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Abstract Breast cancer is one of the primary causes of

death among the women worldwide, and the accurate

diagnosis is one of the most significant steps in breast

cancer treatment. Data mining techniques can support

doctors in diagnosis decision-making process. In this paper,

we present different data mining techniques for diagnosis

of breast cancer. Two different Wisconsin Breast Cancer

datasets have been used to evaluate the system proposed in

this study. The proposed system has two stages. In the first

stage, in order to eliminate insignificant features, genetic

algorithms are used for extraction of informative and sig-

nificant features. This process reduces the computational

complexity and speed up the data mining process. In the

second stage, several data mining techniques are employed

to make a decision for two different categories of subjects

with or without breast cancer. Different individual and

multiple classifier systems were used in the second stage in

order to construct accurate system for breast cancer clas-

sification. The performance of the methods is evaluated

using classification accuracy, area under receiver operating

characteristic curves and F-measure. Results obtained with

the Rotation Forest model with GA-based 14 features show

the highest classification accuracy (99.48 %), and when

compared with the previous works, the proposed approach

reveals the enhancement in performances. Results obtained

in this study have potential to open new opportunities in

diagnosis of breast cancer.

Keywords Logistic Regression � Decision Trees �
Random Forest � Bayesian Network �Multilayer Perceptron

(MLP) � Radial Basis Function Networks (RBFN) � Support
Vector Machine (SVM) � Rotation Forest � Breast cancer
diagnosis � Genetic algorithm (GA)

1 Introduction

Breast cancer is the most frequent cancer in females

worldwide, encompassing 15 % of all female cancers. In

2012, 521,000 deaths were due to breast cancer. In spite of

some risk, shortening might be accomplished with pre-

vention; these approaches cannot lessen the most of breast

cancers diagnosed in very late stages. As a result, early

detection is the cornerstone of breast cancer control to

improve breast cancer survival [57].

Mammography and fine-needle aspiration cytology

(FNAC) are typically used diagnostic techniques, but these

techniques have a lack of satisfying diagnostic perfor-

mances. There is no hesitation that assessment of data

obtained from patients’ and doctors’ decisions is the most

valuable elements in diagnosis. Together with mammog-

raphy and FNAC, different data mining techniques can be

supportive tool in doctors’ diagnosis and decision making;

as a result, improved diagnosis system can be obtained. In

regard to the above-mentioned requirements, data mining

techniques can be utilized to facilitate improvement of the

diagnostic systems. With using automatic diagnostic sys-

tems, the probable doctor mistakes during diagnosis can be

eliminated, and the medical statistics can be analyzed in
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more detail in a less amount of time. The purpose of this

study is to establish an accurate automatic diagnostic sys-

tem which can distinguish among benign breast tumors

from malignant cancers. To solve this task, different data

mining techniques were applied and their performances

were evaluated and compared. These techniques include

Logistic Regression, Decision Trees, Random Forest,

Bayesian Network, Multilayer Perceptron (MLP), Radial

Basis Function Networks (RBFN) and Support Vector

Machine (SVM).

Selection of the most significant and informative fea-

tures and removal of the remaining features (or in other

words compression of original feature set to smaller set)

are one of the most important tasks in design of the

efficient classification model. Therefore, in order to con-

struct an efficient breast cancer diagnosis dataset, there is

a need for a method which will efficiently extract the

most informative features given following constraint:

Lack of any previous familiarity with information con-

tained within the original data set and significance of the

original features should be preserved. Genetic algorithms

(GAs) may be employed as a tool to determine infor-

mation dependencies and decrease the number of features

in a dataset by simply structural techniques [37]. GA can

be seen as data compression algorithm which eliminates

unwanted features and chooses a feature subset having the

equal discernibility as the initial set of features, resulting

in better classification performances [9]. One of the main

goals of this study is to use advantages of GA in feature

reduction in the breast cancer data in constructing auto-

matic diagnosis system. New dataset obtained after GA is

fed as input to different classifiers. Our proposed

approach has two stages. During the first stage, GA is

employed as a feature reduction mechanism to determine

the discriminative features. It serves to remove redundant

data. In the second stage, the best feature subset is

employed as the input to different data mining techniques.

The accomplishment and efficiency of the methods are

evaluated on breast cancer datasets. Experiments proved

that data mining techniques have better predicative clas-

sification accuracy and performances with smaller number

of attributes.

Numerous studies have proposed different systems for

automatic diagnosis of breast cancer based on Wisconsin

Breast Cancer datasets, and many of these studies reported

high classification performances. Quinlan [41] used the

C4.5 decision tree method and tenfold cross-validation.

Hamilton et al. [17] used RIAC method, and Ster and

Dobnikar [48] used linear discrete analysis method. Pena-

Reyes and Sipper [38] used fuzzy-GA method, and Setiono

[47] used a feed-forward neural network rule extraction

algorithm. Albrecht et al. [3] obtained 98.80 % accuracy

using learning algorithm that combined logarithmic

simulated annealing with the perceptron [33]. Goodman

et al. [15] used three distinct methods namely artificial

immune recognition system (AIRS), big LVQ and opti-

mized learning vector quantization, achieved 97.2, 96.8

and 96.7 % accuracies, respectively. Abonyi and Szeifert

[2] used supervised fuzzy clustering method, and Has-

sanien [21] used rough set method. Sahan and Polat [44]

used a novel hybrid technique based on fuzzy-artificial

immune system and k-NN algorithm, and the accuracy was

99.14 % [9]. Maglogiannis and Zafiropoulos [32] used

three different methods: SVM, Bayesian classifiers and

artificial neural networks (ANNs). Peng et al. [39] used a

hybrid method that joins filter and wrapper tools [9, 33]. In

[49], support vector machine (SVM) and evolutionary

algorithm were used, and obtained accuracy was around

97 %. Koloseni et al. [27] used differential evolution

classifier with optimal distance measures applied on

WDBC dataset, and obtained average classification accu-

racy was around 93.64 %. Astudillo et al. [4] applied tree-

based topology-oriented SOM on WDBC dataset to dis-

criminate between malign and benign cancer, and obtained

classification accuracy was 93.32 %. Tabakhi et al. [51]

proposed unsupervised feature selection algorithm based

on ant colony optimization for feature selection and Naı̈ve

Bayes for classification, and obtained classification accu-

racy with this system for discriminating between benign

and malign cancer was 92.42 % when applied on WDBC

dataset. Saez et al. [43] proposed mutual information (MI)

between features as a weighting factor for nearest neighbor

(NN) classifier, and obtained classification accuracy for

WDBC dataset was 96.14 %. Chen et al. [8] suggested

system based on parallel time-variant particle swarm

optimization (PTVPSO) for concurrent parameter opti-

mization and feature selection for SVM, and obtained

classification accuracy was 98.44 % when this system was

applied on WDBC dataset. Zheng et al. [60] proposed

breast cancer diagnosis system based on K-means and

SVM (K-SVM), and in this study, proposed system was

tested on WDBC dataset, and obtained classification results

were 97.38 %. Lim et al. [30] extended Bandler–Kohout

(BK) subproduct to interval-valued fuzzy sets (IVFS), and

obtained classification accuracy with this approach was

95.26 % for WDBC dataset.

In this study, GA feature selection and different data

mining techniques, namely Logistic Regression, Decision

Trees, Random Forest, Bayesian Network, MLP, RBFN,

SVM and Rotation Forest, have been investigated, in order

to construct automated system which will distinguish

between benign and malign tumor in breast cancer. Also

the widely used datasets in the literature were used to

evaluate performances of the proposed system. It is

observed that the Rotation Forest which is a multiple

classifier system (MCS) with GA feature selection
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achieved the highest classification accuracy (99.48 %) in

breast cancer data classification.

This paper is organized as follows. In the next section,

information is given about the Wisconsin Diagnostic

Breast Cancer datasets, and the methods used in each step

of the classification process are presented. Section 3 pro-

vides a complete experimental study of the different data

mining techniques for diagnosis of breast cancer, in which

the effect of feature set and algorithmic concerns are

compared with respect to the classification performance.

Finally, the conclusions are summarized in Sect. 4.

2 Materials and methods

2.1 Breast cancer database overview

Breast cancer is a malignant tumor arising from breast

cells. Even though some of the risk factors (e.g., aging,

genetic risk factors, family history, menstrual periods, not

having children, obesity) that raise a woman’s possibility

of developing breast cancer are known, it is not known yet

what causes most of the breast cancers and how various

factors initiate cells to change into cancerous. Many studies

are conducted to learn more, and scientists are having great

improvement in understanding how certain alterations in

DNA which can affect healthy breast cells to change into

cancerous [25, 33].

In this study, two different Wisconsin Breast Cancer

Datasets (obtained from UCI Machine Learning Reposi-

tory) were studied. The first dataset is Wisconsin Breast

Cancer (Diagnostic) (WBC (DIAGNOSTIC)) dataset. This

dataset contains 569 different instances and 32 attributes.

Three hundred and fifty-seven cases are benign, and 212

cases are malignant. All attributes are calculated from a

digitized image of a fine-needle aspirate (FNA) of patients’

breast tissues. All cell nuclei in breast tissues are described

by ten real-valued features, and for all these features, the

mean, the standard error and the ‘‘worst’’ (mean of the

three largest values) are calculated. As a result, a total of 30

attributes for all images were obtained [52]:

• Radius (mean of distances from center to points on the

perimeter)—a1,1, a1,2, a1,3;

• Texture (standard deviation of grayscale values)—a2,1,

a2,2, a2,3;

• Perimeter—a3,1, a3,2, a3,3;

• Area—a4,1, a4,2, a4,3;

• Smoothness (local variation in radius lengths)—a5,1,

a5,2, a5,3;

• Compactness (perimeter2/area - 1.0)—a6,1, a6,2, a6,3;

• Concavity (severity of concave portions of the con-

tour)—a7,1, a7,2, a7,3;

• Concave points (number of concave portions of the

contour)—a8,1, a8,2, a8,3;

• Symmetry—a9,1, a9,2, a9,3;

• Fractal dimension (‘‘coastline approximation’’-1)—

a10,1, a10,2, a10,3;

where ai,1 refers to ith attribute mean, ai,2 refers to ith

attribute standard error, and ai,1 refers to ith attribute

‘‘worst’’ (i = 1,…30).

The second dataset is Wisconsin Breast Cancer Original

dataset and contains 699 samples obtained from a breast

tissue. Subsequently, data with missing values are removed

from dataset; as a result, 683 cases are used in our exper-

iment. Every record in the database has nine attributes,

with all values represented as integer numbers between 1

and 10, and was found to fluctuate notably among benign

and malignant instances. The measured nine attributes are

[53]:

• Clump thickness;

• Uniformity of cell size;

• Uniformity of cell shape;

• Marginal adhesion;

• Single epithelial cell size;

• Bare nuclei;

• Bland chromatin;

• Normal nuclei;

• Mitoses.

2.2 Genetic algorithm-based feature selection

Genetic algorithms (GA) have found broad range of

applications. It is established on the resemblance to natural

selection. GA operates with population, and the preeminent

solution is received after a sequence of iterative steps. GA

develops sequential populations of periodic solutions that

are shown by a chromosome until satisfactory results are

reached [55].

A fitness function estimates the importance of the

answer in the evaluation step. Two major operators are

crossover and mutation functions, and these have the key

impact on the fitness value. Chromosomes for reproduction

are selected by finding the fitness value, and the bigger

fitness value is obtained, by selecting the chromosome with

higher probability. The fitter chromosomes have higher

likelihood to be selected into the recombination pool using

either the roulette wheel or the tournament [55].

In mutation, the genes may be updated randomly.

Crossover is genetic operator that joins distinct features

from subsets pair into novel subset. Offspring substitutes

the previous population using the elitism or variety

replacement strategy to create a novel population in the

upcoming generation [55]. To accomplish better
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performance, GA-based selected features are applied as an

input to classifiers.

There are three criteria to model fitness function: model

accuracy, number of selected features and cost. For any

chromosome with acceptable classification accuracy rate,

selection of only significant and informative features and

reduced cost result in a satisfactory fitness value. The

chromosome with higher fitness value has better chance to

be used in the following generation, so these are properly

expressed according to user’s specifications. To get accu-

rate feature selection based on GA, these steps are to be

followed [55]:

1. Data preprocessing (scaling): Two advantages of

scaling are evading of attributes in bigger numeric

range to control attributes in lesser numeric range and

avoiding of numerical difficulties in calculation [24,

55].

2. Conversion of genotype to phenotype: Here we convert

each feature chromosome.

3. Feature subset

4. Fitness evaluation

5. Termination criteria (if it is met, process is stopped;

otherwise, we continue with next generation.

6. Genetic operation: In this step, better solution is being

searched by genetic operations.

The GA algorithm applied to feature selection is presented

in Fig. 1.

2.3 Logistic Regression

Logistic model originated as result of modeling the pos-

terior probability of K classes via linear functions in x,

while ensuring that they sum to one and remain in range [0,

1]. Model can be identified in terms of K - 1 logit trans-

formations or log odds. Even though the model utilizes the

last class as the denominator in the odds ratio, the selection

of denominator is random in that the estimates are equally

distributed under this choice. When K = 2, the model is

straightforward because there is just a single linear func-

tion. In biostatical applications where binary response

(only two classes) occurs repeatedly, this model is used

extensively [16, 22, 56].

2.4 Bayesian Network

Bayesian Network illustrates the joint probability dis-

tribution for a set of variables by defining sets of local

conditional probabilities together with a set of condi-

tional independence assumptions. Every variable in the

joint space is shown by a node in the Bayesian Network.

For all variables, two types of information are specified.

First, the variable is conditionally independent of its

non-descendants in the network given its instant prede-

cessors in the network. Second, a conditional probability

table is given for every variable, telling probability

distribution for that variable assumed the values of its

instant antecedents. The joint probability for any desired

assignment of values (b1, …, bn) to the tuple of network

variables (B1…Bn) can be computed by the formula:

Pðb1; . . .; bnÞ ¼
Yn

i¼1

Pðbi ParentsðbiÞÞj ð1Þ

where Parents(Bi) denotes the set of immediate predeces-

sors of Bi in the network. Values of Pðbi ParentsðBiÞÞj are

the values stored in the conditional probability table asso-

ciated with node Bi [46].

2.5 Multilayer Perceptron (MLP)

Multilayer Perceptrons (MLPs) are neural networks con-

sisting of units that create the input layer, one or more

hidden layers of computation nodes and output layer con-

sisting of computation nodes. Input signal travels in for-

ward direction on layer-by-layer basis. MLPs are

successfully used to solve challenging and distinct
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problems by training them in supervised manner using

well-known back-propagation algorithm [23].

Back-propagation learning constitutes of two passes

through distinct layers: a forward pass and backward pass.

In the forward pass, synaptic weights are all fixed, while,

on the other hand, in the backward pass weights are

adjusted. Error signal is created when the actual output of

the network is subtracted from target data. This error signal

propagates through the network in opposition to the

direction of synaptic connections. Weights are tuned to

build the real response more closely to the target. This

learning process is named as back-propagation learning

[23].

2.6 Radial Basis Function Networks (RBFN)

RBFN is popular substitute to Multilayer Perceptron

(MLP) because it has more simple structure and more rapid

training process. In RBFN, each neuron in the hidden layer

uses RBF as its nonlinear activation function. A nonlinear

transformation of the input is done in the hidden layer.

Output layer of RBFN is a linear combiner and maps the

nonlinearity into a new space. The output layer neurons’

biases can be designed by adding extra neuron in the hid-

den layer, and constant activation function of the hidden

layer is 1 [10].

2.7 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning

method, and it chooses a modest amount of significant limit

samples known as support vectors from all classes and

constructs a linear discriminant function dividing them as

broadly as it can be accomplished. These systems exceed

the restrictions of linear limits by adjusting it to consist of

an additional nonlinear function terms, preparing it to

establish quadratic, cubic and higher-order decision limits

[58].

Support Vector Machines (SVMs) are built on algorithm

that develops a particular type of linear model called the

maximum margin hyper plane. Hyper plane is different

expression for a linear model. To illustrate a maximum

margin hyper plane, it can be thought of a two-class dataset

with linearly separable classes; in other words, there is a

hyper plane in sample space classifying the entire training

samples accurately. The greatest margin hyper plane is the

one offering the most supreme division among the classes.

It goes no nearer to any than it ought. To be precise, the

convex hull of a group of points is the most stable enclosing

convex polygon: It appears as soon as each point of the set

is linked to each other point. Since it is assumed that two

classes are linearly separable, their convex hulls never

concatenate. Between every hyper plane dividing the

classes, the maximum margin hyper plane is the one being

the most furthest away from both convex hulls. It is the

vertical bisector of the least distanced line linking the hulls

[58]. With the selection of satisfactory mapping, the input

examples become linearly or approximately linearly

divisible in the high-dimensional plane. The SVM tries to

find the optimal hyper plane that maximizes the distance

between the instances of two different classes [54].

2.8 C4.5 Decision Tree

This algorithm is developed by J. Ross Quinlan, and it

begins with big sets of samples being part of identified

classes. The samples, defined by whichever combination of

nominal and numeric characteristics, are considered for

patterns that permit the classes to be accurately charac-

terized. These patterns are then expressed as models,

forming Decision Trees or sets of if–then rules that can be

employed to classify novel samples, with special accent on

making the models comprehensible and precise. C4.5

algorithm uses equations established on information theory

to estimate the ‘‘goodness’’ of the test; particularly, they

select the test that extracts the highest amount of data from

a set of samples, given the restriction that just single

attribute is to be tested [40].

In decision tree algorithms, problems are how to handle

unknown values and overfitting. C4.5 is able to handle

unknown values: Essentially, samples with unknown val-

ues are neglected, while calculating the data content and

the data gain for an attribute A is subsequently multiplied

by the fragment of samples where A value is already

defined. Thus if A is unknown for a large fragments of

samples, the data received by testing A at a node will be

relatively petite. This matches the normal perception

regarding how these attributes ought to be treated. A

decision tree that accurately classifies all samples in a

training set may not be as excellent classifier as a lesser

tree not fitting all whole training data. In order to avoid this

problem, pruning approach had been adopted for C4.5.

This method is established on evaluation of error rate for

all subtrees, and displacing the subtree with a leaf node in

case when the evaluated error of the leaf is smaller. If the

evaluation were ideal, this approach would the entire time

guide to an improved decision tree. In reality, even though

these are very crude, this approach frequently performs

relatively fine [40].

2.9 Random Forests (RF)

Random Forests [5] is an important alteration of wrapping

that constructs a large collection of de-correlated trees

and then averages them. RF is very simple to train and

adjust. As a consequence, it found wide range of
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applications. RF is used for both classification and

regression, although there is difference when they are

used for classification and when they are used for

regression. When RF is employed to perform classifica-

tion task, it receives a class vote from each tree and then

using majority vote performs classification task. When RF

is used for regression, predictions at a target point x from

each tree are plainly averaged [22].

Usage of out-of-bag (OOB) samples is a significant

characteristic of Random Forests. RFs utilize the OOB

samples to construct a diverse variable rank measure and to

compute the prediction strength of each variable. After the

bth tree is developed, the OOB samples are sent to the tree

and then prediction accuracy is recorded. After this, in the

OOB samples, values for the jth variable are randomly

selected, and the accuracy is calculated again and as a

result of this random selection, accuracy is averaged over

all trees and then used as a measure of the importance of

variable j in the Random Forest [22].

2.10 Rotation Forest

Rotation Forest is a novel method for generation of group

of classifiers. In the first step, the feature set is split into

S subsets, and principal component analysis (PCA) runs

independently on every subset, and after that a novel

extracted feature set is reconstructed during which all the

components are preserved. New features are obtained from

linearly transformed data. A SVM with polynomial kernel

is used in this study as base classifier for Rotation Forest.

Distinct feature set splits direct to distinct rotations. As a

consequence, distinct classifiers are acquired. But also, the

evidence how the data are scattered is saved in the novel

extracted feature space. Thus, individual classifiers with

high performances are constructed. Therefore, achieving

both diversity and accuracy together is the objective of

Rotation Forest [42].

3 Results and discussion

In this study, we used two different WBC medical datasets

to test the performances of models. These two datasets are

WBC (Diagnostic) and WBC (Original) and are explained

in Sect. 2.1. We used different data mining techniques

namely Logistic Regression, Decision Trees, Random

Forest (RF), Bayesian Network, Multilayer Perceptron

(MLP), Radial Basis Function Networks (RBFN), Support

Vector Machine (SVM) and Rotation Forest. Also we used

genetic algorithm-based feature selection to find best

attributes, and then, we applied data mining techniques for

classification.

3.1 Experimental setup and dataset

Two different experiments were set up for the training data

for two different WBC datasets. In the first case, the same

training–testing dataset was applied as in [1, 13, 19]. In this

work, publically available open-source machine learning

software, called WEKA, was employed to implement

algorithms and approach proposed in this study. In this

training dataset, tenfold cross-validation was used. In the

second case, we used GA feature selection, where the best

attributes were selected, and then, tenfold cross-validation

was used on these selected attributes. Numerous researches

evaluating breast cancer classification using k-fold cross-

validation can be found in the literature. In k-fold cross-

validation technique, the dataset is separated into k subsets

randomly. As a result, k - 1 subsets, in our case nine

subsets, are used for training, and the rest is used for testing

of the classifier efficiency [20]. We compared the effi-

ciency of proposed techniques without GA feature selec-

tion and with GA feature selection.

Area under ROC [receiver operating characteristic

(ROC)] curve (AUC) was also employed to assess the

discrimination capability of the classifiers proposed in this

study. ROC curves represent the performance of a classifier

without taking into consideration class distribution or error

overheads. A ROC curve is produced by plotting all sen-

sitivity values (true-positive fraction), on the y-axis, adja-

cent to their equivalent (1-specificity) values (false-positive

fraction) for all presented thresholds on the x-axis. The

worth of the approximation to a curve is dependent on

numerous thresholds tested. For all folds of a tenfold cross-

validation, weight the samples for a selection of distinct

overhead ratios, train the system on all weighted sets,

calculate the true positives and false positives in the test set

and plot the outcome point on the ROC axes [58]. The

classification success is then calculated by AUC. The

average AUC value provides a sign of a characteristic AUC

values generated using the specified input data and displays

how consistently result is predicted [18, 36, 50]. AUC is

generally considered as the index of performance since it

provides a single measure of total accuracy that does not

depend on any specific threshold [34, 50]. Regardless of its

positive sides, the ROC plot does not provide a rule for the

case classification. However, there are approaches that can

be employed to create decision rules from the ROC plot

[12, 45]. As a guideline, Zweig and Campbell [45, 61]

proposed that if the false-positive costs (FPCs) go beyond

the false-negative costs (FNCs) the threshold should sup-

port specificity, while sensitivity should be supported if

FPCs are bigger than the FNCs. Associating these over-

heads (costs) with the prevalence (p) of positive cases

permits the computation of a slope [34, 45]:
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m ¼ ðFPC/FNCÞ � ðð1� PÞ=PÞ ð2Þ

where m refers to the slope of a tangent to the ROC plot.

The sensitivity/specificity pair is positioned where the line

and the curve first make contact [45]. An additional mea-

sure used to describe performance is F-measure, defined as:

F �measure ¼ 2TP

2 TPþ FPþ FN
ð3Þ

3.2 Results without GA

The experimental results achieved for WBC (Diagnostic)

dataset are given in Table 1. We get an average accuracy of

97.19 % for Logistic Regression, 93.32 % for Decision

Tree (C 4.5), 96.13 % for Random Forest, 95.08 % for

Bayes Net, 96.66 % for Multilayer Perceptron (MLP),

94.20 % for Radial Basis Function Network (RBFN),

96.89 % for SVM and 97.41 % for multiple classifier

system (MCS) tool Rotation Forest.

The experimental results obtained for WBC (Original)

dataset are given in Table 2. As shown in the Table 2, total

accuracy achieved with the SVM classifier based on the

polynomial kernel on the test set was equal to 96.78 %.

The total accuracies are equal to 95.75 % for the RBFN

classifier, 96.05 % for the Multilayer Perceptron (MLP),

96.05 % for the C4.5 Decision Tree, 96.34 % for the

Random Forest, 97.22 % for the Bayes Net, 96.78 % for

the Logistic Regression classifier and 96.78 % for Rotation

Forest.

3.3 Results with GA

In the second test, we first used genetic algorithm (GA)-

based feature selection to select the best attributes, and

then, we used the same data mining techniques as in the

previous section. Experimental results showed that highest

classification performances are achieved when Rotation

Forest is used as classifier. Therefore, the model proposed

in this study is a model where GA is used for feature

selection and Rotation Forest used for classification. GA–

Rotation Forest structure is given in Fig. 1.

The experimental results obtained for WBC (Diagnos-

tic) dataset are given in Tables 3, 4 and 5. To determine

which of 30 attributes in WBC (Diagnostic) dataset is more

Table 1 Results for WBC diagnostic using different data mining techniques

Logistic

Regression

Decision Trees (C 4.5) Random Forest Bayes Net ANN (MLP) RBFN SVM Rotation Forest

MALIGN (%) 94.81 92.90 94.81 93.40 94.81 91.04 94.60 95.90

BENIGN (%) 98.59 93.56 96.92 96.08 97.76 96.08 98.30 98.30

AVERAGE (%) 97.19 93.32 96.13 95.08 96.66 94.20 96.89 97.41

Table 2 Results for WBC original using different data mining techniques

Logistic

Regression

Decision Trees (C 4.5) Random Forest Bayes Net ANN (MLP) RBFN SVM Rotation Forest

MALIGN (%) 95.00 95.40 95.00 97.90 96.70 95.80 96.20 96.20

BENIGN (%) 97.70 96.40 97.10 96.80 95.70 95.70 97.10 97.10

AVERAGE (%) 96.78 96.05 96.34 97.22 96.05 95.75 96.78 96.78

Table 3 Results for WBC diagnostic dataset with genetic algorithm feature selection

WBC (DIAGNOSTIC) data set genetic

algorithm feature selection

Logistic

Regression

Decision Trees

(C 4.5)

Random

Forest

Bayes

Net

ANN

(MLP)

RBFN SVM Rotation

Forest

MALIGN (%) 98.65 93.90 94.80 94.59 97.30 91.00 97.3 98.65

BENIGN (%) 98.32 94.01 95.80 95.80 99.16 96.40 100 100.00

AVERAGE (%) 98.45 94.02 95.43 95.34 98.45 94.38 98.96 99.48
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important, GA is employed. Genetic algorithm-based fea-

ture selection gave us 14 attributes as important. These are

a1,2, a2,1, a3,1, a3,2, a4,2, a5,2, a6,3, a7,1, a7,3, a8,2, a8,3, a9,1,

a9,3 and a10,1. These 14 attributes noticeably differentiated

between benign and malignant breast cells and tissues. As

shown in the Tables 3, 4 and 5, total accuracy, AUC and F-

measures achieved with the Rotation Forest classifier on

WBC (Diagnostic) dataset were equal to 99.48 %, 0.993

and 0.995, respectively. These results were better than

those achieved by the other classifiers. Indeed, the total

accuracies are equal to 94.38 % for the RBFN classifier,

98.45 % for the Multilayer Perceptron (MLP), 94.02 % for

the C4.5 Decision Tree, 95.34 % for the Random Forest,

95.34 % for the Bayes Net and 98.45 % for the Logistic

Regression classifier. The AUCs were equal to 0.979 for

the RBFN classifier, 0.999 for the Multilayer Perceptron

(MLP), 0.954 for the C4.5 Decision Tree, 0.993 for the

Random Forest, 0.995 for the Bayes Net and 0.999 for the

Logistic Regression classifier. The F-measures were equal

to 0.944 % for the RBFN classifier, 0.984 for the Multi-

layer Perceptron (MLP), 0.932 for the C4.5 Decision Tree,

0.953 for the Random Forest, 0.953 for the Bayes Net and

0.984 for the Logistic Regression classifier. Obtained

results propose valuable information for the doctors and

medical workers to pay much more attention to 14 attri-

butes previously mentioned. This result confirms that

Rotation Forest is superior as compared to other classifiers.

Furthermore, it has reference classification accuracy in

order to measure the ability of the suggested classification

algorithm.

Applying genetic algorithm-based feature selection on

WBC (Original) did not change results obtained without

GA because WBC (Original) has very small number of

attributes and GA-based feature selection gave as result of

all these attributes.

4 Discussion

The performance demonstrated by the ensemble data

mining techniques for breast cancer diagnosis lies in input

variable choice and classification method selection. The

parameters, which are most appropriate for breast cancer

diagnosis, must be utilized as the inputs of the model. For

this reason, GA is appropriate for classification of the WBC

(Diagnostic) data in the breast cancer diagnosis. In the

second test, where GA was applied, the highest obtained

accuracy is 99.48 % with Rotation Forest classifier.

It can be observed from obtained performance results,

two important observations can be obtained: (1) GA can

correctly rank significant attributes since selected GA

performs well in terms of classification performances, (2)

Rotation Forest outperformed all other traditional linear

and nonlinear classification methods by giving the highest

accuracy. There are several results for superiority of

Rotation Forest over other traditional methods employed in

the literature for breast cancer classification. Rotation

Forest is multiple classifier system, and because of this, it is

more robust since it may all the time improve the perfor-

mance results for individual classification methods and

diversity in the groups. Every base classifier in Rotation

Forest employs distinct subsets of WDB diagnostic and

original datasets taking different features of these two

datasets so that diversity can be achieved.

Accurate identification of breast cancer diagnosis is

important for both diagnosis and treatment evaluation. The

Table 4 AUC results for WBC diagnostic dataset with genetic algorithm feature selection

Logistic Regression Decision Trees (C 4.5) Random Forest Bayes Net ANN (MLP) RBFN SVM Rotation Forest

MALIGN 0.999 0.954 0.993 0.995 0.999 0.979 0.986 0.993

BENIGN 0.999 0.954 0.993 0.995 0.999 0.979 0.986 0.993

AVERAGE 0.999 0.954 0.993 0.995 0.999 0.979 0.986 0.993

Table 5 F-measure results for WBC diagnostic dataset with genetic algorithm feature selection

Logistic Regression Decision Trees (C 4.5) Random Forest Bayes Net ANN (MLP) RBFN SVM Rotation Forest

MALIGN 0.98 0.909 0.94 0.94 0.98 0.923 0.986 0.993

BENIGN 0.987 0.947 0.962 0.962 0.987 0.956 0.992 0.996

AVERAGE 0.984 0.932 0.953 0.953 0.984 0.944 0.990 0.995
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developed Rotation Forest model classifies WBC (Diag-

nostic) data using GA for feature selection with an accu-

racy of 99.48 %. This effect also resulted in an

improvement of ROC area (AUC = 0.993), and F-measure

(0.995) of Rotation Forest was higher than that of other

classifiers. The Rotation Forest, as designated in this study,

becomes as good as to other algorithms in breast cancer

diagnosis. After applying different kinds of data mining

techniques on our selected datasets, SVM with polynomial

kernel also resulted in satisfactorily high accuracies of

98.96 %.

To summarize, the suggested expert system accom-

plished higher classification accuracy rate, decreased the

number of attributes and obtained higher performance rate.

Results obtained in this study prove that the suggested

expert system is valuable in helping the doctors and other

medical workers to make the correct breast cancer diag-

nosis and may demonstrate huge capacity in the area of

medical decisions making.

To demonstrate the success of our approach, outcomes

achieved in this research are compared with other results

developed in the literature. To compare the breast cancer

classification efficiency of the proposed model, numerous

researches that employed the identical data but different

classification techniques were used. For the sake of

consistency with those researches, the same division of

train–test dataset as explained previously was followed.

To illustrate this, the classification performance with that

of previous researches was compared. This is illustrated

in Table 6. Most of these researches mentioned in Table 6

used the identical data division as our proposed model.

For WBC (Original), both tests gave the same results

because WBC (Original) with GA-based feature selection

gave us all initial attributes (9 in totals) as important. It is

worth of mentioning here that several systems evaluated

on WBC (Original) dataset resulting in high classification

performances are proposed in the literature. In [33],

Multilayer Perceptron (AMMLP) algorithm was applied,

and achieved classification accuracy was 99.26 %. In [9],

rough set (RS)-based supporting vector machine classifier

(RS_SVM) was proposed, and obtained classification

accuracy was 96.87 %. In [3], LSA machine algorithm

was applied, and obtained classification accuracy was

near to 90 %. However, one of the main objectives of this

study is to construct accurate classification system, but

also to find the best-performing attribute selection algo-

rithm. Therefore, WBC (Diagnostic) was employed to

evaluate performances of system proposed in this study

since it has more than threefold features when compared

to WBC (Original).

Table 6 Comparison of

accuracies with previous

researches

References Method Classification accuracy (%)

Nauck and Kruse [35] NEFCLASS 95.06

Goodman et al. [15] Optimized-LVQ 96.70

Goodman et al. [15] Big LVQ 96.80

Goodman et al. [15] AIRS 97.20

Abonyi and Szeifert [2] Supervised fuzzy clustering 95.57

Law et al. [28] Mixture-based clustering 90.7

Gadaras and Mikhailov [14] Fuzzy rule classification 96.08

Li and Liu [29] SVM CPBK 93.26

Liu and Ren [31] AFS 94.6

Cevikalp et al. [6] SVM 97.6

Chang et al. [7] CBFDT 98.4

Kim and Rattakorn [26] Baseline 97.37

Fan et al. [11] CBFDT 98.9

Zhao et al. [59] GA with feature chromosome 99.0

Stoean and Stoean [49] SVM and evolutionary algorithm 97.23

Koloseni et al. [27] Differential evolution classifier 93.64

Astudillo and Oommenb [4] Tree-based topology-oriented SOM 93.32

Tabakhi et al. [51] Naı̈ve Bayes 92.42

Saez et al. [43] MI with k-NN 96.14

Chen et al. [8] PTVPSO 98.44

Zheng et al. [60] k-means and SVM 97.38

Lim and Chan [30] BK with IVFS 95.26

Our method GA with Rotation Forest 99.48
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5 Conclusion

A great number of researches have been conducted in the

medical area to study medical disorders and find accurate

diagnosis. Data mining techniques have been widely used

for these purposes. In this study, we have proposed several

different data mining methods with and without genetic

algorithm-based feature selection to correctly classify

medical data (data taken from Wisconsin Diagnostic Breast

Cancer database). Random Forest and GA feature selection

gave the highest accuracy of 99.48 %. In this research, one

of the highest classification accuracies was obtained com-

pared to all previous researches done in this field. We also

achieved good classification accuracy by using SVM.

Many powerful methods have been applied to WBC (Di-

agnostic) prediction problems. It is proved in this paper

that instead of using complex methods based on strength

classifiers to achieve good classification accuracies, an

ensemble of more simple classifiers can be used as well,

producing remarkable results. An ensemble of several

methods offers us to use advantages of each method in

order to achieve high classification accuracies for breast

cancer diagnosis. We can use group of these rather simple

methods to classify other medical diseases and to help

doctors to make more precocious decisions in breast cancer

diagnosis.
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