage-thresholding algorithm

(FISTA). The novelty of this paper is summarized as

follows:

1. For the first time, we propose to use the maximum

likelihood model to construct a predictive model for

the optimization of complex losses.

2. We construct a novel optimization problem for the

learning of the model parameter by considering the

sparsity of the model and the minimization of the

complex loss jointly.

3. We develop a novel iterative algorithm to optimize the

proposed minimization problem, and a novel method

to approximate the upper bound of the complex loss.

The approximation of the upper bound of the complex

loss is obtained as a logistic function, and the problem

is optimized by a FISTA algorithm.

1.3 Paper organization

This paper is organized as follows: In Sect. 2, we introduce

the proposed method, in Sect. 3, we evaluate the proposed

method on two real-world applications, and in Sect. 4, the

paper is concluded and some future works are given.
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2 Proposed method

2.1 Problem formulation

Suppose we have a data set of n data points, and we denote

them as fðxi; yiÞgjni¼1, where xi 2 Rd is the d-dimensional

feature vector of the ith data point and yi 2 fþ1;�1g is it
corresponding class label. We consider the data points as a

data tuple, x ¼ ðx1; . . .; xnÞ, and their corresponding class

labels as a label tuple, y ¼ ðy1; . . .; ynÞ. Under the frame-

work of complex performance measure optimization, we

try to learn a multivariate mapping function to map the data

tuple x to a class label tuple y� ¼ ðy�1; . . .; y�nÞ 2 Y, where
y�i 2 fþ1;�1g is the predicted label of the ith data point

and Y ¼ fþ1;�1gn. To measure the performance of the

multivariate mapping function, hðxÞ, we use a predefined

complex loss function Dðy; y�Þ to compare the true class

label tuple y against the predicted class label tuple y�.

To construct the multivariate mapping function hðxÞ, we
proposed to apply a linear discriminate function to match

the ith data point xi against the ith class label y0i in a can-

didate tuple y0 ¼ ðy01; . . .; y0nÞ,
fwðxi; y0iÞ ¼ y0iw

>xi; ð1Þ

where w ¼ ½w1; . . .;wd� 2 Rd is the parameter vector of

the function. And then we apply a sigmoid function to

the response of this function to impose it to a range of

[0, 1],

gðxi; y0iÞ ¼
1

1þ exp �f ðxi; y0iÞð Þ

¼ 1

1þ exp �y0iw>xið Þ : ð2Þ

Moreover,

gðxi;þ1Þ ¼
1

1þ exp �w>xið Þ

¼ 1þ exp �w>xið Þð Þ � exp �w>xið ÞÞ
1þ exp �w>xið Þ

¼ 1� exp �w>xið ÞÞ
1þ exp �w>xið Þ

¼ 1� 1

1þ exp w>xið Þ
¼ 1� gðxi;�1Þ; ð3Þ

thus we can treat gðxi; yiÞ as the conditional probability of

y ¼ y0i given x ¼ xi,

Prðy ¼ y0ijx ¼ xiÞ ¼ gðxi; y0iÞ: ð4Þ

We also assume that the data points in the tuple x are

conditionally independent from each other, and thus the

conditional probability of y ¼ y0 given the x is

Prðy ¼ y0jxÞ ¼
Yn

i¼1
Prðy ¼ y0ijx ¼ xiÞ

¼
Yn

i¼1

1

1þ exp �y0iw>xið Þ : ð5Þ

To constructed the complex mapping function, we map the

data tuple to the class tuple y� which can give the maxi-

mum log-likelihood,

y�  hðxÞ ¼ argmax
y02Y

log Prðy ¼ y0jxÞð Þ

¼ argmax
y02Y

log
Yn

i¼1

1

1þ exp �y0iw>xið Þ

 !
: ð6Þ

In this way, we seek the maximum likelihood estimator of

the class label tuple as the mapping result for a data tuple.

To learn the parameter of the linear discriminative

function, w, so that the complex loss function Dðy; y�Þ can
be minimized, we consider the following problems,

• Encouraging sparsity of w We assume that in a feature

vector a data point, only a few features are useful, while

most of the remaining features are useless. Thus, we

need to conduct a feature selection procedure to remove

the useless features and keep the useful features, so that

we can obtain a parse feature vector. In our method,

instead of seeking sparsity of the feature vectors, we

seek the sparsity of the parameter vector w. With a

sparse w, we can also control the sparsity of the feature

effective to the prediction results. To encourage the

sparsity of w, we use the ‘1 norm of w to present its

sparsity, and minimize the ‘1,

min
w

1

2
wk k1¼

1

2

Xd

j¼1
jwjj

(

¼ 1

2

Xd

j¼1

w2
j

jwjj
¼ 1

2
w>diag

1

jw1j
; . . .;

1

jwdj

� �
w

¼ 1

2
w>Kw

�
; ð7Þ

where diag 1
jw1j ; . . .;

1
jwd j

� �
2 Rd�d is a diagonal matrix

with its diagonal elements as 1
jw1j ; . . .;

1
jwd j, and

K ¼ diag
1

jw1j
; . . .;

1

jwdj

� �
ð8Þ

when the ‘1 norm of w is minimized, most elements of

w will shrink to zeros and lead a sparse w.

• Minimizing complex performance lose Dðy; y�Þ Given
the predicted label tuple y�, we can measure the

prediction performance by comparing it against the true

label tuple y by using a complex performance measure.

To obtain an optimal mapping function, we minimize a
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corresponding complex loss of a complex performance

measure, Dðy; y�Þ,
min
w

Dðy; y�Þ ð9Þ

Due to its complexity, we minimize its upper boundary

instead of itself. We have the following theorem to

define the upper boundary of Dðy; y�Þ.

Theorem 1 Dðy; y�Þ satisfies

Dðy; y�Þ � max
y02Y

log
Yn

i¼1

1

1þ exp �y0iw>xið Þ

 !(

� log
Yn

i¼1

1

1þ exp �yiw>xið Þ

 !
þ Dðy; y0Þ

)

¼ log
Yn

i¼1

1

1þ exp �y00i w>xið Þ

 !(

� log
Yn

i¼1

1

1þ exp �yiw>xið Þ

 !
þ Dðy; y00Þ

)
;

ð10Þ

where y0 ¼ ðy01; . . .; y0nÞ, and y00 ¼ ðy01; . . .; y0nÞ,

y00 ¼ argmax
y02Y

log
Yn

i¼1

1

1þ exp �y0iw>xið Þ

 !(

� log
Yn

i¼1

1

1þ exp �yiw>xið Þ

 !
þ Dðy; y0Þ

)
ð11Þ

The proof of this theorem is found in Appendix section.

After we have the upper bound of the loss function, we

minimize it instead of Dðy; y�Þ to obtain the mapping

function parameter, w,

min
w

log
Yn

i¼1

1

1þ exp �y00i w>xið Þ

 !(

� log
Yn

i¼1

1

1þ exp �yiw>xið Þ

 !
þ Dðy; y00Þ

¼
Xn

i¼1
log

1þ expð�yiw>xiÞ
1þ expð�y00i w>xiÞ

� �
þ Dðy; y00Þ

)
: ð12Þ

Please note that y00 is also a function of w.
The overall optimization problem is obtained by com-

bining the problems in (7) and (12),

min
w

f ðwÞ¼1

2
w>Kw

�

þC
Xn

i¼1
log

1þexpð�yiw>xiÞ
1þexpð�y00i w>xiÞ

� �
þDðy;y00Þ

" #)
ð13Þ

where C is a trade-off parameter. Please note that in this

objective, both K and y00 are functions of w. In the first term
of the objective, we impose the sparsity of the w, and in the

second term, we minimize the upper bound of Dðy; y�Þ.

2.2 Optimization

To solve the problem of (13), we try to employ the FISTA

algorithm with constant step size to minimize the objective

f ðwÞ. This algorithm is an iterative algorithm, and in each

iteration, we first update a search point according to a pre-

vious solution of the parameter vector and then update the

next parameter vector based on the search point. The basic

procedures are summarized as the two following steps:

1. Search point step In this step, we assume the previous

solution of w is wpre, and seek a search point v 2 Rd

based on w is wpre and a step size L.

2. Weighting factor step In this step, we assume we have

a weighting factor of previous iteration, spre, and we

update it to a new weighting factor scur.
3. Solution update step In this step, we update the new

solution of the variable according to the search point.

The updated solution is a weighted version of the

previous search points, weighted by the weighting

factors.

In the follows, we will discuss how to implement these

three steps.

2.2.1 Search point step

In this step, when we want to minimize an objective

function f ðwÞ with regard to a variable vector w with a step

size L and a previous solution wpre, we seek a search point

u� as follows,

u� ¼ argmin
u

L

2
u� wpre �

1

L
rf ðwpreÞ

� �����

����
2

2

( )
; ð14Þ

where rf ðwÞ is the gradient function of f ðwÞ. Due to the

complexity of function f ðwÞ, the close form of gradient

function rf ðwÞ is difficult to obtain. Thus, instead of

seeking gradient function directly, we seek the sub-gradient

of this function. At this end, we use the EM algorithm

strategy. In each iteration, we first fix w as wpre and cal-

culate K according to (8), and y00i j
n
i¼1 according to (11).

Then we fix K and y00i j
n
i¼1 and seek the sub-gradient rf ðwÞ,

rf ðwÞ ¼Kwþ C
Xn

i¼1

y00i xi expð�y00i w>xiÞ
1þ expð�y00i w>xiÞ

�

� yixi expð�yiw>xiÞ
1þ expð�yiw>xiÞ

�
: ð15Þ
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After we have the sub-gradient function rf ðwÞ, we sub-

stitute it to (14), and we have

u� ¼ argmin
u

L

2
u� wpre �

1

L
rf ðwpreÞ

� �����

����
2

2

( )

¼ argmin
u

L

2
u� wpre �

1

L
Kwpre

	
����
�

þC
Xn

i¼1

y00i xi expð�y00i w>prexiÞ
1þ expð�y00i w>prexiÞ

 

�
yixi expð�yiw>prexiÞ
1þ expð�yiw>prexiÞ

!!#�����

2

2

9
=

;

¼ argmin
u

L

2
u� I � 1

L
K

� �
wpre


����
�

�C

L

Xn

i¼1

y00i xi expð�y00i w>prexiÞ
1þ expð�y00i w>prexiÞ

 

�
yixi expð�yiw>prexiÞ
1þ expð�yiw>prexiÞ

!#�����

2

2

¼ gðuÞ

9
=

;: ð16Þ

To solve this problem, we set the gradient function of the

objective function gðuÞ to zero,

rgðuÞ ¼ L u� I � 1

L
K

� �
wpre


�

�C

L

Xn

i¼1

y00i xi expð�y00i w>prexiÞ
1þ expð�y00i w>prexiÞ

 

�
yixi expð�yiw>prexiÞ
1þ expð�yiw>prexiÞ

!#)
¼ 0

) u� ¼ I � 1

L
K

� �
wpre �

C

L

Xn

i¼1

y00i xi expð�y00i w>prexiÞ
1þ expð�y00i w>prexiÞ

 

�
yixi expð�yiw>prexiÞ
1þ expð�yiw>prexiÞ

!
: ð17Þ

In this way, we obtain the search point u�.

2.2.2 Weighting factor step

We assume that weighting factor of previous iteration is

spre, and we can obtain the weighting factor of current

iteration, scur, as follows,

scur ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4spre2

p

2
: ð18Þ

2.2.3 Solution update step

After we have the search point of this current iteration, u�,
the search point of previous iteration, u�pre, and the

weighting factor of this iteration and previous iteration, scur
and spre, we can have the following update procedure for

the solution of this iteration,

wcur ¼ u� þ spre � 1

scur

� �
u� � u�pre

� �

¼ scur þ spre � 1

scur

� �
u� � spre � 1

scur

� �
u�pre: ð19Þ

In this equation, we can see that the updated solution of

wcur is a weighted version of the current search point, u�,
and the previous search point, u�pre.

2.3 Iterative algorithm

With the optimization in the previous section, we sum-

marize the iterative algorithm to optimize the problem in

(13). The iterative algorithm is given in Algorithm 1.

Algorithm 1: FISTA with constant stepsize to optimize (13)
1. Input: L, a constant step-size;
2. Step 0: Take w1 = u0, τ1 = 1.
3. Step k (k ≥ 1):

(a) Update Λk according to (8) by fixing w = wk.
(b) Update yi k|ni=1 according to (11) by fixing w = wk.
(c) Update uk according to (17) by fixing wpre = wk, Λ = Λk, and yi =

yi k, i = 1, · · · , n.
(d) Updating τk according to (18) by fixing τk−1 = τpre.
(e) Updating wk according to (19) by fixing u∗ = uk, u∗

pre = uk−1, τcur =
τk, and τpre = τk−1.

4. Output: wk

In this algorithm, we can see that in each iteration, we

first update K and y00i j
n
i¼1 and then use them to update the

search point. With the search point and an updated

weighting factor, we update the mapping function param-

eter vector, w. This algorithm is called learning of sparse

maximum likelihood model (SMLM).

2.4 Scaling up to big data based on Hadoop

In this section, we discuss how to fit the proposed algo-

rithm to big data set. We assume that the number of the

training data points, n, is extremely large. One single

machine is not able to store the entire data set, and the data

set is split into m subsets and stored in m different clusters.

The clusters are managed by a big data platform, Hadoop

[4, 10, 25, 35]. Hadoop is a software of distributed data

management and processing. Given a large data set, it splits

it into subsets and stores them in different clusters. To

process the data and obtain a final output, it uses a

MapReduce framework [3, 6, 15, 24]. This framework

requires a Map program and a Reduce program from the

users. The Hadoop software delivers the Map program to

each cluster and uses it to process the subset to produce

Neural Comput & Applic (2017) 28:1057–1067 1061
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some median results and then uses the Reduce program to

combine the median results to produce the final outputs.

Using the MapReduce framework, by defining our own

Map and Reduce functions, we can implement the critical

steps in Algorithm 1. For example, in the sub-step (c) of

step k, we need to calculate uk from (17). In this step, the

most time-consuming step is to calculate the summation of

a function over all the data points,

output ¼
Xn

i¼1

y00i xi expð�y00i w>prexiÞ
1þ expð�y00i w>prexiÞ

�
yixi expð�yiw>prexiÞ
1þ expð�yiw>prexiÞ

 !

¼
Xn

i¼1
functionðxi; yi; y00i Þ; ð20Þ

where functionðxi;yi;y00i Þ ¼
y00i xi expð�y00i w>prexiÞ
1þexpð�y00

i
w>prexiÞ

� yixi expð�yiw>prexiÞ
1þexpð�yiw>prexiÞ

is the function applied to each data point. Since the entire

data set is split into m subsets, Xmjmj¼1, we can design a

Map function to calculate the summation over each subset

and then design a Reduce function to combine them to

obtain the final output. The Map and Reduce functions are

as follows.

Map function applied to the j-th subset

1. Input: Data points of the jth subset,

fðxi; yi; y00i Þgji:xi2X j
.

2. Input: Previous parameter, wpre.

3. Initialize: Outputj ¼ 0.

4. For i : xi 2 X j

(a) Outputj ¼ Outputj þ functionðxi; yi; y00i Þ;

5. Endfor

6. Output: Outputj

Reduce function to calculate the final output

1. Input: Median outputs of m Map functions,

Outputjjmj¼1.
2. Initialize: Output ¼ 0.

3. For j ¼ 1; . . .;m

(a) Output ¼ Output þ Outputj;

4. Endfor

5. Output: Output

3 Experiment

In this section, we evaluate the proposed SMLM for the

optimization of complex loss function. Three different

applications are considered, which are aircraft event

recognition, intrusion detection in wireless mesh networks,

and image classification.

3.1 Aircraft event recognition

Recognizing aircraft event of aircraft landing is an

important problem in the area of civil aviation safety

research. This procedure provides important information

for fault diagnosis and structure maintenance of aircraft

[32]. Given a landing condition, we want to predict whe-

ther it is normal and abnormal. To this end, we extract

some features and use them to predict the aircraft event of

normal or abnormal. In this experiment, we evaluate the

proposed algorithm in this application and use it as a model

for the prediction of aircraft event recognition.

3.1.1 Data set

In this experiment, we collect a data set of 160 data points.

Each data point is a landing condition, and we describe the

landing condition by five features, including vertical

acceleration, vertical speed, lateral acceleration, roll angle,

and pitch rate. The data points are classified into two

classes, normal class and abnormal. The normal class is

treated as positive class, while the abnormal class is treated

as negative class. The number of positive data points is

108, and the number of negative data points is 52.

3.1.2 Experiment setup

In this experiment, we use the tenfold cross-validation. The

data set is split into tenfolds randomly, and each fold

contains 16 data points. Each fold is used as a test set in

turn, and the remaining tenfolds are combined and used as

training set. The proposed model is training over the

training set and then used to predict the class labels of the

testing data points in the test set. The prediction results are

evaluated by a performance measurement. This perfor-

mance measurement is used to compare the true class

labels of the test data points against the predicted class

labels. In the training procedure, a complex loss function

corresponding to the performance measurement is

minimized.

In our experiments, we consider three performance

measurements, which are F-score, area under receiver

operating characteristic curve (AUROC), and precision–

recall curve break-even point (PRBEP). To define these

performance measures, we first need to define the follow-

ing items,

• true positive (TP), the number of correctly predicted

positive data points,

• true negative (TN), the number of correctly predicted

negative data points,

• false positive (FP), the number of negative data points

wrongly predicted to positive data points, and
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• false negative (FN), the number of positive data points

wrongly predicted to negative data points.

With these measures, we can define F-score as follows,

F ¼ 2� TP

2� TPþ FPþ FN
: ð21Þ

Moreover, we can also define true positive rate (TPR) and

the false positive rate (FPR) as follows,

TPR ¼ TP

TPþ FN
; FPR ¼ FP

FPþ TN
: ð22Þ

With different thresholds, we can have different pair of

TPR and FPR. By plotting TPR against FPR values, we

can have a curve of receiver operating characteristic

(ROC). The area under this curve is obtained as

AUROC. The recall and precision are defined as

follows,

recall ¼ TP

TPþ FN
; precision ¼ TP

TPþ FP
: ð23Þ

With different thresholds, we can also have different pair

of recall and precision values. We can obtain a recall–

precision (RP) curve, by plotting different precision values

against recall values. PRBEP is the value of the point of the

RP curve where recall and precision are equal to each

other.

3.1.3 Experiment result

We compare the proposed algorithm, SMLM, against

several state-of-the-art complex loss optimization meth-

ods, including support vector machine for multivariate

performance optimization ðSVMmultiÞ [9], classifier adap-
tation for multivariate performance optimization (CAPO)

[12], and features selection for multivariate performance

optimization ðFSmultiÞ [16]. The boxplots of the optimized

F-scores of tenfold cross-validation of different algo-

rithms on the aircraft event recognition problem are given

in Fig. 1, these of optimized AUROC are given in Fig. 2,

and these of the optimized PRBEP are given in Fig. 3.

From these figures, we can see that the proposed method,

SMLM, outperforms the compared algorithms on three

different optimized performances. For example, in Fig. 3,

we can see that the boxplot of PRBEP of SMLM is

significantly higher than that of other methods, the med-

ian value is almost 0.6, while that of other methods is

much lower than 0.6. In Fig. 2, we can also have similar

observation, and the overall AUROC values optimized by

SMLM are much higher than those of other methods. A

reason for this outperforming is that our method seeks the

maximum likelihood and sparsity of the model

simultaneously.
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Fig. 1 Boxplots of F-score of compared method on aircraft event

recognition problem
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Fig. 2 Boxplots of AUROC of compared method on aircraft event

recognition problem
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Fig. 3 Boxplots of PRBEP of compared method on aircraft event

recognition problem
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3.2 Intrusion detection in wireless mesh networks

Wireless mesh network (WMN) is a new generation tech-

nology of wireless networks, and it has been used in many

different applications. However, due to its openness in

wireless communication, it is vulnerable to intrusions, and

thus, it is extremely important to detect intrusion in WMN.

Given an attack record, the problem of intrusion detection

is to classify it to one of the following classes, denial

service attacks, detect attacks, obtain root privileges and

remote attack unauthorized access attacks. In this paper, we

use the proposed method, SMLM, for the problem intrusion

detection,

3.2.1 Data set

In this experiment, we use the KDD CPU1999 data set.

This data set contains 40,000 attack records, and for each

class, there are 10,000 records. For each record, we first

preprocess the record and then convert the features into

digital signature as the new features.

3.2.2 Experiment setup

In this experiment, we also use the tenfold cross-validation,

and we also use the F-score, AUROC, and PRBEP per-

formance measures.

3.2.3 Experiment result

The boxplots of the optimized F-scores of tenfold cross-

validation are given in Fig. 4, the boxplots of AUROC are

given in Fig. 5, and the boxplots of PRBEP are given in

Fig. 6. Similar to the results on aircraft event recognition

problem, the outperforming of the proposed algorithm,

SMLM, over other methods is also significant. This is a

strong evidence of the advantages of sparse learning and

maximum likelihood.

3.3 ImageNet image classification

In the third experiment, we use a large image set to test the

performance of the proposed algorithm with big data.

3.3.1 Data set

In this experiment, we use a large data set, ImageNet [11].

This data set contains over 15 million images, and the

images belong to 22,000 classes. These images are from

Web pages and are labeled by people manually. The entire
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Fig. 4 Boxplots of F-score of compared method on intrusion

detection problem
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Fig. 5 Boxplots of AUROC of compared method on aircraft event

recognition problem
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Fig. 6 Boxplots of PRBEP of compared method on aircraft event

recognition problem
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data set is split into three subsets, which are one training

set, one validation set, and one testing set. The training set

contains 1.2 million images, the validation set contains

50,000 images, and the testing set contains 150,000 ima-

ges. To represent each image, we use the bag-of-features

method. Local SIFT features are extracted from each image

and quantized to a histogram. The features can be down-

loaded directly from http://image-net.org/download-

features.

3.3.2 Experiment setup

In this experiment, we do not use the tenfold cross-vali-

dation, but use the given training/validation/testing set

splitting. We first perform the proposed algorithm to the

training set to learn the classifier, then use the validation set

to justify the optimal trade-off parameters, and finally test

the classifier over the testing set. The performances of F-

score, AUROC, and PRBEP are considered in this exper-

iment. To handle the multi-classification problem, we have

a binary classification problem for each class, and in this

problem, the considered class is a positive class, while the

combination of all other classes is a negative class.

3.3.3 Experiment results

The boxplots of the optimized F-score, AUROC, and

PRBEP of different classes are given in Figs. 7, 8, and 9.

From these figures, we clearly see that the proposed algo-

rithm outperforms the competing methods. This is another

strong evidence of the effectiveness of the SMLM algo-

rithm. Moreover, it also shows that the proposed algorithm

also works well over the big data.

3.4 Running time

The running time of the proposed algorithm on the three

used data sets is given in Fig. 10. It can be observed from this

figure that the first two experiments do not consume much

time, while the third large-scale data set-based experiment

costs a lot of time. This is natural, because in each iteration

of the algorithm, we have a function for each data point, and

a summation over the responses of this function.

4 Conclusion

In this paper, we investigate the problem of optimization of

complex corresponding to a complex multivariate perfor-

mance measure. We propose a novel predicative model to

solve this problem. This model is based on the maximum
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Fig. 7 Boxplots of F-score of compared method on ImageNet image

classification problem
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Fig. 8 Boxplots of AUROC of compared method on ImageNet image

classification problem
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Fig. 9 Boxplots of PRBEP of compared method on ImageNet image

classification problem
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likelihood of a class label tuple given an input data tuple.

To solve the model parameter, we propose an optimization

problem based on the approximation of the upper bound of

the loss function and the sparsity of the model. Moreover,

an iterative algorithm is developed to solve it. Experiments

on two real-world applications show its advantages over

state of the art.

Appendix

Proof of Theorem 1 According to (6), we have

y� ¼ argmax
y02Y

log
Yn

i¼1

1

1þ exp �y0iw>xið Þ

 !
;

) log
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1
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 !
� log
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i¼1

1
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 !
; 8y0 2 Y;

) log
Yn

i¼1

1
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 !
� log
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1
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 !
;

) log
Yn

i¼1

1
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� log
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i¼1

1

1þ exp �yiw>xið Þ

 !
� 0;

) log
Yn

i¼1

1

1þ exp �y�iw>xið Þ
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� log
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i¼1

1

1þ exp �yiw>xið Þ

 !

þ Dðy; y�Þ�Dðy; y�Þ;

)max
y02Y

log
Yn
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1

1þ exp �y0iw>xið Þ

 !
� log

Yn

i¼1

1

1þ exp �yiw>xið Þ

 !(

þDðy; y0Þg�Dðy; y�Þ;

ð24Þ

and thus we have (10).
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