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Abstract Two-dimensional system model represents a

wide range of practical systems, such as image data pro-

cessing and transmission, thermal processes, gas absorption

and water stream heating. Moreover, there are few

dynamical discussions for the two-dimensional neutral-

type Cohen–Grossberg BAM neural networks. Hence, in

this paper, our purpose is to investigate the stability of two-

dimensional neutral-type Cohen–Grossberg BAM neural

networks. The first objective is to construct mathematical

models to illustrate the two-dimensional structure and the

neutral-type delays in Cohen–Grossberg BAM neural net-

works. Then, a sufficient condition is given to achieve the

stability of two-dimensional neutral-type continuous

Cohen–Grossberg BAM neural networks. Finally, simula-

tion results are given to illustrate the usefulness of the

developed criteria.

Keywords Two-dimensional neutral-type Cohen–

Grossberg BAM neural networks � Global asymptotic

stability � Inequality technique � Lyapunov functional

1 Introduction

In the past decades, neural networks as a special kind of

nonlinear systems have received considerable attention due

to their wide applications in a variety of areas including

such as pattern recognition, associative memory and

combinational optimization. Dynamical behaviors such as

the stability, the attractivity and the periodic solution of the

neural networks are known to be crucial in applications.

For instance, if a neural network is employed to solve some

optimization problems, it is highly desirable for the neural

network to have a unique globally stable equilibrium.

Therefore, stability analysis of neural networks has

received much attention, and a great number of results have

been available in the literature [1–6].

As one of the most popular and typical neural networks

models, Cohen–Grossberg neural network (CGNN) has

been proposed by Cohen and Grossberg [7]. Since it includes

a number of models from neurobiology, population biology

and evolution theory, as well as the Hopfield neural net-

works, CGNN has attracted considerable attention in recent

years. By combining Cohen–Grossberg neural networks

with an arbitrary switching rule, the mathematical model of

a class of switched Cohen–Grossberg neural networks with

mixed time-varying delays is established in [8]. This paper

[9] is concerned with the problem of exponential stability for

a class of Markovian jump impulsive stochastic Cohen–

Grossberg neural networks with mixed time delays and

known or unknown parameters. The existence and unique-

ness of the solution of interval fuzzy CGNNs with piecewise

constant argument are discussed in [10]. It is shown in [11]

that finite-time synchronization is discussed for a class of

delayed neural networks with Cohen–Grossberg type. In

[12], the authors discussed the following Cohen–Grossberg

BAM neural networks with neutral-type delays
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where m is an integer, i; j ¼ 1; 2; . . .;m, xi 2 R and yj 2 R

denote the state variables of the ith neuron and the jth neu-

ron, respectively. aiðxið�ÞÞ[ 0; cjðyjð�ÞÞ[ 0 represent

amplification functions. biðxið�ÞÞ and djðyjð�ÞÞ represent

appropriately behaved functions. And fj; gi are the activation

functions. Moreover, sij; tji; eij; vji are the connection

weights, which denote the strengths of connectivity between

the ith and jth neurons. Ii; Jj are the exogenous inputs of the

ith neuron and the jth neuron, respectively.

rij � 0; dji � 0; sij � 0; gji � 0 denote the transmission

delays, which are related to the jth and ith neurons.

d� 0; h� 0 are neutral-type time delays.

In the above-mentioned literature, most of CGNNs are

considered to be one dimensional. However, two-dimen-

sional system model represents a wide range of practical

systems, such as image data processing and transmission,

thermal processes, gas absorption and water stream heat-

ing. The research on two-dimensional systems has mainly

been inspired by the practical needs to represent continu-

ous- and discrete-time nonlinear dynamic systems by using

the Volterra series. Hence, the two-dimensional systems,

where the information propagation occurs in two inde-

pendent directions, have received considerable research

attention in the past few decades [13–20]. The authors in

[21] investigate the fault detection for 2-D Markovian jump

systems with partly unknown transition probabilities and

missing measurements. It is shown in [22] that the problem

of robust synchronization is discussed for a class of 2-D

coupled uncertain dynamical networks. In [23], the state

estimation is addressed for two-dimensional complex net-

works with randomly occurring nonlinearities and ran-

domly varying sensor delays.

To the best of authors’ knowledge, there are few

dynamical discussions for the two-dimensional neutral-

type Cohen–Grossberg BAM neural networks. Hence, in

this paper, our purpose is to extend model (1) to be two

dimensional and neutral type and derive sufficient condi-

tions ensuring the global asymptotic stability problem for

the two-dimensional neutral-type Cohen–Grossberg BAM

neural networks based on inequality technique and Lya-

punov functional. The main contribution of this paper is

twofold: (1) A two-dimensional neutral-type Cohen–

Grossberg BAM neural network model will be proposed to

illustrate the two-dimensional structure and the neutral-

type delays in Cohen–Grossberg BAM neural networks. (2)

Sufficient conditions will be proposed to achieve the global

asymptotic stability of two-dimensional neutral-type

Cohen–Grossberg BAM neural networks.

Notation: Throughout this study, for any matrix A;AT

stands for the transpose of A and A�1 denotes the inverse of

A, tr(A) is the trace of the A that is the sum of the diagonal

elements of A. For a symmetric matrix A, A[ 0ðA� 0Þ
means that A is positive definite (positive semi-definite).

Similarly, A\0ðA� 0Þ means that A is negative definite

(negative semi-definite). kMðAÞ; kmðAÞ denote the maxi-

mum and minimum eigenvalue of a square matrix A,

respectively. kAk denotes the spectral norm defined by

kAk ¼ ðkMðATAÞÞ
1
2. For x ¼ ðx1; x2; . . .; xmÞT 2 Rm, the

norm is the Euclidean vector norm, i.e., kxk ¼ ð
Pm

i¼1 x
2
i Þ

1
2.

Moreover, jAj ¼ ðjaijjÞ; jxj ¼ ðjx1j; . . .; jxmjÞT
.

2 Preliminaries

Motivated by [12, 22, 24], we are concerned with the fol-

lowing two-dimensional neutral-type Cohen–Grossberg

BAM neural networks:

x0iðtÞ þ
Pm

j¼1

eijx
0
jðt � hÞ ¼ �aiðxiðtÞÞ biðxiðtÞÞ �

Pm

j¼1

sijfj xj t � rij
� �

; yj t � sij
� �� �

þ Ii

( )

;

y0jðtÞ þ
Pm

i¼1

vjiy
0
iðt � dÞ ¼ �cjðyjðtÞÞ dj yjðtÞ

� �
�

Pm

i¼1

tjigi xi t � dji
� �

; yi t � gji
� �� �

þ Jj

� �

;

8
>>><

>>>:

ð1Þ
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with initial value conditions:

xiðh; t2Þ ¼ /iðh; t2Þ; yjðt1; hÞ ¼ ujðt1; hÞ; h 2 ½�r; 0�;
ð3Þ

where r ¼ maxfd; h; r; d; s; gg, and all the signs have the

same definitions with model (1). Here, r; s; d; g are all time

delays in system (2).

Remark 1 The two-dimensional neutral-type neural net-

work model (2) has its practical significance. On the one

hand, for example, in [25], much effort has been devoted to

the study of two dimensional in vivo neural networks, in

which neural activity can be measured by means of a two-

dimensional array of microelectrodes, and network mor-

phology is visualized by light microscopy. Also, a novel

flow sensor with two-dimensional 360� direction sensitivity

has been proposed in [26]. On the other hand, time delays

cannot be avoided in the hardware implementation of

neural networks due to the finite switching speed of

amplifiers in electronic neural networks or the finite signal

propagation time in biological networks.

Remark 2 The existence and uniqueness of the equilib-

rium point in system (2) can be obtained by using the

similar methods in [12]. The detailed process is omitted

here to simplify our paper.

Remark 3 Compared with model (1) in [12], the con-

tribution of this paper is that we extend model (1) to be

two dimensional, which is more reasonable since two-

dimensional dynamical systems have to be considered in

many practical applications, such as image data process-

ing and transmission, thermal processes, gas absorption

and water stream heating. Moreover, as mentioned in

Remark 1, some issues such as in vivo neural networks

and flow sensors have been considered to be two

dimensional.

Rewrite system (2) in the matrix form

where x¼ðx1;x2; . . .;xmÞT
, y¼ðy1;y2; . . .;ymÞT

, f ðxðt1; t2Þ;
yðt1; t2ÞÞ¼ ðf1ðx1ðt1; t2Þ;y1ðt1; t2ÞÞ, . . ., fmðxmðt1; t2Þ,
ymðt1; t2ÞÞÞT 2Rm, gðxðt1; t2Þ;yðt1; t2ÞÞ ¼ ðg1ðx1ðt1; t2Þ;
y1ðt1; t2ÞÞ; . . .;gmðxmðt1; t2Þ ;ymðt1; t2ÞÞÞT 2Rm. Aðxðt1; t2ÞÞ¼
diagða1ðx1ðt1; t2ÞÞ; a2ðx2ðt1; t2ÞÞ; . . .;amðxmðt1; t2ÞÞÞ 2Rm�m,

Bðxðt1; t2ÞÞ ¼ ðb1ðx1ðt1; t2ÞÞ, b2ðx2ðt1; t2ÞÞ, . . .,

bmðxmðt1; t2ÞÞÞT 2Rm, Cðyðt1; t2ÞÞ ¼ diagðc1ðy1ðt1; t2ÞÞ;
c2ðy2ðt1; t2ÞÞ; . . .;cmðymðt1; t2ÞÞÞ 2 Rm�m, Dðyðt1; t2ÞÞ ¼
ðd1ðy1ðt1; t2ÞÞ, d2ðy2ðt1; t2ÞÞ; . . .; dmðymðt1; t2ÞÞÞT 2Rm,

S¼ðsijÞm�m, T ¼ðtjiÞm�m, E¼ ðeijÞm�m, V ¼ðvjiÞm�m,

I¼ðI1;I2; . . .;ImÞ 2Rm, J¼ ðJ1;J2; . . .;JmÞ 2Rm:

Throughout the whole paper, we give the following

assumptions.

oxi t1; t2ð Þ
ot1

þ
Xm

j¼1

eij
oxj t1 � h; t2ð Þ

ot1
¼ �ai xi t1; t2ð Þð Þ

(

bi xi t1; t2ð Þð Þ

�
Pm

j¼1

sijfj xj t1 � r; t2ð Þ; yj t1; t2 � sð Þ
� �

þ Ii

)

; i ¼ 1; 2; . . .;m;

oyjðt1; t2Þ
ot2

þ
Xm

i¼1

vji
oyiðt1; t2 � dÞ

ot2
¼ �cj yj t1; t2ð Þ

� �
(

dj yj t1; t2ð Þ
� �

:

�
Pm

i¼1

tjigi xi t1 � d; t2ð Þ; yi t1; t2 � gð Þð Þ þ Jj

�

; j ¼ 1; 2; . . .;m;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð2Þ

ox t1; t2ð Þ
ot1

þ E
ox t1 � h; t2ð Þ

ot1
¼ �A x t1; t2ð Þð Þ B x t1; t2ð Þð Þ � Sf x t1 � r; t2ð Þ; y t1; t2 � sð Þð Þ þ If g;

oy t1; t2ð Þ
ot2

þ V
oy t1; t2 � dð Þ

ot2
¼ �C y t1; t2ð Þð Þ D y t1; t2ð Þð Þ � Tg x t1 � d; t2ð Þ; y t1; t2 � gð Þð Þ þ Jf g;

8
>><

>>:
ð4Þ
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Assumption 1 There exist positive constants aj; bj; ni; gi
such that for 8x; y; u; v 2 R; i; j ¼ 1; 2; . . .;m, jfjðx; yÞ�
fjðu; vÞj � ajjx� uj þ bjjy� vj, jgiðx; yÞ � giðu; vÞj � nijx�
ujþ gijy� vj.

Assumption 2 biðxÞ and djðyÞ are differentiable and there

exist positive constants Bi;Djði; j ¼ 1; 2; . . .;mÞ, such that

b0iðxÞ[Bi [ 0; d0jðyÞ[Dj [ 0; 8x; y 2 R. By applying the

mean value theorem, one can get that biðxÞ � biðyÞ ¼
b0iðniÞðx� yÞ; djðxÞ � djðyÞ ¼ d0jðgjÞðx� yÞ, where 8x; y 2
R; ni; gj are two scalars between x and y.

Assumption 3 There exist positive constants ai; ci ði ¼
1; 2Þ such that 0\a1\aiðxiÞ\a2, 0\c1\cjðyjÞ\c2, for

8xi 2 R, 8yj 2 R.

3 Main results

In this section, we will discuss the global asymptotic sta-

bility of system (2) according to the inequality technique,

linear matrix inequalities and Lyapunov functional.

Definition 1 A point ðx	; y	ÞT 2 Rm � Rm is said to be an

equilibrium point of system (2) if

ai x
	
i

� �
bi x

	
i

� �
�

Pm

j¼1

sijfj x	j ; y
	
j

� �
þ Ii

( )

¼ 0; i ¼ 1; 2; . . .;m;

cj y	j

� �
djðy	j Þ �

Pm

i¼1

tjigi x
	
i ; y

	
i

� �
þ Jj

� �

¼ 0; j ¼ 1; 2; . . .;m;

8
>>><

>>>:

ð5Þ

where x	 ¼ ðx	1; x	2; . . .; x	m; Þ
T ; y	 ¼ ðy	1; y	2; . . .; y	mÞ

T
.

According to Remark 2, we define ðx	; y	ÞT to be the

unique equilibrium of systems (4). For the sake of conve-

nience, some other notations are given: for all x 2 Rm, x 2
Rm y 2 Rm, y 2 Rm (x 6¼ x , y 6¼ y), define that Eðx� xÞ ¼
ðu1; . . .; umÞT ; Vðy� yÞ ¼ ðv1; . . .; vmÞT ; and uðt1; t2Þ¼
xðt1; t2ÞþExðt1 �h; t2Þ, zðt1; t2Þ¼ yðt1; t2ÞþVyðt1; t2 �dÞ.
Moreover, Eðx� x	Þ ¼ ðu1; . . .;umÞT ;Vðy� y	Þ¼
ðv1; . . .;vmÞT ; u	 ¼ x	 þEx	; z	 ¼ y	 þVy	.

Lemma 1 [27] If a[ 0; b[ 0; p[ 1; q[ 1; 1
p
þ 1

q
¼ 1,

then ab� ap

p
þ bq

q
.

According to the Lemma 1 and [12], one has the fol-

lowing lemma.

Lemma 2 Assume Assumptions 1–3 hold, there exists a

positive integer r� 1 and two positive definite diagonal

matrices P ¼ ½pi�m�m;Q ¼ ½qi�m�m such that

2
Xm

i¼1

Xm

j¼1

r xiðt1; t2Þ � xij j2r�1
pia2 � jsijj fj xj t1; t2ð Þ; yj t1; t2ð Þ

� �
� fj xj; yj

� ��
�

�
�

�
Xm

i¼1

Xm

j¼1

pia2jsijjaj ð2r � 1Þ xi t1; t2ð Þ � xið Þ2rþ xj t1; t2ð Þ � xj
� �2r

h i

þ
Xm

i¼1

Xm

j¼1

pia2jsijjbj ð2r � 1Þ xi t1; t2ð Þ � xið Þ2rþ yj t1; t2ð Þ � yj
� �2r

h i
;

ð6Þ

2r
Xm

i¼1

X2r�2

k¼0

Ck
2r�1 xi t1; t2ð Þ � xij jk ui t1; t2ð Þj j2r�1�k

pia2Bi xi t1; t2ð Þ � xij j

� 1

2r � 1

Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bi 2rk xi t1; t2ð Þ � xið Þ2r

n

þð2r � 1 � kÞ ð2r � 1Þ ui t1; t2ð Þj j2r
� �

þ xi t1; t2ð Þ � xið Þ2r
h io

;

ð7Þ

2r
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1jxiðt1; t2Þ� xijkjuiðt1; t2Þj2r�1�k

pia2jsijj

� fj xj t1; t2ð Þ;yj t1; t2ð Þ
� �

� fj xj;yj
� ��

�
�
�

� 1

2r� 1

Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pia2jsijj

� kaj ð2r� 1Þ xiðt1; t2Þ� xið Þ2r
hn

þ xjðt1; t2Þ� xj
� �2r

i
þð2r� 1� kÞaj ð2r� 1Þ uiðt1; t2Þð Þ2r

h

þ xjðt1; t2Þ� xj
� �2r

i
þ kbj ð2r� 1Þ xiðt1; t2Þ� xið Þ2r

h

þ yjðt1; t2Þ� yj
� �2r

i
þð2r� 1� kÞbj

� ð2r� 1Þ uiðt1; t2Þð Þ2rþ yjðt1; t2Þ� yj
� �2r

h io
; ð8Þ

2
Xm

i¼1

Xm

j¼1

rjyjðt1; t2Þ � yjj2r�1
qjc2 � jtjijjgiðxiðt1; t2Þ;

yiðt1; t2ÞÞ � giðxi; yiÞj

�
Xm

i¼1

Xm

j¼1

qjc2jtjijni ð2r � 1Þ yjðt1; t2Þ � yj
� �2r

h

þ xiðt1; t2Þ � xið Þ2r
i
þ

Xm

i¼1

Xm

j¼1

qjc2jtjijgi

� ð2r � 1Þ yjðt1; t2Þ � yj
� �2rþ yiðt1; t2Þ � yið Þ2r

h i
; ð9Þ

2r
Xm

i¼1

X2r�2

k¼0

Ck
2r�1jyiðt1; t2Þ � yijkjviðt1; t2Þj2r�1�k

qic2Dijyiðt1; t2Þ � yij

� 1

2r � 1

Xm

i¼1

X2r�2

k¼0

Ck
2r�1qic2Di 2rk yiðt1; t2Þ � yið Þ2r

n

þð2r � 1 � kÞ ð2r � 1Þviðt1; t2Þ2r þ yiðt1; t2Þ � yið Þ2r
h io

;

ð10Þ
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2r
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1jyjðt1; t2Þ � yjjkjvjðt1; t2Þj2r�1�k

qjc2jtjij

� jgi xiðt1; t2Þ; yiðt1; t2Þð Þ � gi xi; yið Þj

� 1

2r � 1

Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjij

� kni ð2r � 1Þ yjðt1; t2Þ � yj
� �2r

hn

þ xiðt1; t2Þ � xið Þ2r
i
þ ð2r � 1 � kÞni ð2r � 1Þvjðt1; t2Þ2r

h

þ xiðt1; t2Þ � xið Þ2r
i
þ kgi ð2r � 1Þ yjðt1; t2Þ � yj

� �2r
h

þ yiðt1; t2Þ � yið Þ2r
i
þ ð2r � 1 � kÞgi

� ð2r � 1Þvjðt1; t2Þ2r þ yiðt1; t2Þ � yið Þ2r
h io

:

ð11Þ

Lemma 3 Assume Assumptions 1–3 hold, with the same

P and Q, one has from Lemma 2

o uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr

ot1
� � 2

Xm

i¼1

rpiBia1 xi � x	i
� �2r

þ
Xm

i¼1

Xm

j¼1

pia2jsijjaj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2rþ xj t1 � r; t2ð Þ � x	j

� �2r
	 


þ
Xm

i¼1

Xm

j¼1

pia2jsijjbj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2rþ yjðt1; t2 � sÞ � y	j

� �2r
	 


þ 1

2r � 1

Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bi 2rk xiðt1; t2Þ � x	i

� �2r
n

þ ð2r � 1 � kÞ ð2r � 1Þuiðt1 � h; t2Þ2r þ xiðt1; t2Þ � x	i
� �2r

h io

þ 1

2r � 1

Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pia2jsijj kaj ð2r � 1Þ xiðt1; t2Þ � x	i

� �2r
hn

þ xjðt1 � r; t2Þ � x	j

� �2r



þ ð2r � 1 � kÞaj ð2r � 1Þuiðt1 � h; t2Þ2r
h

þ xjðt1 � r; t2Þ � x	j

� �2r



þ kbj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2r

h

þ yjðt1; t2 � sÞ � y	j

� �2r



þ ð2r � 1 � kÞbj ð2r � 1Þuiðt1 � h; t2Þ2r
h

þ yjðt1; t2 � sÞ � y	j

� �2r

�

;

ð12Þ

o zðt1; t2Þ � z	ð Þr½ �TQ zðt1; t2Þ � z	ð Þr

ot2
� � 2

Xm

i¼1

rqiDic1 yi � y	i
� �2r

þ
Xm

i¼1

Xm

j¼1

qjc2jtjijni ð2r � 1Þ yjðt1; t2Þ � y	j

� �2r

þ xiðt1 � d; t2Þ � x	i
� �2r

	 


þ
Xm

i¼1

Xm

j¼1

qjc2jtjijgi ð2r � 1Þ yjðt1; t2Þ � y	j

� �2r

þ yiðt1; t2 � gÞ � y	i
� �2r

	 


þ 1

2r � 1

Xm

i¼1

X2r�2

k¼0

Ck
2r�1qic2Di 2rk yiðt1; t2Þ � y	i

� �2r
n

þð2r � 1 � kÞ ð2r � 1Þviðt1; t2 � dÞ2r þ yiðt1; t2Þ � y	i
� �2r

h io

þ 1

2r � 1

Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjij kni ð2r � 1Þ yjðt1; t2Þ � y	j

� �2r
	�

þ xiðt1 � d; t2Þ � x	i
� �2r

i
þ ð2r � 1 � kÞni ð2r � 1Þvjðt1; t2 � dÞ2r

h

þ xiðt1 � d; t2Þ � x	i
� �2r

i
þ kgi ð2r � 1Þ yjðt1; t2Þ � y	j

� �2r
	

þ yiðt1; t2 � gÞ � y	i
� �2r

i
þ ð2r � 1 � kÞgi ð2r � 1Þvjðt1; t2 � dÞ2r

h

þ yiðt1; t2 � gÞ � y	i
� �2r

io
:

ð13Þ

Proof We first prove the inequality (12). Under

Assumptions 2–3, one has

o uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr

ot1

¼ 2r uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr�1 �A xðt1; t2Þð Þ B xðt1; t2Þð Þ � Bðx	Þ½ �f
þA xðt1; t2Þð ÞS f xðt1 � r; t2Þ; yðt1; t2 � sÞð Þ � f ðx	; y	Þ½ �g

¼ � 2
Xm

i¼1

r xiðt1; t2Þ � x	i
� �2r�1

piai xiðt1; t2Þð Þ bi xiðt1; t2Þð Þ � biðx	i Þ
� �

� 2r
Xm

i¼1

X2r�2

k¼0

Ck
2r�1 xiðt1; t2Þ � x	i

� �k
uiðt1 � h; t2Þ2r�1�k

piai xiðt1; t2Þð Þ

bi xiðt1; t2Þð Þ � biðx	i Þ
� �

þ 2r
Xm

i¼1

Xm

j¼1

xiðt1; t2Þ � x	i
� �2r�1

pisijai xiðt1; t2Þð Þ

fj xjðt1 � r; t2Þ; yjðt1; t2 � sÞ
� �

� fj x	j ; y
	
j

� �h i

þ 2r
Xm

i¼1

X2r�2

k¼0

Xm

j¼1

Ck
2r�1ai xiðt1; t2Þð Þ xiðt1; t2Þ � x	i

� �k
uiðt1 � h; t2Þ2r�1�k

pisij

fj xjðt1 � r; t2Þ; yjðt1; t2 � sÞ
� �

� fj x	j ; y
	
j

� �h i

� � 2
Xm

i¼1

rpiBia1 xiðt1; t2Þ � x	i
� �2rþ2

Xm

i¼1

Xm

j¼1

rjxiðt1; t2Þ � x	i j
2r�1

pia2

� jsijj fj xjðt1 � r; t2Þ; yjðt1; t2 � sÞ
� �

� fj x	j ; y
	
j

� ��
�
�

�
�
�

þ 2r
Xm

i¼1

X2r�2

k¼0

Ck
2r�1 xi t1; t2ð Þ � x	i

�
�

�
�k ui t1 � h; t2ð Þj j2r�1�k

pia2Bi xiðt1; t2Þ � x	i
�
�

�
�

þ 2r
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1 xiðt1; t2Þ � x	i

�
�

�
�k ui t1 � h; t2ð Þj j2r�1�k

pia2jsijj

� fj xj t1 � r; t2ð Þ; yj t1; t2 � sð Þ
� �

� fj x	j ; y
	
j

� ��
�
�

�
�
�:

ð14Þ
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Using Lemma 2 and inequalities (6)–(8), one can obtain

o uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr

ot1
� � 2

Xm

i¼1

rpiBia1 xi � x	i
� �2r

þ
Xm

i¼1

Xm

j¼1

pia2jsijjaj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2rþ xjðt1 � r; t2Þ � x	j

� �2r
	 


þ
Xm

i¼1

Xm

j¼1

pia2jsijjbj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2rþ yjðt1; t2 � sÞ � y	j

� �2r
	 


þ 1

2r � 1

Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bi 2rk xiðt1; t2Þ � x	i

� �2r
n

þð2r � 1 � kÞ ð2r � 1Þuiðt1 � h; t2Þ2r þ xiðt1; t2Þ � x	i
� �2r

h io

þ 1

2r � 1

Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pia2 sij

�
�

�
�

(

kaj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2r

h
:

þ xjðt1 � r; t2Þ � x	j

� �2r



þ ð2r � 1 � kÞaj ð2r � 1Þuiðt1 � h; t2Þ2r
h

þ xjðt1 � r; t2Þ � x	j

� �2r



þ kbj ð2r � 1Þ xiðt1; t2Þ � x	i
� �2r

h

þ yjðt1; t2 � sÞ � y	j

� �2r



þ ð2r � 1 � kÞbj ð2r � 1Þuiðt1 � h; t2Þ2r
h

þ yjðt1; t2 � sÞ � y	j

� �2r

)

:

ð15Þ

Using the above similar method, one can obtain the

inequality (13).

Theorem 1 Consider system (2). Assume Assump-

tions 1–3 hold. There exists a positive integer r� 1 and

two positive definite diagonal matrices Pm�m;Qm�m, such

that

�2ra1PBþM þ kEk2rkWkI\0;

� 2rc1QDþ N þ kVk2rkLkI\0;
ð16Þ

where B ¼ diagðB1; . . .;BmÞ; D ¼ diagðD1; . . .;DmÞ; P ¼
diagðp1; p2; . . .; pmÞ; E ¼ ðeijÞm�m,Q ¼ diagðq1; q2; . . .; qmÞ,
M ¼ diagðm1;m2; . . .;mmÞ,W ¼ diagðw1;w2; . . .;wmÞ,
V ¼ ðvjiÞm�m, N ¼ diagðn1; n2; . . .; nmÞ, L ¼ diagðl1; l2; . . .;
lmÞ, with mi ¼

Pm
j¼1ðpia2jsijjðaj þ bjÞð2r � 1Þþ pja2jsjij

ai þ qjc2jtjijni þ
P2r�2

k¼0 Ck
2r�1ðpia2jsijjkðaj þ bjÞ þ pja2jsjij

ai þ qjc2jtjijniÞÞ þ 1
2r�1

P2r�2
k¼0 Ck

2r�1pia2Bið2rk þ 2r � 1 �
kÞ;wi ¼

P2r�2
k¼0 fCk

2r�1pia2Bið2r � 1 � kÞþ
Pm

j¼1 C
k
2r�1pia2

jsijjð2r � 1 � kÞ ðaj þ bjÞg; ni ¼
Pm

j¼1ðqic2jtijjðnjþ gjÞ
ð2r � 1Þ þ qjc2jtjijgi þ pja2jsjijbi þ

P2r�2
k¼0 Ck

2r�1ðqic2jtijj
kðnj þ gjÞ þqjc2jtjijgi þ pja2jsjijbiÞÞ þ 1

2r�1

P2r�2
k¼0 Ck

2r�1

qic2Di ð2rk þ 2r � 1 � kÞ; li ¼
P2r�2

k¼0 fCk
2r�1qic2Dið2r �

1 � kÞ þ
Pm

j¼1 C
k
2r�1qic2jtijjð2r � 1 � kÞðnj þ gjÞg; i ¼

1; 2; . . .;m:

Then, the equilibrium point of system (2) is globally

asymptotically stable.

Proof Based on (2), we define the following Lyapunov

functional

V ¼ V1 þ V2; ð17Þ

with

V1 ¼ uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr

þ
Xm

i¼1

Xm

j¼1

pja2jsjijai
Z t1

t1�r
xiðs; t2Þ � x	i
� �2r

ds

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bið2r � 1 � kÞ

Z t1

t1�h

uiðs; t2Þ2r
ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pja2jsjijai

Z t1

t1�r
xiðs; t2Þ � x	i
� �2r

ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pia2jsijjð2r � 1 � kÞ aj þ bj

� �
Z t1

t1�h

uiðs; t2Þ2r
ds

þ
Xm

i¼1

Xm

j¼1

qjc2jtjijni
Z t1

t1�d
xiðs; t2Þ � x	i
� �2r

ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjijni

Z t1

t1�d
xiðs; t2Þ � x	i
� �2r

ds;

ð18Þ

V2 ¼ zðt1; t2Þ � z	ð Þr½ �TQ zðt1; t2Þ � z	ð Þr

þ
Xm

i¼1

Xm

j¼1

qjc2jtjijgi
Z t2

t2�g
yiðt1; sÞ � y	i
� �2r

ds

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1qic2Dið2r � 1 � kÞ

Z t2

t2�d

viðt1; sÞ2r
ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjijgi

Z t2

t2�g
yiðt1; sÞ � y	i
� �2r

ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qic2jtijjð2r � 1 � kÞ gj þ nj

� �
Z t2

t2�d

viðt1; sÞ2r
ds

þ
Xm

i¼1

Xm

j¼1

pja2jsjijbi
Z t2

t2�s
yiðt1; sÞ � y	i
� �2r

ds

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pja2jsjijbi

Z t2

t2�s
yiðt1; sÞ � y	i
� �2r

ds:

ð19Þ

The derivative of Vðxðt1; t2Þ; yðt1; t2ÞÞ along fðt1; t2Þ ¼
oxðt1; t2Þ

ot1
;
oyðt1; t2Þ

ot2

 �T

is given by
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rfV xðt1; t2Þ; yðt1; t2Þ½ �T
� �

¼ ðrVÞTfðt1; t2Þ

¼ oV

ox

oV

oy

	 


fðt1; t2Þ

¼ oV1ðt1; t2Þ
oxðt1; t2Þ

oxðt1; t2Þ
ot1

þ oV2ðt1; t2Þ
oyðt1; t2Þ

oyðt1; t2Þ
ot2

¼ oV1ðt1; t2Þ
ot1

þ oV2ðt1; t2Þ
ot2

:

ð20Þ

Then, one has

rfV ¼ oV1ðt1; t2Þ
ot1

þ oV2ðt1; t2Þ
ot2

� o uðt1; t2Þ � u	ð Þr½ �TP uðt1; t2Þ � u	ð Þr

ot1

þ
Xm

i¼1

Xm

j¼1

pja2jsjijai xiðt1; t2Þ � x	i
� �2r� xiðt1 � r; t2Þ � x	i

� �2r
n o

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bið2r � 1 � kÞ uiðt1; t2Þ2r � uiðt1 � h; t2Þ2r

n o

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pja2jsjijai xiðt1; t2Þ � x	i

� �2r� xi t1 � r; t2ð Þ � x	i
� �2r

n o

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pia2jsijjð2r � 1 � kÞ aj þ bj

� �
uiðt1; t2Þ2r � uiðt1 � h; t2Þ2r

n o

þ
Xm

i¼1

Xm

j¼1

qjc2jtjijni xiðt1; t2Þ � x	i
� �2r� xiðt1 � d; t2Þ � x	i

� �2r
n o

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjijni xiðt1; t2Þ � x	i

� �2r� xi t1 � d; t2ð Þ � x	i
� �2r

n o

þ o zðt1; t2Þ � z	ð Þr½ �TQ zðt1; t2Þ � z	ð Þr

ot2

þ
Xm

i¼1

Xm

j¼1

qjc2jtjijgi yi t1; t2ð Þ � y	i
� �2r� yi t1; t2 � gð Þ � y	i

� �2r
n o

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1qic2Dið2r � 1 � kÞ viðt1; t2Þ2r � viðt1; t2 � dÞ2r

n o

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qjc2jtjijgi yiðt1; t2Þ � y	i

� �2r� yi t1; t2 � gð Þ � y	i
� �2r

)

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1qic2jtijjð2r � 1 � kÞðgj þ njÞ viðt1; t2Þ2r � viðt1; t2 � dÞ2r

n o

þ
Xm

i¼1

Xm

j¼1

pja2jsjijbi yiðt1; t2Þ � y	i
� �2r� yiðt1; t2 � sÞ � y	i

� �2r
n o

þ
Xm

i¼1

Xm

j¼1

X2r�2

k¼0

Ck
2r�1pja2jsjijbi yiðt1; t2Þ � y	i

� �2r� yiðt1; t2 � sÞ � y	i
� �2r

n o
:

According to Lemma 3, one gets

rfV �
Xm

i¼1

�2rpiBia1 þ
Xm

j¼1

½pia2jsij aj þ bj
� �

ð2r � 1Þ þ pja2

�
�

�
�sjijai þ qjc2jtjijni

(

þ
X2r�2

k¼0

Ck
2r�1 pia2jsijjk aj þ bj

� �
þ pja2jsjijai þ qjc2jtjijni

� �

þ 1

2r � 1

X2r�2

k¼0

Ck
2r�1pia2Bi 2rk þ 2r � 1 � kð Þ

)

xi � x	i
� �2r

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1pia2Bið2r � 1 � kÞ

�

þ
Xm

j¼1

Ck
2r�1pia2jsijjð2r � 1 � kÞ aj þ bj

� �
)

ui½ �2r

þ
Xm

i¼1

�2rqiDic1 þ
Xm

j¼1

qic2jtijj nj þ gj
� �

ð2r � 1Þ þ qjc2jtjijgi þ pja2jsjijbi
�

(

þ
X2r�2

k¼0

Ck
2r�1 qic2jtijjk nj þ gj

� �
þ qjc2jtjijgi þ pja2jsjijbi

� �
#

þ 1

2r � 1

X2r�2

k¼0

Ck
2r�1qic2Di 2rk þ 2r � 1 � kð Þ

)

yi � y	i
� �2r

þ
Xm

i¼1

X2r�2

k¼0

Ck
2r�1qic2Dið2r � 1 � kÞ

�

þ
Xm

j¼1

Ck
2r�1qic2jtijjð2r � 1 � kÞðnj þ gjÞ

)

½vi�2r

¼ xðt1; t2Þ � x	ð Þr½ �T �2rPBa1 þMð Þ xðt1; t2Þ � x	ð Þr

þ yðt1; t2Þ � y	ð Þr½ �Tð�2rQDc1 þ NÞ yðt1; t2Þ � y	ð Þr

þ ðE xðt1; t2Þ � x	Þð Þr½ �TW E xðt1; t2Þ � x	ð Þð Þr

þ V yðt1; t2Þ � y	ð Þð Þr½ �TL V yðt1; t2Þ � y	ð Þð Þr

� xðt1; t2Þ � x	ð Þr½ �Tð�2rPBa1 þMÞ xðt1; t2Þ � x	ð Þr

þ yðt1; t2Þ � y	ð Þr½ �Tð�2rQDc1 þ NÞ yðt1; t2Þ � y	ð Þr

þ kEkkxðt1; t2Þ � x	k � � � � � � kEkkxðt1; t2Þ � x	k

� kWkkEkkxðt1; t2Þ � x	k � � � � � � kEkkxðt1; t2Þ � x	k

þ kVkkyðt1; t2Þ � y	k � � � � � � kVkkyðt1; t2Þ � y	k

� kLkjVkkyðt1; t2Þ � y	k � � � � � � kVkkyðt1; t2Þ � y	k

¼ xðt1; t2Þ � x	ð Þr½ �Tð�2ra1PBþM þ kEk2rkWkIÞ xðt1; t2Þ � x	ð Þr

þ yðt1; t2Þ � y	ð Þr½ �Tð�2rc1QDþ N þ kVk2rkLkIÞðyðt1; t2Þ � y	Þr:

ð21Þ

Then, according to (16), it concludes that the equilibrium

point of system (2) is globally asymptotically stable. This

completes the proof.

Remark 4 The problem of positive real control for two-

dimensional (2-D) discrete delayed systems has been
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considered in [16]. Compared with model (1) in [16], our

model (2) is more general since it considers the interaction

between two neural networks and it is a neutral neural

network. Moreover, the LMI conditions (12) and (22) in

[16] are more difficult to be checked than condition (16) of

this paper when the dimension of the states of the discussed

model is not small.

Remark 5 Two-dimensional (2-D) complex networks

with randomly occurring nonlinearities have been proposed

in [22, 23]. Compared with [22, 23], our contribution of

this paper is twofold: (1) In this paper , the Cohen–

Grossberg BAM neural network model (2) considers the

interaction between two neural networks and is neutral. (2)

Condition (16) of this paper is simpler to be obtained in the

application than conditions (8) and (16) in [22] and con-

ditions (17) and (18) in [23], which are more complicated

when the dimension of the states of the discussed model is

large.

In system (2), define aiðxið�ÞÞ ¼ 1; cjðyjð�ÞÞ ¼ 1, we

consider the following simple model

where i; j ¼ 1; 2; . . .;m. Then, one has the following result

according to Theorem 1.

Corollary 1 Assume Assumptions 1 and 2 hold, if one

can choose appropriate diagonal matrices Pm�m;Qm�m such

that

�2PBþM þ kEk2kWkI\0;�2QDþ N þ kVk2kLkI\0;

ð23Þ

where B ¼ diagðB1; . . .;BmÞ; D ¼ diagðD1; . . .;DmÞ; P ¼
diagðp1; p2; . . .; pmÞ; E ¼ ðeijÞm�m, Q ¼ diagðq1; q2; . . .;

qmÞ, M ¼ diagðm1;m2; . . .;mmÞ, W ¼ diagðw1;w2; . . .;wmÞ,
V ¼ ðvjiÞm�m, N ¼ diag ðn1; n2; . . .; nmÞ, L ¼ diag

ðl1; l2; . . .; lmÞ, s ¼ max
i;j

ðjsijjÞ, a ¼ max
j
ðajÞ, b ¼ max

j
ðbjÞ,

t ¼ max
i;j

ðjtjijÞ, n ¼ max
i
ðniÞ, g ¼ max

i
ðgiÞ with mi ¼

mpisðaþ bÞ þ 2satrðPÞ þ 2tntrðQÞ þ piBi, wi ¼ piBiþ
mpisðaþ bÞ, ni ¼ mqitðnþ gÞ þ 2tgtrðQÞ þ 2sbtrðPÞþ
qiDi, li ¼ qiDi þ mqitðnþ gÞ, the equilibrium point of

system (22) is globally asymptotically stable.

To date, there are few literatures on the event-triggered

stability of neutral-type Cohen–Grossberg BAM neural

networks. However, the on-board resources are always

limited and the event-triggered strategy is a good choice to

deal with the limitations [28, 29]. Hence, we introduce the

event-triggered strategy in our model. For simplification, in

Eq. (22), we let eij ¼ 0; vji ¼ 0; r ¼ 0; s ¼ 0; d ¼ 0; g ¼ 0

and bið0Þ ¼ 0; djð0Þ ¼ 0. Moreover, we consider the event-

triggered strategy in the activation functions fj and gi.

Then, we have the following model.

oxiðt1; t2Þ
ot1

¼ � biðxiðt1; t2ÞÞ �
Xm

j¼1

sijfj xj t
k
1; t

k
2

� �
; yj t

k
1; t

k
2

� �� �
þ Ii

( )

;

oyjðt1; t2Þ
ot2

¼ � djðyjðt1; t2ÞÞ �
Xm

i¼1

tjigi xi t
k
1; t

k
2

� �
; yi t

k
1; t

k
2

� �� �
þ Jj

( )

;

8
>>>><

>>>>:

ð24Þ

where i; j ¼ 1; 2; . . .;m. tk1; t
k
2, k ¼ 0; 1; 2; . . . are the infor-

mation broadcasting time sequences of the ith neuron. For

t1 2 ½tk1; tkþ1
1 Þ; t2 2 ½tk2; tkþ1

2 Þ, we define the state measure-

ment errors are

exiðt1; t2Þ ¼ xi t
k
1; t

k
2

� �
� xiðt1; t2Þ;

eyiðt1; t2Þ ¼ yi t
k
1; t

k
2

� �
� yiðt1; t2Þ:

ð25Þ

The event-triggering conditions for neuron i are designed

as

jexiðt1; t2Þj ¼ j1jxi tk1; tk2
� �

� x	i j; jeyiðt1; t2Þj
¼ j2jyi tk1; tk2

� �
� y	i j; ð26Þ

where j1 [ 0 and j2 [ 0 are constants. With the inequality

method, it is easy to see that jexiðt1; t2Þj ¼ j1jxiðtk1; tk2Þ �
x	i j ¼ j1jexiðt1; t2Þ þ xiðt1; t2Þ � x	i j � j1jexiðt1; t2Þj þ j1

jxiðt1; t2Þ � x	i j, then

jexiðt1; t2Þj �
j1

1 � j1

jxiðt1; t2Þ � x	i j; ð27Þ

where j1 2 ð0; 1Þ. Also, one can get

jeyiðt1; t2Þj �
j2

1 � j2

jyiðt1; t2Þ � y	i j; ð28Þ

where j2 2 ð0; 1Þ.

oxiðt1; t2Þ
ot1

þ
Xm

j¼1

eij
oxjðt1 � h; t2Þ

ot1
¼ � biðxiðt1; t2ÞÞ �

Xm

j¼1

sijfjðxjðt1 � r; t2Þ; yjðt1; t2 � sÞÞ þ Ii

( )

;

oyjðt1; t2Þ
ot2

þ
Xm

i¼1

vji
oyiðt1; t2 � dÞ

ot2
¼ � djðyjðt1; t2ÞÞ �

Xm

i¼1

tjigiðxiðt1 � d; t2Þ; yiðt1; t2 � gÞÞ þ Jj

( )

;

8
>>>><

>>>>:

ð22Þ
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Corollary 2 Under the event-triggering condition (26),

Assumptions 1 and 2 hold, and b0iðxiÞ\B1
i ; d

0
jðyjÞ\D1

j , B
1
i

and D1
j are constant. Choosing appropriate j1 2 ð0; 1Þ,

j2 2 ð0; 1Þ, diagonal matrices Pm�m;Qm�m to satisfy

inequality (23) (here, aj, bj, ni and gi are changed to be

aj
1�j1

,
bj

1�j2
, ni

1�j1
and

gi
1�j2

, respectively), one has that the

equilibrium point of system (24) is globally asymptotically

stable.

Proof According to Assumption 1, it is easy to see that

jfjðxjðtk1; tk2Þ; yjðtk1; tk2ÞÞ � fjðxj; yjÞj ¼ jfjðexj þ xj; eyj þ yjÞ�
fjðxj; yjÞj � ajjexjj þ ajjxj � xjj þ bjjeyjj þ ajjyj � yjj. Using

(27) and (28), one can obtain jfjðxjðtk1; tk2Þ; yjðtk1; tk2ÞÞ �
fjðxj; yjÞj � aj

1�j1
jxj � xjj þ bj

1�j2
jyj � yjj. Similarly,

jgiðxiðtk1; tk2Þ; yiðtk1; tk2ÞÞ � giðxi; yiÞj� ni
1�j1

jxi � xijþ
gi

1�j2
jyi � yij. As a result, Lemma 2 is still satisfied. Hence,

the equilibrium point of system (24) is globally asymp-

totically stable.

Next, we will show that the event-triggering time

instants for each neuron are strictly positive, i.e., tkþ1
1 �

tk1 [ 0 and tkþ1
2 � tk2 [ 0 for all k 2 Z. Between the two

events, the evolutions of the exi; eyj over t1 2 ½tk1; tkþ1
1 Þ; t2 2

½tk2; tkþ1
2 Þ are given by

oexiðt1; t2Þ
ot1

¼ � oxiðt1; t2Þ
ot1

¼ biðxiðt1; t2ÞÞ �
Xm

j¼1

sijfj xj t
k
1; t

k
2

� �
; yj t

k
1; t

k
2

� �� �
þ Ii

( )

;

oeyjðt1; t2Þ
ot2

¼ � oyjðt1; t2Þ
ot2

¼ djðyjðt1; t2ÞÞ �
Xm

i¼1

tjigi xi t
k
1; t

k
2

� �
; yi t

k
1; t

k
2

� �� �
þ Jj

( )

;

8
>>>><

>>>>:

ð29Þ

Due to bið0Þ ¼ 0; djð0Þ ¼ 0 and b0iðxiÞ\B1
i ; d

0
jðyjÞ\D1

j ,

one can get

Let efi ¼ B1
i xi t

k
1; t

k
2

� ��
�

�
�þ

Pm
j¼1 jsijj � fj xj t

k
1; t

k
2

� �
; yj t

k
1; t

k
2

� �� ��
�

�
�

þ Ii and egj ¼ D1
j yj t

k
1; t

k
2

� ��
�

�
� þ

Pm
i¼1 jtjij � gi xi t

k
1; t

k
2

� �
;

��
�

yi t
k
1; t

k
2

� �
Þj þ Jj, it is easy to get that tkþ1

1 � tk1 [
1
B1
i

lnðB
1
i j1

efi
jxiðtk1; tk2Þ � x	i j þ 1Þ and tkþ1

2 � tk2 [
1
D1

j

lnðD
1
j j2

egj

j

yjðtk1; tk2Þ � y	j j þ 1Þ; for all k 2 Z. The proof is completed.

4 Illustrative examples

In this section, numerical examples are presented to

demonstrate the effectiveness of our results.

Example 1 Consider the following two-dimensional

neutral-type Cohen–Grossberg BAM neural networks:

oxiðt1; t2Þ
ot1

þ
X2

j¼1

eij
oxjðt1 � 0:2; t2Þ

ot1
¼ �aiðxiðt1; t2ÞÞ biðxiðt1; t2ÞÞf

�
P2

j¼1

sijfjðxjðt1 � 0:1; t2Þ; yjðt1; t2 � 0:2ÞÞ þ Ii

)

; i ¼ 1; 2

oyjðt1; t2Þ
ot2

þ
X2

i¼1

vji
oyiðt1; t2 � 0:3Þ

ot2
¼ �cjðyjðt1; t2ÞÞ djðyjðt1; t2ÞÞ

�

�
P2

i¼1

tjigiðxiðt1 � 0:1; t2Þ; yiðt1; t2 � 0:2ÞÞ þ Jj

�

; j ¼ 1; 2

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð31Þ

where aiðxiðt1; t2ÞÞ ¼ 5 þ cosðxiÞ; fjðx; yÞ ¼ 0:1jxj þ 0:1jyj;
biðxiÞ ¼ 2:1xi; Ii ¼ 1; cjðyjðt1; t2ÞÞ ¼ 4 þ sinðyjÞ; giðx; yÞ ¼
0:1jxj þ 0:1jyj; djðyjÞ ¼ 3:1yj; Jj ¼ 2; i; j ¼ 1; 2: The initial

value conditions given by x1 ¼ 40
3
hþ 2 þ t2, x2 ¼

10hþ t2, y1 ¼ 20
3
hþ 1 þ t1 y2 ¼ 40

3
hþ 2 � t1, h 2

½�0:3; 0�. Let r ¼ 1,Bi ¼ 2;Dj ¼ 3,c1 ¼ 3; c2 ¼ 5; a1 ¼ 4;

a2 ¼ 6,s11 ¼ 0:1; s12 ¼ 0:1; s21 ¼ 0:4; s22 ¼ 0:4; t11 ¼ 0:1;

t12 ¼ 0:1; t21 ¼ 0:4; t22 ¼ 0:4; i; j ¼ 1; 2; pi ¼ 2; qj ¼ 2;

ai ¼ 0:1; bi ¼ 0:1; nj ¼ 0:1; gj ¼ 0:1; tij ¼ 0:1; vji ¼ 0:1;

i; j ¼ 1; 2: With a simple calculation, one has mi ¼ 29:44;

wi ¼ 25:92; ni ¼ 35:12; li ¼ 31:6; and �2ra1PBþMþ

kEk2rkWkI¼ �2:5185 0

0 �2:5185

 �

\0; and �2rc1QDþ

NþkVk2rkLkI¼ �0:8294 0

0 �0:8294

 �

\0: It is easy to

verify that all conditions are satisfied. According to

Theorem 1, one has that the equilibrium point ðx	;y	Þ
(here, x	 ¼ ðx	1;x	2Þ

T ¼ð0:0037;0:0201ÞT ;y	 ¼ðy	1;y	2Þ
T ¼

ð0:0066;0:0265ÞT ) of system (31) is existent and

asymptotically stable. It can be seen from Figs. 1, 2, 3,

4, 5 and 6 that the equilibrium point ðx	;y	Þ of system

(31) is indeed asymptotically stable under the above

conditions.

ojexiðt1; t2Þj
ot1

� j ojexiðt1; t2Þj
ot1

j �B1
i jxi tk1; tk2

� �
j þ B1

i jexiðt1; t2Þj þ
Xm

j¼1

jsijj � jfj xj tk1; tk2
� �

; yj t
k
1; t

k
2

� �� �
j þ Ii;

j oeyjðt1; t2Þ
ot2

j � ojeyjðt1; t2Þj
ot2

�D1
j jyj tk1; tk2

� �
j þ D1

j jeyjðt1; t2Þj þ
Xm

i¼1

jtjij � jgi xi tk1; tk2
� �

; yi t
k
1; t

k
2

� �� �
j þ Jj:

8
>>><

>>>:

ð30Þ

Neural Comput & Applic (2017) 28:703–716 711

123



Example 2 For system (22), we define

where f1ðx; yÞ ¼ 2sinðxÞ þ 2sinðyÞ; b1ðx1Þ ¼ 1:5x1; I1 ¼ 4;

g1ðx; yÞ ¼ 2cosðxÞ þ 2cosðyÞ, d1ðy1Þ ¼ 1:5y1; J1 ¼ 3;

r ¼ 0; s ¼ 0; d ¼ 0; g ¼ 0. The initial value conditions

given by x1 ¼ 40
3
hþ 0:5 þ t2, y1 ¼ 2ht1, h 2 ½�0:1; 0�. One

can calculate the equilibrium point. 1:5x1 � 0:1ð2sinðx1Þ þ
2sinðy1ÞÞ þ 4 ¼ 0 and 1:5y1 � 0:1ð2cosðx1Þþ 2cosðy1ÞÞ
þ3 ¼ 0. Get ðx	1; y	1Þ ¼ ð�2:8166;�2:2054Þ. Using the

result, one can get B ¼ 1:4;D ¼ 1:4; e ¼ 0:1; v ¼ 0:1;

s ¼ 0:1; t ¼ 0:1;m ¼ 1, a ¼ 2; b ¼ 2; n ¼ 2; g ¼ 2, P ¼
p ¼ 4;Q ¼ q ¼ 3: With a simple calculation, one has m1 ¼
mpsðaþ bÞ þ 2spa þ 2tqn þ pB ¼ 10; w1 ¼ pBþ
mpsðaþ bÞ ¼ 7:2, n1 ¼ mqtðnþ gÞ þ 2tqgþ 2spbþ
qD ¼ 8:2, l1 ¼ qDþ mqtðnþ gÞ ¼ 5:4. And �2PBþ
m1 þ e2w1 ¼ �1:2 and �2QDþ n1 þ v2

1l1 ¼ �0:2. It is

easy to verify that all conditions are satisfied. According to

Corollary 1, one has that the equilibrium point ðx	1; y	1Þ ¼

0
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Fig. 1 The numeric simulation of x1ðt1; t2Þ in system (31)

0
20

40
60

80

0
20

40
60

80
−2

0

2

4

6

8

t2t1

x2

Fig. 2 The numeric simulation of x2ðt1; t2Þ in system (31)
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Fig. 3 The numeric simulation of y1ðt1; t2Þ in system (31)
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Fig. 4 The numeric simulation of y2ðt1; t2Þ in system (31)

ox1ðt1; t2Þ
ot1

þ 0:1
ox1ðt1 � 0:1; t2Þ

ot1
¼ �ðb1ðx1ðt1; t2ÞÞ � 0:1f1ðx1ðt1; t2Þ; y1ðt1; t2ÞÞ þ I1Þ;

oy1ðt1; t2Þ
ot2

þ 0:1
oy1ðt1; t2 � 0:1Þ

ot2
¼ �ðd1ðy1ðt1; t2ÞÞ � 0:1g1ðx1ðt1; t2Þ; y1ðt1; t2ÞÞ þ J1Þ;

8
>><

>>:
ð32Þ
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ð�2:8166;�2:2054Þ of system (32) is existent and

asymptotically stable. It can be seen from Figs. 7, 8, 9 and

10 that the equilibrium point ðx	1; y	1Þ of system (32) is

indeed asymptotically stable under the above conditions.

Remark 6 In Figs. 1, 2, 3 and 4, the state variables tend to

constants when t1 and t2 tend to infinity. That is, the state

variables are asymptotically stable when t1 and t2 tend to

infinity. Figures 5 and 6 show the numeric simulation of

state variables in system (31) about t1 and t2, respectively.

Similarly, Figs. 7, 8, 9 and 10 show the numerical solution

of model (32). one can also see that the state variables tend

to the constants when t1 and t2 tend to infinity.

Example 3 The dynamical process in gas absorption,

water stream and air drying can be described by the fol-

lowing equation

o2sðx; tÞ
oxot

¼ a0sðx; tÞ þ a1

osðx; tÞ
ot

þ a2

osðx; tÞ
ox

þ bf ðx; tÞ:

ð33Þ

where s(x, t) is an unknown function of x and t; a0; a1; a2

and b are real coefficients, f(x, t) is the input function.

Considering the time delay, we change (33) to the fol-

lowing equation with t 2 ½�h;1Þ

o2sðx; tÞ
oxot

¼ �a3

o2sðx; t � hÞ
oxot

þ a0sðx; tÞ þ a1

osðx; tÞ
ot

þ a1

osðx; t � hÞ
ot

þ a2

osðx; tÞ
ox

þ bf ðx; tÞ; ð34Þ

with the initial and boundary condition sð0; tÞ ¼
/ð0; tÞ; sðx; hÞ ¼ uðt; hÞ; h 2 ½�h; 0�. Define Xðx; tÞ ¼
sðx; tÞ � C and Yðx; tÞ ¼ osðx;tÞ

ox
� a1sðx; tÞ, where C is a

constant, the following 2-D system can be obtained:
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Fig. 5 The numeric simulation of xi, yj about t1 in system (31)
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Fig. 6 The numeric simulation of xi, yj about t2 in system (31)
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Fig. 7 The numeric simulation of x1ðt1; t2Þ in system (32)

oXðx; tÞ
ox

¼ a1X þ a1C þ Y ;

oYðx; tÞ
ot

þ a3

oYðx; t � hÞ
ot

¼ ða1a2 þ a0ÞX þ a2Y þ ða1a2 þ a0ÞC þ bf ðx; tÞ;

8
><

>:
ð35Þ
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with the initial and boundary condition Xð0; tÞ ¼ sð0; tÞ �
C ¼ /ð0; tÞ � C; Yðx; hÞ ¼ osðx;hÞ

ox
� a1sðx; hÞ; h 2 ½�h; 0�. It

is worth nothing that t1 ¼ x is the space variable and t2 ¼ t

is the time variable.

Let a0 ¼ 1:25;a1 ¼�1:5;a2 ¼�1:5;a3 ¼ 0:1;b¼ 1; C¼
2; f ðx; tÞ¼ 0:1	 sinðXÞþ0:05	 cosðYÞ � ða1a2 þa0ÞX and

sð0; tÞ¼ 2	 t;sðx;hÞ¼ x2 þh2, the system can be given by

oXðx; tÞ
ox

¼ �1:5X þ Y � 3;

oYðx; tÞ
ot

þ 0:1
oYðx; t � hÞ

ot
¼ �1:5Y þ 0:1 	 sinðXÞ þ 0:05 	 cosðYÞ � 2;

8
><

>:

where initial and boundary conditions are Xð0; tÞ ¼
2 	 t � 2; Yðx; hÞ ¼ 2xþ h2 � a1ðx2 þ h2Þ. For h ¼ 0:2,

one can have P ¼ 1;Q ¼ 2, m1 ¼ 3:6;w1 ¼ 3; n1 ¼
5:502; l1 ¼ 3:102; and �2PBþ m1 þ e2w1 ¼ �0:2 and

�2QDþ n1 þ v2
1l1 ¼ �0:067. It is easy to verify that all

assumptions are satisfied. By using the MATLAB tool, one
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Fig. 10 The numeric simulation of x1, y1 about t2 in system (32)

Fig. 11 The numeric simulation of Xðx; tÞ in system (35)

Fig. 12 The numeric simulation of Yðx; tÞ in system (35)
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Fig. 8 The numeric simulation of y1ðt1; t2Þ in system (32)
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Fig. 9 The numeric simulation of x1, y1 about t1 in system (32)
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has that the equilibrium point is ðX	; Y	Þ ¼ ð1:1522;

4:7283Þ in system (35), which is asymptotically stable. It

can be seen in Figs. 11, 12, 13 and 14 that the equilibrium

point ðX	; Y	Þ of system (35) is indeed asymptotically

stable under the above conditions.

5 Conclusions

The asymptotical stability problem of two-dimensional

neutral-type Cohen–Grossberg BAM neural networks has

been discussed in this paper. Mathematical models have

first been designed to show two-dimensional structure and

the neutral-type delays of Cohen–Grossberg BAM neural

networks. Based on some inequality technique, a sufficient

condition has been given to achieve the stability of two-

dimensional neutral-type continuous Cohen–Grossberg

BAM neural networks. Finally, numerical examples with

the simulations have been provided to illustrate the use-

fulness of the obtained criterion.
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