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Abstract In this paper, the synchronization stability prob-

lem for a class of general complex dynamical networks with

interval time-varying coupling delay and delay in the

dynamical node is investigated. By dividing the delay interval

into two variable subintervals, slightly different Lyapunov–

Krasovskii functionals are constructed on these two subin-

tervals. Then several less conservative delay-dependent syn-

chronization stability criteria are derived in terms of linear

matrix inequality via reciprocally convex approach, which

can be easily solved by using the standard numerical software.

Numerical examples are given to illustrate the effectiveness

and less conservatism of the proposed method.

Keywords Complex dynamical networks �
Synchronization � Interval time-varying delay � Variable

delay-partitioning approach � Reciprocally convex

approach

1 Introduction

In the natural world, many practical systems can be mod-

eled by complex dynamical networks (CDNs), such as

internet, food webs, electric power grids, scientific citation

networks and social networks. A CDN usually contains a

large number of interconnected nodes, in which each node

represents an element with certain dynamical system and

edge represents the relationship between them. Due to the

wide and potential applications in various fields, CDNs

have attracted much attentation across many fields of sci-

ence and engineering during the past few decades [1–4].

It is very common that many natural systems can often

exhibit collective cooperative behaviors among their con-

stituents. Synchronization, as a typical collective behavior, is

a significant and interesting phenomenon in CDNs, which not

only can explain many natural phenomena, such as the light-

ing of fireflies and the spread of an epidemic, but also has

many potential applications in image processing, secure

communication, synchronous information exchange in the

internet, genetic regulatory process, as well as the syn-

chronous transfer of digital signals in communication net-

works. Up to now, much effort has been devoted to the study of

synchronization in large-scale networks by many researchers

[5–18]. In [5], the authors have shown that the synchroniz-

ability of a scale-free dynamical network is robust against

random removal of nodes but fragile to some specific removal

of nodes. In [6], the authors investigated the locally and

globally adaptive synchronization of an uncertain complex

dynamical network. The problem of globally exponential

synchronization of impulsive dynamical networks was

investigated in [7]. The pinning synchronization problems in

CDNs have been considered in [8–11]. Based on the input

delay method, the sampled data synchronization problems for

CDNs were investigated in [12–15]. By utilizing periodically

intermittent method, the synchronization problem of dynam-

ical networks was dealt in [16, 17]. The non-fragile synchro-

nization control for complex networks was discussed in [18].

As is known to all, due to the finite information transmis-

sion and processing speeds among the units, time-delayed

coupling is ubiquitous in real-world networks, such as com-

munication networks, biological neural networks, epidemio-

logical models, electrical power grids, and so on. In order to

give a more precise description of practical dynamical
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network, time-delayed coupling should be considered inevi-

tably. Therefore, much attention has been drawn to consider

the synchronization problem of CDNs with time-delayed

couplings. In the study of synchronization in CDN with cou-

pling delays, one of the fundamental problems is how to find

the maximum upper bound of the delay to guarantee the

synchronization by itself. This can be regarded as the delay-

dependent synchronization stability problem. In [19], both

continuous and discrete time network models with constant

coupling delays have been taken into consideration, and some

synchronization criteria were derived for both delay-inde-

pendent and delay-dependent asymptotical stability. In [20],

the authors developed several new delay-dependent syn-

chronization stability criteria for some general complex

dynamical network models with coupling delays. In [21], the

authors introduced a new Lyapunov–Krasovskii functional

(LKF) based on delay fractioning technique to derive

improved synchronization stability condition for complex

networks with constant coupling delays. In [22], local and

global synchronization problems in general complex

dynamical networks with delay coupling were analyzed, and

some simple synchronization criteria were given in terms of

linear matrix inequalities (LMIs). By using the free-weighting

matrix technique, the synchronization problem for some

general complex dynamical networks with time-varying

delays in the network couplings and time-varying delays in the

dynamical nodes were investigated in [23]. By using a

piecewise analysis method and convexity of matrix function

method, the synchronization stability problem has been

investigated for general CDNs with interval time-varying

delays in the dynamical nodes and the coupling term in [24].

Furthermore, the piecewise analysis method was used to study

the synchronization problem for continuous complex

dynamical networks with non-delayed and delayed coupling

in [25]. If the delayed complex dynamical network cannot

achieve asymptotic synchronization by itself, the authors in

[26] proposed a local linear feedback strategy to deal with the

problem. In [27], by using a simple local linear feedback

control strategy and reciprocally convex combination

approach, the problem of synchronization in complex

dynamic networks with interval time-varying coupling delays

has been considered. In [28], the authors dealt with the syn-

chronization of both continuous and discrete time CDN by

constructing a novel LKF and using the optimal partitioning

approach and reciprocally convex combination technique. By

choosing a suitable LKF and utilizing Finsler’s lemma, some

new synchronization criteria for fuzzy CDNs with interval

time-varying delays were established in [29]. The authors in

[30] considered the synchronization stability problem of a

class of neutral-type CDNs with interval time-varying cou-

pling delays and a pair of nonlinear constraints. However,

these mentioned results [23–27] for dynamical networks with

interval time-varying coupling delays are still conservative to

some extent, which leave open room for further improvement.

It is known that the real-world dynamical networks usu-

ally contain a large number of nodes. If the number of nodes

is big enough, it will lead to have a huge computation burden.

On the other hand, the more decision variables, the proposed

conditions involves, the bigger computational complexity

will be. Therefore, in view of practical application, it is of

great importance to find new synchronization conditions for

CDNs with time-varying coupling delays with less conser-

vatism and small computational complexity.

Motivated by the aforementioned discussion, this paper is

further considered the synchronization stability problem for

a general complex dynamical network with interval time-

varying coupling delay and delay in the dynamical node. By

developing a variable delay-partitioning approach, both the

information of the variable subinterval delay and the lower

and upper bound of delay can be taken into full considera-

tion. By constructing different LKFs on these two subinter-

vals and using reciprocally convex approach, some new and

improved delay-dependent synchronization stability condi-

tions are proposed in terms of LMIs, which can be solved

effectively by using MATLAB LMI Toolbox. Numerical

examples are given to demonstrate the effectiveness and less

conservatism of the obtained results.

Notations: Throughout this paper, Rn denotes the n-di-

mensional Euclidean space, Rm�n is the set of all m� n real

matrix. The notation P[ 0 (respectively, P\0), for P 2
Rn�n means that the matrix P is a real symmetric positive

definite (respectively, negative definite). The superscript

‘‘T’’ represents the transpose. The symmetric terms in a

symmetric matrix are denoted by *. Matrices, if their

dimensions are not explicitly stated, are assumed to have

compatible dimensions for algebraic operations.

2 Problem formulation

Consider a delayed CDN consisting of N identical nodes, in

which each node is an n-dimensional dynamical subsystem

_xiðtÞ ¼ f ðxiðtÞ; xiðt � sðtÞÞÞ þ c1

XN

j¼1

gijC1xjðtÞ

þ c2

XN

j¼1

gijC2xjðt � sðtÞÞ; i ¼ 1; 2; . . .;N; ð1Þ

where xi ¼ ðxi1; xi2; . . .; xinÞT 2 Rn is the state vector of the

ith node. f ð�Þ 2 Rn is a continuously differentiable vector

function. The constant cl [ 0 ðl ¼ 1; 2Þ denote the cou-

pling strength of non-delayed coupling and time-delayed

coupling, respectively. sðtÞ represents the time-varying

coupling delay, which satisfies

806 Neural Comput & Applic (2017) 28:805–815

123



s1 � sðtÞ� s2; ð2Þ

where s1 and s2 are known positive constants. Cl ¼
ðclijÞn�n 2 Rn�n ðl ¼ 1; 2Þ are the constant inner-coupling

matrix and the time-delayed inner-coupling matrix,

respectively. G ¼ ðgijÞ 2 RN�N is the coupling configura-

tion matrix, where gij is defined as follows: if there is a

connection between node i and node j ði 6¼ jÞ, then gij [ 0;

otherwise, gij ¼ 0, and the diagonal elements of matrix

G are defined by gii ¼ �
PN

j¼1;j 6¼i Gij; i ¼ 1; 2; . . .;N.

Remark 1 The coupling configuration matrix G can

always represent the topological structure of network. It

should be noted that the coupling configuration matrix

was assumed to be symmetric in [23–25], which is quite

restrictive in practice. However, in our network model

(1), the coupling configuration matrix G does not need to

be symmetric. Moreover, the non-delayed coupling and

delayed coupling simultaneously exist in our network

model. It means that there exists information communi-

cation of nodes not only at time t but also at time t � sðtÞ.
In effect, this phenomenon consists widely in our real

world. For example, in the stock market, decision-making

of single trader is influenced by that of others at time t as

well as at time t � sðtÞ. As a conclusion, the network

model considered here is more general than those in [23–

27].

Similar to Zhou et al. [27], suppose that network (1) is

connected in the sense that there are no isolated clusters,

that is, G is an irreducible matrix. According to the relevant

analysis in [22], since the row sums of G are all zero, it is

easy to find that zero is an eigenvalue of G with multi-

plicity 1. For simplicity, we assume that G has v�
1 ðv�NÞ different nonzero eigenvalues k2; . . .; kv.

Definition 1 ([27]) The delayed dynamical network (1) is

said to achieve asymptotic synchronization if

x1ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ as t ! 1; ð3Þ

where sðtÞ is a solution of an isolated node, satisfying

_sðtÞ ¼ f ðsðtÞ; sðt � sðtÞÞÞ.

Normally, the synchronization of network requires

xiðtÞ � sðtÞ ! 0 as t ! 1, i ¼ 1; 2; . . .;N. Let SðtÞ ¼
ðsðtÞ; sðtÞ; . . .; sðtÞÞT

be the synchronization state of net-

work (1). From Definition 1, when the network (1) can

achieve asymptotic synchronization, it means that

xiðtÞ � sðtÞ ! 0, and the synchronization state SðtÞ is

asymptotically stable in the state space. On the other hand,

if the synchronization state SðtÞ is asymptotically stable, it

is obvious that xiðtÞ � sðtÞ ! 0, and the time-vary-

ing delayed network (1) will realize asymptotic syn-

chronization. Therefore, the asymptotically stable of

synchronization state is equivalent to asymptotic synchro-

nization of network.

To proceed further, the following lemmas are needed,

which play an important role in the derivation of main

results.

Lemma 1 Consider the delayed dynamical network (1), if

the following v� 1 linear time-varying delayed differential

equations are asymptotic stable about their zero solutions

_gkðtÞ ¼ ðJ1ðtÞ þ c1kkC1ÞgkðtÞ þ ðJ2ðtÞ
þ c2kkC2Þgkðt � sðtÞÞ; k ¼ 2; . . .; v;

ð4Þ

where J1ðtÞ is the Jacobian of f ðxðtÞ; xðt � sðtÞÞÞ at sðtÞ,
J2ðtÞ is the Jacobian of f ðxðtÞ; xðt � sðtÞÞÞ at sðt � sðtÞÞ,
then the asymptotic synchronization of network (1) can be

achieved.

Proof Let eiðtÞ ¼ xiðtÞ � sðtÞ ði ¼ 1; 2; . . .;NÞ be the

synchronization error state. According to the Definition 1,

it is clear that the synchronization of delayed complex

dynamical network (1) is equivalent to eiðtÞ ! 0 as

t ! 1. Then, the error dynamics is given by

_eiðtÞ ¼ f ðxiðtÞ; xiðt � sðtÞÞÞ � f ðsðtÞ; sðt � sðtÞÞÞ

þ c1

XN

j¼1

gijC1ejðtÞ þ c2

XN

j¼1

gijC2ejðt � sðtÞÞ: ð5Þ

Because f ð�Þ is a continuously differentiable vector func-

tion, by linearizing the error system (5) and letting

eðtÞ ¼ ðe1ðtÞ; e2ðtÞ; . . .; eNðtÞÞ, we can obtain

_eðtÞ ¼ J1ðtÞeðtÞ þ J2ðtÞeðt � sðtÞÞ þ c1C1eðtÞGT

þ c2C2eðt � sðtÞÞGT:
ð6Þ

By using matrix theory and similar to Lu and Ho [22], we

have the following Jordan decomposition for matrix G:

GT ¼ UJU�1, where J ¼ diagfJ1; J2; . . .; Jvg is a block

diagonal matrix, and Jk is the Jordan block corresponding

to the mk multiple eigenvalues kk of G. Furthermore, let

gðtÞ ¼ eðtÞU, we have

_gðtÞ ¼ J1ðtÞgðtÞ þ J2ðtÞgðt � sðtÞÞ þ c1C1gðtÞJ
þ c2C2gðt � sðtÞÞJ;

ð7Þ

where gðtÞ¼ ðg1ðtÞ;g2ðtÞ; . . .;gvðtÞÞ, gkðtÞ¼ ðgk1ðtÞ; gk2ðtÞ;
. . .;gkmk

ðtÞÞ. From the assumption that k1 ¼ 0 with multi-

plicity 1, we have g1ðtÞ¼ 0. For k¼ 2; . . .;v, it holds that

_gkðtÞ ¼ ðJ1ðtÞ þ c1kkC1ÞgkðtÞ þ ðJ2ðtÞ
þ c2kkC2Þgkðt � sðtÞÞ:

Therefore, if the linear time-varying delayed differential

systems (4) are asymptotic stable about their zero solutions,

the dynamical network (1) can achieve synchronization.

This completes the proof.
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Lemma 2 ([31]) For any constant matrix Z ¼ ZT [ 0

and scalars h2 [ h1 [ 0 such that the following integra-

tions concerned are well defined, then

�
Z t�h1

t�h2

xTðsÞZxðsÞds�

� 1

ðh2 � h1Þ

Z t�h1

t�h2

xTðsÞdsZ
Z t�h1

t�h2

xðsÞds: ð8Þ

Lemma 3 ([32]) Let f1; f2; . . .; fN : Rm 7!R have positive

values in an open subset D of Rm. Then, the reciprocally

convex combination of fi over D satisfies

min
faijai [ 0;

P
i

ai¼1g

X

i

1

ai
fiðtÞ ¼

X

i

fiðtÞ þ max
gi;jðtÞ

X

i6¼j

gi;jðtÞ

ð9Þ

subject to

gi;j : Rm 7!R; gj;iðtÞ,gi;jðtÞ;
fiðtÞ gi;jðtÞ
gj;iðtÞ fjðtÞ

� �
� 0

� �
: ð10Þ

Since the outer-coupling matrix G is not assumed to be

symmetric, the eigenvalues kk ð1� k� vÞ may be nonzero

complex numbers and gkðtÞ should be treated as complex

vectors. To avoid the complex arithmetic, similar to [22,

27], let kk ¼ ak þ jbk and gk ¼ uk þ jvk be the solution of

system (4), in which j is the imaginary unit. Here, ak and bk
are the real part and imaginary part of the complex number

kk, respectively; uk and vk are the real part and imaginary

part of the complex vector gk, respectively. Then one has

_ukðtÞ ¼ ðJ1ðtÞ þ c1kkC1ÞukðtÞ þ ðJ2ðtÞ þ c2akkkC2Þ
� ukðt � sðtÞÞ � ðJ2ðtÞ þ c2bkkkC2Þvkðt � sðtÞÞ;

ð11Þ
_vkðtÞ ¼ ðJ1ðtÞ þ c1kkC1ÞvkðtÞ þ ðJ2ðtÞ þ c2akkkC2Þvk

� ðt � sðtÞÞ � ðJ2ðtÞ þ c2bkkkC2Þukðt � sðtÞÞ:
ð12Þ

Letting

wkðtÞ ¼
ukðtÞ
vkðtÞ

� �
;

KkðtÞ ¼
J2ðtÞ þ c2akkkC2 �ðJ2ðtÞ þ c2bkkkC2Þ

�ðJ2ðtÞ þ c2bkkkC2Þ J2ðtÞ þ c2akkkC2

� �
;

and

�JkðtÞ ¼
J1ðtÞ þ c1kkC1 0

0 J1ðtÞ þ c1kkC1

� �
;

it can be achieved from (8) and (9) that

_wkðtÞ ¼ �JkðtÞwkðtÞ þ KkðtÞwkðt � sðtÞÞ; k ¼ 1; . . .; v� 1:

ð13Þ

Clearly, wkðtÞ is real vector, i.e., wkðtÞ 2 R2n. The syn-

chronization problem of the delayed complex network (1)

has been equivalently converted into the asymptotical sta-

bility problem of system (13) about zero solution. Therefore,

our attention will focus on deriving delay-dependent stability

criteria for system (13) with interval time-varying delay.

3 Main results

In this section, we are in the position to propose several

delay-dependent stability conditions for delayed system

(13), which can guarantee the asymptotic synchronization

of considered network (1).

Theorem 1 For given scalars s2 [ s1 [ 0, 0\a\1, if

there exist matrices Pk [ 0, Qkj [ 0, Rkj [ 0 and Si ðk ¼
2; . . .; v; i ¼ 1; 2; j ¼ 1; 2Þ with appropriate dimensions

such that the following LMIs hold

Rk2 Si
� Rki

� �
� 0; ð14Þ

Xki ¼

X11 Rk1 X13 0

� X22 X23 Si
� � X33 X34

� � � X44

2

664

3

775\0; ð15Þ

where

X11 ¼ Pk
�JkðtÞ þ �JTðtÞPk þ Qk1 þ �JT

k ðtÞHki
�JkðtÞ � Rk1;

X13 ¼ PkKkðtÞ þ �JT
k ðtÞHkiKkðtÞ;X22 ¼ Qk2 � Qk1 � Rk1 � Rk2;

X23 ¼ Rk2 � Si;X33 ¼ KT
k ðtÞHkiKkðtÞ � 2Rk2 þ Si þ ST

i

X34 ¼ Rk2 � Si;X44 ¼ �Qk2 � Rk2; sd ¼ s1 þ aðs2 � s1Þ;
Hk1 ¼ s2

1Rk1 þ a2ðs2 � s1Þ2
Rk2;Hk2 ¼ s2

dRk1 þ ð1 � aÞ2ðs2 � s1Þ2
Rk2;

then the asymptotic synchronization of delayed complex

dynamical network (1) is achieved.

Proof Let us divide the delay interval ½s1; s2� into two

segments: ½s1; sd� and ½sd; s2�. If we can prove that The-

orem 1 holds for two cases, s1 � sðtÞ� sd and

sd � sðtÞ� s2, then Theorem 1 is true.

Case 1 When sðtÞ 2 ½s1; sd�, we consider the following

Lyapunov–Krasovskii functional candidate

Vk1ðtÞ ¼ wT
k ðtÞPkwkðtÞ þ

Z t

t�s1

wT
k ðsÞQk1wkðsÞds

þ
Z t�s1

t�sd

wT
k ðsÞQk2wkðsÞds

þ s1

Z 0

�s1

Z t

tþh
_wT
k ðsÞRk1 _wðsÞkdsdhþ ðsd � s1Þ

�
Z �s1

�sd

Z t

tþh
_wT
k ðsÞRk2 _wkðsÞdsdh: ð16Þ
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Taking the time derivative of Vk1ðtÞ with respect to t along

the trajectories of system (13) yields

_Vk1ðtÞ ¼ 2wT
k ðtÞPk _w

T
k ðtÞ þ wT

k ðtÞQk1wkðtÞ þ wT
k ðt � s1Þ

� ðQk2 � Qk1Þwkðt � s1Þ
� wT

k ðt � sdÞQk2wkðt � sdÞ þ _wT
k ðtÞ

� ðs2
1Rk1 þ ðsd � s1Þ2

Rk2Þ _wkðtÞ

� s1

Z t

t�s1

_wT
k ðsÞRk1 _wkðsÞds� ðsd � s1Þ

�
Z t�s1

t�sd

_wT
k ðsÞRk2 _wkðsÞds

¼ 2wT
k ðtÞPk

�JðtÞwkðtÞ þ KkðtÞwkðt � sðtÞÞð Þ
þ wT

k ðtÞQk1wkðtÞ
þ wT

k ðt � s1ÞðQk2 � Qk1Þwkðt � s1Þ
� wT

k ðt � sdÞQk2wkðt � sdÞ
þ �JðtÞwkðtÞ þ KkðtÞwkðt � sðtÞÞð ÞT

�Hk2
�JðtÞwkðtÞ þ KkðtÞwkðt � sðtÞÞð Þ

� s1

Z t

t�s1

_wT
k ðsÞRk1 _wkðsÞds� ðsd � s1Þ

�
Z t�s1

t�sd

_wT
k ðsÞRk2 _wkðsÞds: ð17Þ

Using Lemma 2, one has

�s1

Z t

t�s1

_wT
k ðsÞRk1 _wkðsÞds�

� wkðtÞ � wkðt � s1Þ½ �TRk1 wkðtÞ � wkðt � s1Þ½ �: ð18Þ

According to Lemma 3, if (14) is satisfied, one can get

� ðsd � s1Þ
Z t�s1

t�sd

_wT
k ðsÞRk2 _wkðsÞds

¼ �ðsd � s1Þ
Z t�s1

t�sðtÞ
_wT
k ðsÞRk2 _wkðsÞds� ðsd � s1Þ

�
Z t�sðtÞ

t�sd

_wT
k ðsÞRk2 _wkðsÞds

� � sd � s1

sðtÞ � s1

Z t�s1

t�sðtÞ
_wT
k ðsÞdsRk2

�
Z t�s1

t�sðtÞ
_wkðsÞds�

sd � s1

sd � sðtÞ

Z t�sðtÞ

t�sd

_wT
k ðsÞdsRk2

�
Z t�sðtÞ

t�sd

_wkðsÞds

� �
wkðt � s1Þ � wkðt � sðtÞÞ

wkðt � sðtÞÞ � wkðt � sdÞ

" #T
Rk2 Si

� Rk2

� �

wkðt � s1Þ � wkðt � sðtÞÞ

wkðt � sðtÞÞ � wkðt � sdÞ

" #
:

ð19Þ

From (17) to (19), one can obtain

_Vk1ðtÞ� vT
k1Xk1vk1ðtÞ; ð20Þ

where vk1ðtÞ¼ðwT
k ðtÞ;wT

k ðt�s1Þ;wT
k ðt�sðtÞÞ; wT

k ðt�sdÞÞT
.

Therefore, if the LMI in (15) with i¼1 holds, one can

conclude that _Vk1ðtÞ\0 is satisfied, which implies that

system (13) is asymptotically stable.

Case 2 When sðtÞ 2 ½sd; s2�, we consider the following

Lyapunov–Krasovskii functional candidate

Vk2ðtÞ ¼ wT
k ðtÞPkwkðtÞ þ

Z t

t�sd

wT
k ðsÞQk1wkðsÞds

þ
Z t�sd

t�s2

wT
k ðsÞQk2wkðsÞds

þ sd

Z 0

�sd

Z t

tþh
_wT
k ðsÞRk1 _wðsÞkdsdhþ ðs2 � sdÞ

�
Z �si

�siþ1

Z t

tþh
_wT
k ðsÞRk2 _wkðsÞdsdh:

ð21Þ

Defining vk2ðtÞ ¼ ðwT
k ðtÞ; wT

k ðt � sdÞ; wT
k ðt � sðtÞÞ;

wT
k ðt � s2ÞÞT

, and using a proof process similar to that for

Case 1, if (15) with i ¼ 2 is satisfied, then system (13) is

asymptotically stable according to Lyapunov stability

theory. By using Lemma 1, we know that the synchro-

nization of dynamical network (1) is equivalent to the

stability of system (13) about zero solution. Thus, the

asymptotic synchronization of network (1) is achieved.

This completes the proof.

Remark 2 In [24, 25, 27], by employing the delay

decomposition approach, the delay interval was divi-

ded into two equidistant subintervals and a united LKF

was chosen to obtain less conservative results. How-

ever, in our study, the delay interval ½s1; s2� was first

partitioned into two variable subintervals, ½s1; sd� and

½sd; s2�, in which sd ¼ s1 þ aðs2 � s1Þ and 0\a\1 is a

tunable parameter, and slightly different LKF was

constructed for each subinterval. This treatment is

different from [24, 25, 27]. Though these two

approaches are more effective in the reduction in

conservatism, the derived conditions based on the

former become more complicated and the computa-

tional cost grow bigger as the delay-decomposing

number increases, while the latter result in some

simple conditions with slightly different forms and low

computational complexity. On the other hand, it is

worthy mentioning that if the tunable parameter a
changes, the calculated maximum allowable upper

bound on s2 may be different. The merit and reduced

conservatism of our approach will be demonstrated by

numerical examples in the next section.
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In Theorem 1, it has been supposed that s1 [ 0. When

s1 ¼ 0, the following corollary is easily established fol-

lowing the same line as in the proof of Theorem 1.

Corollary 1 For given scalars s2 [ 0, 0\a\1, if there

exist matrices Pk [ 0, Qkj [ 0, Zkj [ 0 and Siðk ¼
2; . . .; v; j ¼ 1; 2Þ with appropriate dimensions such that

(14) and the following LMIs hold

X̂k1 ¼
R11 R12 S1

� R22 Rk2 � S1

� � �Qk2 � Rk2

2
4

3
5\0; ð22Þ

X̂k2 ¼
X̂11 Rk1 X̂13 0

� X22 X23 Si
� � X̂33 X34

� � � X44

2
664

3
775\0; ð23Þ

where

R11 ¼ Pk
�JkðtÞ þ �JTðtÞPk þ �JT

k ðtÞĤk1
�JkðtÞ þ Qk2 � Rk2;

R12 ¼ PkKkðtÞ þ �JT
k ðtÞĤk1KkðtÞ þ Rk2 � S1;

R22 ¼ KT
k ðtÞĤk1KkðtÞ � 2Rk2 þ S1 þ ST

1 ;

X̂11 ¼ Pk
�JkðtÞ þ �JT

k ðtÞPk þ Qk1 þ �JT
k ðtÞĤk2

�JkðtÞ
� Rk1; X̂13 ¼ PkKkðtÞ þ �JT

k ðtÞĤk2KkðtÞ;
X̂33 ¼ KT

k ðtÞĤk2KkðtÞ � 2Rk2 þ Si þ ST
i ;

Ĥk1 ¼ a2s2
2Rk2; Ĥk2 ¼ ð1 � aÞ2s2

2ðRk1 þ Rk2Þ;

and the other terms have the same forms as those in The-

orem 1, then the asymptotic synchronization of delayed

complex dynamical network (1) is achieved.

Proof Substituting s1 ¼ 0, for sðtÞ 2 ½s1; sd�, the integral

terms
R t

t�s1
wT
k ðsÞQk1wkðsÞds and s1

R 0

�s1

R t

tþh _wT
k ðsÞ

Rk1 _wðsÞkdsdh disappear from the Lyapunov–Krasovskii

functional. It is clear that when sðtÞ 2 ½s1; sd�, all results

still hold by removing all the terms with the variables Qk1

and Rk1. When sðtÞ 2 ½sd; s2�, the proof can be made in a

similar way to that of Theorem 1. This is omitted here.

In addition, if the outer-coupling matrix G is symmetric,

i.e., G ¼ GT, we can easily obtain the following corollaries

according to Theorem 1 and Corollary 1.

Corollary 2 Suppose G ¼ GT, for given scalars

s2 [ s1 [ 0, 0\a\1, if there exist matrices Pk [ 0,

Qkj [ 0, Rkj [ 0 and Siðk ¼ 2; . . .; v; i ¼ 1; 2; j ¼ 1; 2Þ with
appropriate dimensions such that (14) and the following

LMIs hold

~Xki ¼

~X11 Rk1
~X13 0

� X22 X23 Si
� � ~X33 X34

� � � X44

2

664

3

775\0; ð24Þ

where

~X11 ¼ PkðJ1ðtÞ þ c1kkC1Þ þ ðJ1ðtÞ þ c1kkC1ÞT
Pk þ Qk1

þ ðJ1ðtÞ þ c1kkC1ÞTðtÞHkiðJ1ðtÞ þ c1kkC1Þ � Rk1;

~X13 ¼ PkðJ2ðtÞ þ c2kkC2Þ þ ðJ1ðtÞ þ c1kkC1ÞTHkiðJ2ðtÞ þ c2kkC2Þ;
~X33 ¼ ðJ2ðtÞ þ c2kkC2ÞTðtÞHkiðJ2ðtÞ þ c2kkC2Þ � 2Rk2 þ Si þ ST

i ;

and the other terms have the same forms as those in The-

orem 1, then the asymptotic synchronization of delayed

complex dynamical network (1) is achieved.

Corollary 3 Suppose G ¼ GT, for given scalars s2 [ 0,

0\a\1, if there exist matrices Pk [ 0, Qkj [ 0, Zkj [ 0

and Siðk ¼ 2; . . .; v; j ¼ 1; 2Þ with appropriate dimensions

such that (11) and the following LMIs hold

�Xk1 ¼
�R11

�R12 S1

� �R22 Rk2 � S1

� � �Qk2 � Rk2

2

4

3

5\0; ð25Þ

�Xk2 ¼

�X11 Rk1
�X13 0

� X22 X23 Si
� � �X33 X34

� � � X44

2
664

3
775\0; ð26Þ

where

�R11 ¼ PkðJ1ðtÞ þ c1kkC1Þ þ ðJ1ðtÞ þ c1kkC1ÞT
Pk þ Qk2

� Rk2 þ h2
dðJ1ðtÞ þ c1kkC1ÞT

Rk2ðJ1ðtÞ þ c1kkC1Þ;
�R12 ¼ PkðJ2ðtÞ þ c2kkC2Þ þ h2

dðJ1ðtÞ þ c1kkC1ÞT
Rk2ðJ2ðtÞ

þ c2kkC2Þ þ Rk2 � S1;

�R22 ¼ h2
dðJ2ðtÞ þ c2kkC2ÞT

Rk2ðJ2ðtÞ þ c2kkC2Þ
� 2Rk2 þ S1 þ ST

1 ;

�X11 ¼ PkðJ1ðtÞ þ c1kkC1Þ þ ðJ1ðtÞ þ c1kkC1ÞT
Pk þ Qk1

� Rk1 þ ðJ1ðtÞ þ c1kkC1ÞTĤkiðJ1ðtÞ þ c1kkC1Þ;
�X13 ¼ PkðJ2ðtÞ þ c2kkC2Þ þ ðJ1ðtÞ þ c1kkC1ÞT

ĤkiðJ2ðtÞ þ c2kkC2Þ;
�X33 ¼ ðJ2ðtÞ þ c2kkC2ÞTĤkiðJ2ðtÞ þ c2kkC2Þ

� 2Rk2 þ Si þ ST
i ;

and the other terms have the same forms as those in The-

orem 1 and Corollary 1, then the asymptotic synchro-

nization of delayed complex dynamical network (1) is

achieved.

Remark 3 Since the actual networks may have a great

deal of nodes, it is important to consider the computation

burden when establishing synchronization conditions.

Otherwise, it will be very difficult to use in practical

applications. In the proof of Theorem 1, when the delay

varies in each variable subinterval, reciprocally convex
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approach, which achieved performance behavior identical

to approaches based on the integral inequality lemma but

with much less decision variables, was adopted to deal with

the crossing terms, �ðsd � s1Þ
R t�s1

t�sd
_wT
k ðsÞRk2 _wkðsÞds and

�ðs2 � sdÞ
R t�sd
t�s2

_wT
k ðsÞRk2 _wkðsÞds. Compared with the free-

weighting matrix method [24, 25], the number of decision

variables in Theorem 1 will dramatically reduce. Table 1

provides a comparison of the numbers of the decision

variables involved in Corollary 2 against some recently

reported results in [23–25, 27], which shows that the our

method has less computational complexity.

Remark 4 In this paper, the variable decomposition

method may lead to reduction in conservatism if being able

to set a suitable dividing point with relation to a. How to

seek an appropriate a such that one can obtain the maxi-

mum upper bound on s2 for given lower bound s1 of time

delay, we put forward a simple algorithm as follows.

Algorithm 1 (maximizing s2 for a given s1)

Step 1: For given s1, choose an upper bound on s2 in the existing

literatures, and then select this upper bound as the initial value

s2ð0Þ of s2.

Step 2: Set appropriate step lengths, s2;step and astep step for s2 and

a, respectively. Set k as a counter, and k ¼ 1. Let s2 ¼ s2ð0Þ þ
s2;step and the initial value a0 ¼ astep.

Step 3: Let a ¼ kastep, if the LMIs in (12) and (13) are feasible, go

to step 4; otherwise, go to step 5.

Step 4: Let s2ð0Þ ¼ s2, a0 ¼ astep, k ¼ 1, and s2 ¼ s2ð0Þ þ s2;step,

go to step 3.

Step 5: Let k ¼ k þ 1, if kastep\1, then go to step 3; otherwise,

stop.

4 Numerical examples

In this section, four numerical examples are given to

demonstrate the effectiveness and less conservativeness of

the proposed method.

Example 1 ([25]) Consider 5-node complex dynamical

network, with each node being a simple three-dimensional

linear delayed system

_x1ðtÞ ¼ �x1ðtÞ � x1ðt � sðtÞÞ
_x2ðtÞ ¼ �2x2ðtÞ þ x1ðt � sðtÞÞ � x2ðt � sðtÞÞ
_x3ðtÞ ¼ �3x3ðtÞ � x3ðt � sðtÞÞ

8
><

>:

which is asymptotically stable at the equilibrium point

sðtÞ ¼ 0, and its Jacobin matrices are

J1ðtÞ ¼
�1 0 0

0 �2 0

0 0 �3

2
4

3
5; J2ðtÞ ¼

�1 0 0

1 �1 0

0 0 �1

2
4

3
5:

For simplicity, we suppose that the coupling strength is

c1 ¼ c2 ¼ c, the inner-coupling matrix is C1 ¼ C2 ¼ I3,

and the outer-coupling matrix is

G ¼

�2 1 0 0 1

1 �3 1 1 0

0 1 �2 1 0

0 1 1 �3 1

1 0 0 1 �2

2
66664

3
77775
:

By simple calculation, the nonzero eigenvalues of G are

k1 ¼ �1:382, k2 ¼ �2:382, k3 ¼ �3:168, and

k4 ¼ �4:168.

For a comparison with the results in [25], Table 3 lists

the corresponding maximum upper delay bounds of s2 for

various s1 and c. From Table 2, it is clear that our results

are significantly better than those in [25], that is much

bigger upper bounds of s2 can be obtained in this paper.

Moreover, it is found that the calculated maximum

allowable upper bound on s2 may be different as the tun-

able parameter a is different. Therefore, we can acquire a

bigger upped bound of s2 by adjusting the tunable

parameter a. Figure 1 shows the state response of the

dynamical network for c ¼ 0:5 and sðtÞ ¼ 0:3 þ
0:532 cosðtÞj j under randomly chosen initial conditions in

½�2; 2�. Clearly, it can be seen that the synchronization of

network is achieved under the above conditions, which

verifies the effectiveness of the proposed method.

Table 1 No. of decision variables by different methods

Methods No. of decision variables

Theorem 1 in [23] ð11:5nþ 2:5ÞnðN � 1Þ
Theorem 1 in [24] ð7:5nþ 3:5ÞnðN � 1Þ
Theorem 3 in [25] ð9:5nþ 4:5ÞnðN � 1Þ
Corollary 2 in [27] ð5:5nþ 3:5Þnðv� 1Þ þ 1

Corollary 2 ð3:5nþ 2:5Þnðv� 1Þ þ 1

Table 2 Maximum allowable s2 for different s1 and c for Example 1

s1 Methods c = 0.1 c = 0.3 c = 0.5

0 [25] 1.485 0.910 0.656

Corollary 3 (a = 0.5) 1.497 0.917 0.661

Corollary 3 (a = 0.55) 1.559 0.955 0.688

0.1 [25] 1.497 0.921 0.666

Corollary 2 (a = 0.5) 1.536 0.957 0.702

Corollary 2 (a = 0.55) 1.600 0.997 0.731

0.3 [25] 1.514 0.941 0.700

Corollary 2 (a = 0.5) 1.622 1.050 0.802

Corollary 2 (a = 0.55) 1.689 1.092 0.832
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Example 2 ([24, 27]) Consider a lower-dimensional

dynamical network consisting of 5 nodes, in which each

node being a simple three-dimensional linear system

_x1ðtÞ ¼ �x1ðtÞ
_x2ðtÞ ¼ �2x2ðtÞ
_x3ðtÞ ¼ �3x3ðtÞ

8
><

>:

which is asymptotically stable at the equilibrium point

sðtÞ ¼ 0, and its Jacobin matrices are

J1ðtÞ ¼
�1 0 0

0 �2 0

0 0 �3

2
4

3
5; J2ðtÞ ¼ 0:

Assume that the constant inner-coupling matrix is C1 ¼ 0,

the time-delayed inner- coupling matrix is C2 ¼ I3, and the

outer-coupling matrix is the same as that in Example 1.

The purpose of this example is to calculate the maxi-

mum allowable s2 such that the consider network model (1)

is asymptotically stable for given s1 and c. The comparison

among the results obtained in this paper and those obtained

in [23, 24, 27] are listed in Table 3. It is clear that our

results are less conservative than those in [23, 24, 27].

Furthermore, a bigger upped bound of s2 can be achieved

by adjusting the tunable parameter a. Figure 2 depicts the

state response of the dynamical network for c ¼ 0:5 and

sðtÞ ¼ 0:5 þ 1:035 sin tj j under randomly chosen initial

conditions in ½�2; 2�. It shows that the all states converge to

zero under the above conditions, which implies the syn-

chronization of network (1) can be obtained.

Example 3 ([26]) Consider a lower-dimensional dynam-

ical network with five nodes, in which each node is a

simple second-dimensional linear system

_x1ðtÞ ¼ �4x1ðtÞ
_x2ðtÞ ¼ �5x2ðtÞ

(

which is asymptotically stable at the equilibrium point

sðtÞ ¼ 0, and its Jacobin matrices are

J1ðtÞ ¼
�4 0

0 �5

� �
; J2ðtÞ ¼

0 0

0 0

� �
:

We assume that the constant inner-coupling matrix is

C1 ¼ 0, the time-delayed inner- coupling matrix is C2 ¼ I2,

and the outer-coupling matrix is

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i1
(t)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i2
(t)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i3
(t)

Fig. 1 State response of network in Example 1

Table 3 Maximum allowable s2 for various s1 and c for Example 2

s1 Methods c = 0.3 c = 0.4 c = 0.5

0 [23] 0.960 0.710 0.562

[24] 1.345 0.950 0.731

[27] 1.385 0.958 0.731

Corollary 3 (a = 0.5) 1.388 0.961 0.731

Corollary 3 (a = 0.6) 1.432 0.976 0.735

0.1 [24] 1.354 0.951 0.731

[27] 1.394 0.968 0.739

Corollary 2 (a = 0.5) 1.405 0.968 0.733

Corollary 2 (a = 0.6) 1.454 0.983 0.738

0.5 [24] 1.389 0.967 0.740

[27] 1.396 0.968 0.740

Corollary 2 (a = 0.5) 1.485 1.007 0.763

Corollary 2 (a = 0.6) 1.535 1.022 0.770

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i1
(t)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i2
(t)

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 t

 x
i3
(t)

Fig. 2 State response of network in Example 2
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G ¼

�5 3 1 1 0

0 �4 3 1 0

1 0 �1 0 0

0 1 0 �2 1

1 0 0 2 �3

2
66664

3
77775
:

which is asymmetric. The nonzero eigenvalues of G are

k1 ¼ �1:0756, k2 ¼ �4:8 þ 1:2118j, k3 ¼ �4:8 �1:2118j,

and k4 ¼ �4:3243.

For different lower bound s1 and coupling strength c, the

corresponding maximum upper bounds of s2 are obtained

by using the method in this paper and those in [26] are

listed in Table 4. According to the Table 4, it shows that

our proposed method in this paper can lead to less con-

servative results. Moreover, we can find that different

upped bound of s2 can be obtained if the tunable parameter

a changes. Figure 3 depicts the state response of the

dynamical network for c ¼ 0:6 and sðtÞ ¼ 0:3 þ 0:9 sinðtÞj j
under randomly chosen initial conditions in ½�2; 2�.
Obviously, as seen in Fig. 3, the states of network (1) are

asymptotically stable at zero equilibrium points under the

above conditions. The numerical simulation result shows

the validity of our theoretical analysis.

Example 4 Consider a higher-dimensional network with

50 nodes, where each node is the following delayed system

_x1ðtÞ ¼ x2ðtÞ � x1ðt � sðtÞÞ
_x2ðtÞ ¼ �x1ðtÞ � x2ðtÞð1 þ x2ðtÞÞ2 þ 0:5x1ðt � sðtÞÞ

� 0:1x2ðt � sðtÞÞ

8
><

>:

which is asymptotically stable at sðtÞ ¼ 0 and

sðt � sðtÞÞ ¼ 0, and its Jacobin matrices are

J1ðtÞ ¼
0 1

�1 �1

� �
; J2ðtÞ ¼

�1 0

0:5 �0:1

� �

Assume that the coupling strength is c1 ¼ c2 ¼ c, the

inner-coupling matrix is C1 ¼ C2 ¼ I2, and the outer-cou-

pling matrix is defined as

G ¼

�1 1 0 0 � � � 0

1 �1 0 0 � � � 0

0 0 �1 1 � � � 0

..

. ..
. ..

. ..
.

� � � ..
.

0 0 0 0 �1 1

0 0 0 0 1 �1

2

6666664

3

7777775

50�50

:

The nonzero eigenvalues of G are ki ¼ �2ði ¼ 1; . . .; 25Þ.
We can calculate the maximum delay bounds s2 that

guarantee the asymptotic stability of the synchronized

states by Theorem 1 for different values of the coupling

strength c and lower bound s1, which are listed in Table 5.

From Table 5, it indicates that the tunable parameter a is

useful in the reduction in conservatism. Figure 4 shows the

state response of the dynamical network for c ¼ 0:5 and

sðtÞ ¼ 0:5 þ 0:52 cos tj j under randomly chosen initial

conditions in ½�5; 5�. As shown in Fig. 4, the trajectories of

states converge to zero and the synchronization is achieved

under the above conditions.

5 Conclusion

This paper is concerned with the synchronization stability

problem for a general complex dynamical network with

interval time-varying coupling delay and delay in the

dynamical node. Based on the variable delay-partitioning

approach, both the information of the variable subinterval

delay and the lower and upper bound of delay can be taken

Table 4 Maximum allowable s2 for different s1 and c for Example 3

s1 Methods c = 0.6 c = 0.8 c = 1

0 [26] 0.334 0.250 0.200

Corollary 1 (a = 0.5) 0.903 0.542 0.390

Corollary 1 (a = 0.6) 0.859 0.561 0.405

0.1 Theorem 1 (a = 0.5) 1.001 0.585 0.414

Theorem 1 (a = 0.6) 0.934 0.610 0.433

0.3 Theorem 1 (a = 0.5) 1.201 0.694 0.480

Theorem 1 (a = 0.6) 1.079 0.712 0.494

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

 t

 x
i1
(t)

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

 t

 x
i2
(t)

Fig. 3 State response of network in Example 3

Table 5 Maximum allowable s2 for different s1 and c for Example 4

s1 Methods c = 0.3 c = 0.4 c = 0.5

0 Corollary 3 (a = 0.5) 1.072 0.980 0.902

Corollary 3 (a = 0.6) 1.088 1.001 0.924

0.5 Corollary 2 (a = 0.5) 1.126 1.053 0.992

Corollary 2 (a = 0.6) 1.150 1.081 1.021
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into full consideration. By choosing different Lyapunov–

Krasovskii functionals for these two subintervals and using

reciprocally convex approach, some improved delay-de-

pendent synchronization stability conditions are proposed

by a set of linear matrix inequalities. Numerical examples

show the validity of the theoretical results.
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