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Abstract Two-dimensional system model represents a
wide range of practical systems, such as image data pro-
cessing and transmission, thermal processes, gas absorption
and water stream heating. Moreover, there are few
dynamical discussions for the two-dimensional neutral-
type Cohen—Grossberg BAM neural networks. Hence, in
this paper, our purpose is to investigate the stability of two-
dimensional neutral-type Cohen—Grossberg BAM neural
networks. The first objective is to construct mathematical
models to illustrate the two-dimensional structure and the
neutral-type delays in Cohen—Grossberg BAM neural net-
works. Then, a sufficient condition is given to achieve the
stability of two-dimensional neutral-type continuous
Cohen—Grossberg BAM neural networks. Finally, simula-
tion results are given to illustrate the usefulness of the
developed criteria.
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1 Introduction

In the past decades, neural networks as a special kind of
nonlinear systems have received considerable attention due
to their wide applications in a variety of areas including
such as pattern recognition, associative memory and
combinational optimization. Dynamical behaviors such as
the stability, the attractivity and the periodic solution of the
neural networks are known to be crucial in applications.
For instance, if a neural network is employed to solve some
optimization problems, it is highly desirable for the neural
network to have a unique globally stable equilibrium.
Therefore, stability analysis of neural networks has
received much attention, and a great number of results have
been available in the literature [1-6].

As one of the most popular and typical neural networks
models, Cohen—Grossberg neural network (CGNN) has
been proposed by Cohen and Grossberg [7]. Since it includes
a number of models from neurobiology, population biology
and evolution theory, as well as the Hopfield neural net-
works, CGNN has attracted considerable attention in recent
years. By combining Cohen—Grossberg neural networks
with an arbitrary switching rule, the mathematical model of
a class of switched Cohen—Grossberg neural networks with
mixed time-varying delays is established in [8]. This paper
[9] is concerned with the problem of exponential stability for
a class of Markovian jump impulsive stochastic Cohen—
Grossberg neural networks with mixed time delays and
known or unknown parameters. The existence and unique-
ness of the solution of interval fuzzy CGNNs with piecewise
constant argument are discussed in [10]. It is shown in [11]
that finite-time synchronization is discussed for a class of
delayed neural networks with Cohen—Grossberg type. In
[12], the authors discussed the following Cohen—Grossberg
BAM neural networks with neutral-type delays
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X(0)+ 3 et —h) = _ai(xi(t)){bi(xi(t)) = 2o sify (it = 05), 3 (1 — 7)) + L},

j=1

where m is an integer, i,j = 1,2,...,m, x;, € R and y; € R
denote the state variables of the ith neuron and the jth neu-
ron, respectively. a;(x;(-)) > 0,¢;(yj(-)) >0 represent
amplification functions. b;(x;(-)) and d;(y;(-)) represent
appropriately behaved functions. And f;, g; are the activation
functions. Moreover, s;,1;,e;,v; are the connection
weights, which denote the strengths of connectivity between
the ith and jth neurons. /;, J; are the exogenous inputs of the
ith neuron and the jth neuron, respectively.
6;>0,0;>0,7; >0, Hji > 0 denote the transmission
delays, which are related to the jth and ith neurons.
d >0, h >0 are neutral-type time delays.

In the above-mentioned literature, most of CGNNs are
considered to be one dimensional. However, two-dimen-
sional system model represents a wide range of practical
systems, such as image data processing and transmission,
thermal processes, gas absorption and water stream heat-
ing. The research on two-dimensional systems has mainly
been inspired by the practical needs to represent continu-
ous- and discrete-time nonlinear dynamic systems by using
the Volterra series. Hence, the two-dimensional systems,
where the information propagation occurs in two inde-
pendent directions, have received considerable research
attention in the past few decades [13-20]. The authors in
[21] investigate the fault detection for 2-D Markovian jump
systems with partly unknown transition probabilities and
missing measurements. It is shown in [22] that the problem
of robust synchronization is discussed for a class of 2-D
coupled uncertain dynamical networks. In [23], the state
estimation is addressed for two-dimensional complex net-
works with randomly occurring nonlinearities and ran-
domly varying sensor delays.

To the best of authors’ knowledge, there are few
dynamical discussions for the two-dimensional neutral-
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type Cohen—Grossberg BAM neural networks. Hence, in
this paper, our purpose is to extend model (1) to be two
dimensional and neutral type and derive sufficient condi-
tions ensuring the global asymptotic stability problem for
the two-dimensional neutral-type Cohen—Grossberg BAM
neural networks based on inequality technique and Lya-
punov functional. The main contribution of this paper is
twofold: (1) A two-dimensional neutral-type Cohen—
Grossberg BAM neural network model will be proposed to
illustrate the two-dimensional structure and the neutral-
type delays in Cohen—Grossberg BAM neural networks. (2)
Sufficient conditions will be proposed to achieve the global
asymptotic stability of two-dimensional neutral-type
Cohen—Grossberg BAM neural networks.

Notation: Throughout this study, for any matrix A, AT
stands for the transpose of A and A~' denotes the inverse of
A, tr(A) is the trace of the A that is the sum of the diagonal
elements of A. For a symmetric matrix A, A > 0(A >0)
means that A is positive definite (positive semi-definite).
Similarly, A <0(A <0) means that A is negative definite
(negative semi-definite). Ap(A), A4,(A) denote the maxi-
mum and minimum eigenvalue of a square matrix A,
respectively. ||A|| denotes the spectral norm defined by
IA|| = (A(ATA))E. For x = (x1,x2,...,%,)" € R", the
norm is the Euclidean vector norm, i.e., ||x|| = (3_1, xiz)%.

Moreover, |A| = (|ay)), |x| = (Jx1], .. ., |xm|)T.

2 Preliminaries

Motivated by [12, 22, 24], we are concerned with the fol-
lowing two-dimensional neutral-type Cohen—Grossberg
BAM neural networks:
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axi(l‘],l‘z) " ax]'(ﬁ — h,l‘z)
- g, = —a4i\x(, ! bi(xi(t1, ¢
o +Z &, ai(xi(t1, 1)) bilwi(11, 2)
- Zsijfj(xj(tl - O-vt2)ayj(t17t2 - T)) +1i}» = 1727 cee,m,
Jj=1 (2)

on on

i=1
m

Yilinnta) | Xm: Vjiw = —¢i(y(n, 1)) {d.i (vi(11,12))-

- thigi(xi(tl - 57t2)ayi(t17t2 - ’7)) +JJ}’ J: 1727' <. m,
i=1

with initial value conditions:

xi(Ovtz) = ¢i(0’ t2)7 yj(tlvo) = (Pj(tla())’ 0e [_r70]7

(3)

where r = max{d, h,0,0,t,n}, and all the signs have the
same definitions with model (1). Here, o, 7, 0, 17 are all time
delays in system (2).

Remark 1 The two-dimensional neutral-type neural net-
work model (2) has its practical significance. On the one
hand, for example, in [25], much effort has been devoted to
the study of two dimensional in vivo neural networks, in

6x(t1,t2) E@x(tl — h,l‘z)
on on

0 _

Y(tlat2)+VaY(tlat2 d)
Oty Oty

Remark 3 Compared with model (1) in [12], the con-
tribution of this paper is that we extend model (1) to be
two dimensional, which is more reasonable since two-
dimensional dynamical systems have to be considered in
many practical applications, such as image data process-
ing and transmission, thermal processes, gas absorption
and water stream heating. Moreover, as mentioned in
Remark 1, some issues such as in vivo neural networks
and flow sensors have been considered to be two
dimensional.

Rewrite system (2) in the matrix form

= —A(x(t1, 0)){B(x(t1,12)) — Sf(x(t1 — 0,12),y(t1,12 — 7)) + I},

= —C(y(r1,)){D(y(t1,12)) — Tg(x(t1 — 0,12),y(t1,12 — 1)) + J },

which neural activity can be measured by means of a two-
dimensional array of microelectrodes, and network mor-
phology is visualized by light microscopy. Also, a novel
flow sensor with two-dimensional 360° direction sensitivity
has been proposed in [26]. On the other hand, time delays
cannot be avoided in the hardware implementation of
neural networks due to the finite switching speed of
amplifiers in electronic neural networks or the finite signal
propagation time in biological networks.

Remark 2 The existence and uniqueness of the equilib-
rium point in system (2) can be obtained by using the
similar methods in [12]. The detailed process is omitted
here to simplify our paper.

where x:(xl,x27...,xm)T, y:(yl,y27...,ym)T, f(x(n,12),
y(tun))= (ilta(t,n)yi(tn), o fulw(t,n),
vt )T ER™, g(x(t,0),y(t,0)) = (&1(xi(11,12),
V1(t1,5)), - 8 (X (t1,12) ym(t1,12))) T €R™. A(x(11,1,)) =
diag(a;(x1(t1,12)), a2 (x2(t1,82)), - - -, am(xm(f1,22))) € R™™,
B(x(l‘l,lz)) = (b](xl(ll,lz)), bz()(z(tl,tz)), Ceey
bm(xm(fhtz)))TERm’ COy(t,1)) =diag(ci(i(t1,12)),
02()72(t1,l‘2))7~--,Cm(y,n(ﬁ,l‘z)))G R™™, D()’(IIJZ)) =
(di(v1(t,02), da(a(t,02)),-y du(ym(ti,12))) " €R™,
S=Sidmxms T=G)mxm E= (Cipmems V=t s>
I= (11,12,...71,”) ER™, J= (JI,JQ,...,Jm) ER™.

Throughout the whole paper, we give the following
assumptions.

@ Springer
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Assumption 1 There exist positive constants o, f3;, &, ;
such that for Vx,y,u,v€R,i,j=1,2,....,m, |fi(x,y)—
Filuw,v)| <oglx —ul + Bily — vl, |gi(x, y) — gi(u,v)[ < &ilx —
ul+ mily = vl

Assumption 2 b;(x) and d;(y) are differentiable and there
exist positive constants B;, D;(i,j = 1,2,...,m), such that
bi(x) > B; > 0,d;(y) > D; > 0,Vx,y € R. By applying the

—bi(y) =
y), where Vx,y €

mean value theorem, one can get that b;(x)
bi(Ci)(x = ), dj(x) — dj(y) = dj(n;) (x —
R, ;,n; are two scalars between x and y.

Assumption 3 There exist positive constants a;,¢; (i =
1,2) such that 0<a; <a;(x;) <a», 0<c; <cj(y;) <ca, for
Vx; €R, Vyj €R.

3 Main results

In this section, we will discuss the global asymptotic sta-
bility of system (2) according to the inequality technique,
linear matrix inequalities and Lyapunov functional.

Definition 1 A point (x*,y*)" € R” x R™ is said to be an
equilibrium point of system (2) if

ai(X?){bz( i) - Z zjﬁ(,,y,) +I,} =0, i=1,2,..,m,
cj(y}‘) {dj(y}‘) - ;zjigi(x;f,y;‘) +J,} =0, j=1,2,....m,

* * ok * T . _ * Lk s\T
where x* = (x7, x5, ..., x5,) Ly = (0,5, L Yh)

According to Remark 2, we define (x*,y*)" to be the
unique equilibrium of systems (4). For the sake of conve-
nience, some other notations are given: for all x € R, x €
R"y€eR", yER" (x#%,y#7), define that E(x — X) =
(ury ), V=) =01, vw), and u(t,t) =
x(t1, ) +Ex(t1 —hty), z(t1,0) =y(t1,02) + Vy(t1,6 — d).

E(x—x*) = (d1,....1n) ,Vy—y")=
W = x* + Ex*, 7 = y* + V.

Moreover,
(Vla o -an)Ta
Lemma 1 [27] If a>0,b>0,p>1,q> 1,%+é: 1,
@ | b
then ab § F —+ ;
According to the Lemma 1 and [12], one has the fol-
lowing lemma.

Lemma 2 Assume Assumptions 1-3 hold, there exists a
positive integer » > 1 and two positive definite diagonal
matrices P = [pi],.ms @ = [¢i],xm Such that

@ Springer

m

m
23N it ) = X pian x [yl (x5 (0, 1), v, 1)) = £ (55, 5) |
=1 =1
ZPL“Z‘SUW/ {
Jj=1
ZP:@MW {

Jj=1

< Z )(Xt(thfz)—)Ti)zr+()€/(l1y'2)—@)2"]
i=1
£y

Dl 0) =5+ (0, 12) =37) 7],

(6)

i=

11—

CE it ) — T it ) piaoBilxi(n, 1) — %

2r=2

1 . k —\2r
< 7 —1 ; ; CZ,flp,-azB,-{Zrk(x,-(thtz) 7xl-)
+@r=1=#)[@r= 1) (Jun2)7) + (0, 1) -

1)
(7)
m m 2r=2 ‘ 5 .
2rY Y D G il i) = il fwi(n,10) [P piaas|
i=1 j=1 k=0

1
x |fi (xi(11,12),y;(11,12)) *ﬁ(fj,y_j)’
1 m m 2r—2

2 1

ias|sij
i=1 j—=1 k=0

X {kocj [(er 1) (xi(11,0) — %)
7]+ 2= 1=K | 2r = 1) (w(n,2))”

)
)

(x(r1,12) - Jﬂ+mkthMmm7m”
)

X

<m—MMmmWHMmm—mﬂ} (®)

m m
—2r—1
23 N it ) = FP ggea x Jgillgi(xi(t, 12),

i=1 j=1

yi(ti, 1)) — gi(x%,51)]

< Z%C2|tﬂ|é [

i=1 j=1

~ D)(y(t,0) = 57)"

m

+ (it ) =)+ D0 gealsiln,

j=1

+ O, 1) =07 (9)

< [@r =1 (yn,0) - 5)°

r

m —2
25 N it ) = Wil it ) P qieaDilyi(n, ) — il
i=1 k=0

1 m 2r—2

< 2}, — 12 Z C._1qicaD; {Qrk(yl(tl,fz) _yl)

=1 k=0
F2r—1-k) [(2r it )7+ (i, 1) —y)”] }
(10)
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m 2r—2

2}’2 Z Z Clﬁr—l yj(t1,t2)

=1 j=1 k=0

— 5l vt )7 giealtl

X |gi(xi(tl7 t2)7yi(t17t2)) - gl()TLa)Tl)l

- r—lzz

i=1 j=1 k=0

2r—2
C2r 1g5ca|tiil

< {ke|2r = D) y(0.0) - 5)"
+ (it 1) — )T,-)2'] F(2r—1-k) {(m — Dt 02)”

+ (i1, 12) — E)z’] + kn; [(Zr D (y(n.0) —57)”

+ (it ) =307 | + (2r = 1= kpm,

X [(2r — (1, 0)" + it 1) — )Ti)zr} }
(11)
Lemma 3 Assume Assumptions 1-3 hold, with the same
P and Q, one has from Lemma 2

8[(“([1,[2) - Lﬁ)r]TP ll,lz )Y
o < —Zer,Bal

+ 3% panb [ (2r = 1) tn,m) = 5) "+ (500 - 1) —x_;)z’]

=1 j=1
2r N 2r
+ Zzp,azls,/lﬁ/{ 1) (xi(t1,12) — x7) +(y,-(t1,t2 —1) *y,-) ]
i=1 j=1
1 =2
—1 Z Z Czy \Pia2B; {Zrk(x,(tlytz) oy ) 2r
i=1 k=0

+2r—1-k) [(2;‘ — Dty — b, )" + (xi(t1, ) = X?)Zr} }
mom 22

1222 C’zcr lp,az\s,j|{kc¢]{ (2r — l)(x,(tl n) —x; ) r
i=1 j=1 k=0
2r

} 21—k [(2r —a(n — b))

+@2r—1-k)p; [(2;‘— Dt — h, 1)

(12)

A(z(t1, 1) — 2)1TQ(z(t1, 12) —

on

< —zzrq,ucl o)

M=

+ iqcz|t,,|é [ (2r — 1)(y,-(t1,t2) 7y;> +(x,-(t1 —4,1) ,x?)z"}

1

z |l
-

m . 2r \2r
+ Zqﬂzltﬂlm 2r—1)(y,<(t17tz)—y,-) + it 12 —n) = ¥;)

1

-

m_ 2r=2

1 &
2r— 1 Z Z CZr 1gic2D; {Zrk( (1) — y?)Zr

i=1 k=0
+r = 1= R)[@r = O, — Y + (it 2) =) ] }

m_m_ 2r=2

20— 1ZZZC2r 1gicaltil {kg, {(er 1)(%(11712) - )

i=1 j=1 k=0
K)E [(2r — )50, 02 — d)

(}/ 11712) ) v

2r—1— k), [(Zr V(.0 —d)”

2

+ x, 117(3 lz)fx)zr} +(2r7]7

2r

+(xL 17()12)7)6 +k11]|:

J

i

2r

Y]
+ (it 2= ) y,)zr}
+ (i, 2 =) = ¥7) }

(13)

Proof We first prove the Under

Assumptions 2-3, one has
6[(u(t1,t2)

inequality (12).

— )" |TP(u(t, 1) — u*)"
a[]

=2r{(u(tn, 1) — )] Pty 1) — ')~ A( (11, 2))[B(x(t1, 12)) — B(x")]
+A( (tl %) )S[f 51 —0’,1‘2),_}’(1‘1 1) —‘L' (x* _y*)]}
:722 (1, 12) —x0)* lpia,»(xi(thtz))[bi(Xi(fl-,lz))*bi(x,-*)}

- ZrZ Z Ch (it ) — xf)kﬁ,-(tl — 1) piai((t, 1))

=1 k=0
[bi(xi(11,12)) — bi(x])]

+ Zrii(xi(tl,tz) *X:f)zril

=1 j=1

[fj(xj(fl —0,0),yi(t1,0 — 1)) JS( ,%)]
m 2r-2 m

+2r 3Nt 0)) (it 1) — ) @ — h) T sy

i=1 k=0 j=1
5(5.57)]
< —ZZmBal xi(t, 1) —x7) 2’+222r\x,(t1,tz ) ="'

=1 j=1

pisiai(xi(t,12))

{j(xj(fl —0,0),y(t1,12 = 1)) —,

x ‘YUW? xj h— Jvtz)?Yf<t1ﬁt2 - T)) 7f/'<x/‘7yj)

m_2r=2

ki 11—
+2rY N [t ) = X[ — hon) P piaaBilxi(n, 0) — x|
i=1 k=0
m m 2r—2 ‘ ) ‘
+2rY 3N Ot i) = x| (n = )T piaolsy|
i=1 j=1 k=0

1
x ij(x,-(n —0,0),y(t,—1) —f ()f_ix?) .
(14)
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Using Lemma 2 and inequalities (6)—(8), one can obtain

O(u(ty, 1) — u)"] P(u(ty,
[(u(r1, 12) >a]ll<<lz _22%1%1

m m 2
2 *
+ E E anZiSub‘J[ x;) r+(xj(tl _0~t2)_xj) ]

Do) =5+ (1= ) = 37)

m m
+ZZM%M

=1 j=1

(X: t,1) —

m_ 2r—2

1ZZC2’ \pid zB{2rk Xi(t1,12) 7x) "
i=1 k=0
+ (xi(n, 1) = X?)Zr} }
m_m_ 2r=2

IZZZCZ, lp,azis,, {koc,[ 2r—1) (x,(tl ) —x; ) .

=1 j=1 k=0

+<2r—1—k)[(2r—1>u,( )

+ (xj(tl o) - x;)z'] +(2r =1 =Ko [(2r = Dl — o)
+ kB {(27* 1) (it 1) — %)

(r 1~ K [2r — Vit — b

(15)

Using the above similar method, one can obtain the
inequality (13).

Theorem 1 Consider system (2). Assume Assump-
tions 1-3 hold. There exists a positive integer > 1 and
two positive definite diagonal matrices Py, xp, Qmxms such
that

—2ra;PB + M + ||E||”"||W||1 <0,

16
—2re;QD + N + |V||¥'|IL||T <0, (16)

where B = diag(By,...,B,), D =diag(Dy,...,Dy), P =
diag(p1,p2, - - - Pm)s E = (€5) psem-Q = diag(qi, g2, - - -, qm),
M = diag(my, my, ...,my),W = diag(wy, wa, ..., W),
V = (Vji)ysxm» N = diag(ni, na, ..., ny), L =diag(li, b, ...,
ln), with m; =377, (p,azls,j\(oc] ¥ Bj)(2r — 1)+ pjac|s;il
o + giealtil& + Sasy’ Chy (piaalsyilk(oy + B;) + pjaalsii
o +L]j62| il&i) + 53— lzzr . Ck_\piaaB;(2rk +2r — 1 —

k), w er 2{C12€r 1piazBi(2r — 1 —k)+ ijzl C5,_\pia:
|s,-j|(2r— L—k) (o5+B)tm = Y30 (qiealtyl(E+ my)

2r—2
(2}”— 1) + %C2|t/z|’71 + pja2|sjl‘ﬁ + Zkro C2r— (%C2|tu|

k(& +m) +aioltiln + piaalsil B)) + 5530 €
gicaD; (2rk +2r — 1 —k), I; = 2’ 2{C’ii lquZD,-(Zr—
LK) S O gealslCr 1 K& )i =
1,2,....m

@ Springer

Then, the equilibrium point of system (2) is globally
asymptotically stable.

Proof Based on (2), we define the following Lyapunov
functional

V=V,+V,, (17)
with

Vi =[(u(ty, 1) — u*)']"P

(u(tr,12) —u')’
m. m

+ Zzp,aziv,,hz,/ x,(v ) — xﬂzrdv

i=1 j=1

m_2r—

+ ZZCZr \PiarBi(2r — 1 7k)/ (s, tz

i=1 k=0

m_m_ 2r—

+ Z Z Z Ck _\piaslsiilou / [xi(s, ) — xﬂzrds

i=1 j=1 k=0 -

m_m_ 2r—

+ ZZZ% 1P:az\3,,| 2r—1 7k)(a,+/;)/

i=1 j=1 k=0 h

(s, 1) " ds

m. m

2
+ ZZqﬁz\tﬂlc,/ ) [xi(s,12) —x7]7ds

i=1 j=1 -

m_m_ 2r=2

£33 ¢ el / [l )7 as,

i=1 j=1 k= 1=

Va =l(zltn,12) = )] Qeliny 1) = )’

m n
+qujczv,,|n,/ i, 5) — ;] ds

i=1 j=1

m_2r—

+ ZZ CZr 1gicaDi(2r — 1 — k)/ i(ll,s)z"ds

i=1 k=0

m_m 2r=2

n
=N gl / D) — v;]¥ds

i=1 j=1 k=0 h—n

m._m_ 2r=2

153
+ ZZ Z Cﬁ,ﬁlqiczitﬂ(Zr —-1- k) (i’]l + éj) / dvi([hs)zrds
Hh—

i=1 j=1 k=0
m._m 12 2
%] 48
F 3D plsilp [ [ i) as
i=1 j=1
m._m_ 2r=2
=3 alslh [ (o) =) e
i=1 j=1 k=0

(19)

The derivative of V(x(t1,%),y(t1,%)) along {(t1,5,) =

< ax(tl, lz) 6y(t1 , lz)
on ’ Oty

T
) is given by
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VgV([x(fh 1), y(1, tz)]T)

= (VW) e(n,12)
ovov
[y (20)
_ avl(ll,lz) ax(ll,lz) 6V2(t1,t2) ay(tl,lz)
6x(t1, lz) on ay(tl, l‘z) Oty
_ oVi(t1, 1) aVz(lhlz)
o Oty

Then, one has

avl(tl,tz) aVZ(I],tz)

ng - on on
< 6[(u(t1,tz) — M*>7]TP(M(I1,12) — M*),
- on
+ ZZPNZL‘/IM{ [xi(11,12) 7)«:,1%7 [xi(ti — 0, 12) 7x;‘]2r}
=1 j=1
m_2r-2
+Y> A paBi(2r —1— k){ﬁf(lufz)zr —ui(t — hyfz)zr}
=1 k=0
m_m 22 , N
+ ZZ Z C’z‘,flpjaz\sj,-\ai{ [xi(tl,tg) 7):?] - [x,-(tl —0,h) 7x;‘}'r}
=1 j=1 k=0

m_m 2r=2

+ D3N Chpialsyl(2r = 1=K (o + ) {iln,2)” — w0 — b))
=1 j=1 k=0
+ 223 gyl b ) =]~ - 0.) ]}
=1 j=
m_m 2r=2 . .
N ClzczflqjCZ‘tﬁ‘éi{ [, 1) = 5] =[xty = 0,02) — x7] }
i=1 j=1 k=0
(z(t1,22) — 2)'1TQ((t1, 12) — )’
+
on
+ qujcz\ { i(t1,12) y,’»‘}zr—[,v,'(tl-,lz —1) —Y?]zr}
=1 j=1
m 2r=2
+ 33 g — 1 -0 {wn.n) 0,0 -4 }
i=1 k=0
m m 2r=2 o .
33N gl yin, ) — v [yl n —n) = ¥;] }
=1 j=1 k=0

m_m 2r=2

>33 Chaenlil(er =1 =00+ G {Fn )" —wiltn - )}
T =1k

+ Z jaslsilfi{ Dt 12) = 5i) = Pl = ) =]}

i=1

m_m 2r=2

Y3 C,Z(r—lp/ﬂZ‘sji‘ﬁx{ i) =)~

i=1 j=1 k=0

Vit 12 —7) — },r]zr}.

According to Lemma 3, one gets

m m
< 2{721’17;31(11 —+ ZD};(JZ\S;,-| (otj + [3])(21’ -1) +p,-a2‘s,-,-|o:,- + gjea|tii &;

i=1 J=1

2r-2
+ > Ch Ipraalsylk (2 + B) + piaalsilos + gieall &)
k=0

= :
+ pr— Z C% _\piaxBi(2rk +2r — 1 — k)} (xi— )cf)2
=

2r
m 2r—2
+ 3 > Ak piaxBi2r— 1 k)
i=1 k=0
+ Y G pianlsy|(2r — 1= k) (o + /;j)}[ﬁi]zr
Jj=1

n "
+ Z{—2"I:’Di01 + " [giealtl (& + my) (2 = 1) + gjealtiln; + piazlsil;
- =

2w
+ A [gealtlk (& + ) + giealtiln, +p/a2‘5ji‘ﬂi}:|
=0

2r—
S gDk 21 - k)} i =37

2r—1 =
m 2r—2
+ 30> A, qicaDi(2r — 1 — k)
i=1 k=0
+ )G gyl (2r = 1= k)(& + n,-)}[ﬁ]z’
j=1

=[(at1.12) —x)] (~2rPBay + M)(x(11,12) —x°)
+ (001, 12) = )T (=2r0Dey + N)(y(t1.12) = y')"
+ (EG(1,12) = )T W(EG(1,12) = )"
+ (VOt,0) =) T LV, 0) )
<[(x(tr, 22) — 51T (“2rPBay + M) (x(t1, 12) — x°)'

+ [0(,12) ')V (~200De; + M) (o(01,12) = )

+ 1Ex(rs 22) =27 - NNl 22) — "]
XAWIEN (e, 12) = X7 - N>, 22) — "]
+ VIl (e 12) = |- IVIHy (e, 2) =y
$ALNVIy (e ) =yl - IVIHy (. 2) =yl
=[(x(t,) = )T (=2raiPB + M + [EIP WD) (x(11,12) = x°)'

+ 10, 12) =y 1T (=20010D + N+ [VIPILID G, 12) = 37)'
(21)

Then, according to (16), it concludes that the equilibrium
point of system (2) is globally asymptotically stable. This
completes the proof.

Remark 4 The problem of positive real control for two-
dimensional (2-D) discrete delayed systems has been
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considered in [16]. Compared with model (1) in [16], our
model (2) is more general since it considers the interaction
between two neural networks and it is a neutral neural
network. Moreover, the LMI conditions (12) and (22) in
[16] are more difficult to be checked than condition (16) of
this paper when the dimension of the states of the discussed
model is not small.

Remark 5 Two-dimensional (2-D) complex networks
with randomly occurring nonlinearities have been proposed
in [22, 23]. Compared with [22, 23], our contribution of
this paper is twofold: (1) In this paper , the Cohen—
Grossberg BAM neural network model (2) considers the
interaction between two neural networks and is neutral. (2)
Condition (16) of this paper is simpler to be obtained in the
application than conditions (8) and (16) in [22] and con-
ditions (17) and (18) in [23], which are more complicated
when the dimension of the states of the discussed model is
large.

In system (2), define a;(x;(-)) = 1,¢;(yi(-)) =1, we
consider the following simple model

To date, there are few literatures on the event-triggered
stability of neutral-type Cohen—Grossberg BAM neural
networks. However, the on-board resources are always
limited and the event-triggered strategy is a good choice to
deal with the limitations [28, 29]. Hence, we introduce the
event-triggered strategy in our model. For simplification, in
Eq. (22), we let ¢; = 0,v; =0,0 =0,7=0,0=0,n =0
and b;(0) = 0,d;(0) = 0. Moreover, we consider the event-
triggered strategy in the activation functions f; and g;.
Then, we have the following model.

6x~(tl tz) -
i\l1,
T: - xl tlatZ Z uf] x] t]‘ [2 » Vi tl’t2)) +Il 5

Ayt 1a)

m
o, {y )= y,rprz)w}
(24)

where i,j=1,2,...,m. 5,4, k=0,1,2,... are the infor-
mation broadcasting time sequences of the ith neuron. For
t €[5, 5, 1 € [, 471), we define the state measure-
ment errors are

axi(l‘l,tg) “ 6x~(t1 —/’l,l‘z) “
T—I-Zeij-’T: — bi(xi(thh)) —Zs,-}ﬁ(xj(tl —O',l‘g),yj(ll,l‘z—f))-f—]i s
(e 1) o : : ’ (22)
yi(t1, 12 yilt1, 0o —d)
on +;vﬁ G = —14i0(n, 1)) Ztﬂgl xi(t1 =0, 12),yilt1, 02 = 1)) +Jj o
where i,j = 1,2,...,m. Then, one has the following result euilti b)) = x: (£ %Y — xi(t: . ¢
according to Theorem 1. wlts 12) l( Y 2) 0 12) (25)

Corollary 1 Assume Assumptions 1 and 2 hold, if one
can choose appropriate diagonal matrices P, Omxm sSuch
that

—2PB+ M + ||E|*||W|[I<0,—20D + N + |V|*||L||I <0,
(23)

where B = diag(By,...,B,), D =diag(D,,...,D,,), P =
diag(p17p27 .. '7Pm)7 E= (eij)me’ Q = diag(q17q27 ey
qm), M = diag(my, my, ..., my,), W = diag(wi,wa, ..., wp),
V=0ji)uxm N=diag (ni,ny,...,n,), L=diag
(L, by ly), s= rr}&}x(|sij|), o= mjax(ocj), = mjax(ﬁj),
t= H}§X(|fﬁ|), ¢ = max(&), n = max(n;)
mp;s(a+ B) + 2sotr(P) + 2t€r(Q) + piBi,  wi = piBi+
mp;s(a+ B), n; = mqit(E+1n) + 2mir(Q) + 2spir(P)+

qiDi, l; = q:D; + mq;t(¢ + 1), the equilibrium point of
system (22) is globally asymptotically stable.

with m; =

@ Springer

eyi(ti, 1) =y (f]f7 tlzc) —yi(t1,12).

The event-triggering conditions for neuron i are designed
as
lexi(ti, 12)| = K1|xi(t]f’f]£) —xﬂa |eyi(tlyt2)|

= K2|yi(tllcvt]2() =il (26)
where x; > 0 and x, > 0 are constants. With the inequality
method, it is easy to see that |ey(t1,t)| = Ky|x; (£, 85) —

x| = xilew(ti, ) + xi(t, 1) — xf| <wilex(ti, )| + xi

|Xi(l‘1 s tz) — xﬂ, then

K1
— o, n) =

(i, 1)] < 5 il @7)

where x; € (0, 1). Also, one can get

Iyz t, ) = vil, (28)

leyi(t1,12)] < 1

where 3 € (0, 1).
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Corollary 2 Under the event-triggering condition (26),

Assumptions 1 and 2 hold, and bj(x;) <Bj,d;(y;) <D}, B|

and D} are constant. Choosing appropriate x; € (0, 1),
Ky € (0,1), diagonal matrices Pxm,OQmxm to satisfy
inequality (23) (here, o, f3;, {; and n; are changed to be

% B; & 1
1—-k? 11—k’ 1—kK; and 11—y’

equilibrium point of system (24) is globally asymptotically
stable.

respectively), one has that the

Proof According to Assumption 1, it is easy to see that
lﬁ(xj(tll(7t]2()7 yj(t]f>t]2()) - ]s()TJﬂ)TJ” = lﬁ'(exj +Xj; €y +Yj)—
Fi (5 )| < ojlex| + oglx; — X5 + Byley| + o4ly; — ¥jl. Using
(27) and (28), one can obtain |fi(x;(£X, %), y;(¢%, 25)) —
- — ; — B; —
fEW < 2l -5+ 2 -l
i (it} 15), vilth, ) — &%, 3| < 125 b — x|+
— ¥i|- As a result, Lemma 2 is still satisfied. Hence,

Similarly,

the_equilibrium point of system (24) is globally asymp-
totically stable.

Next, we will show that the event-triggering time
instants for each neuron are strictly positive, i.e., t’l‘+1
*>0and A" — & > 0 for all k € Z. Between the two
events, the evolutions of the ey, e,; over #; € [, t’]‘“)7 e

[t5,571) are given by

deyi(t1, 1. ox;i(t, 1 - )
% _ ,% - {bi<x,(zl,t2>> =3 sl (o (#, 8) . (. 5)) +1,},
=1
deyi(t1,12) a.Vj<’l-,f2)
T (1, 12)) Zt,,g, xi(t, ), vi (5, 4)) + 0 ¢,

(29)

Due to b;(0) =0,d;(0) =0 and b(x;)<B/,d;(y;) <D},
one can get

Olexi(t,1)] <|a|€xi(l1,fz)\
ot - on

4 Illustrative examples

In this section, numerical examples are presented to
demonstrate the effectiveness of our results.

Example 1 Consider the following two-dimensional
neutral-type Cohen—Grossberg BAM neural networks:

it 1) | & ity —0.2,1)
oy Zez:ij = —a;(xi(t1, ) ){bi(xi(t1, 1))

=1
2

= Yosifi(xi(n = 0.1, 1), yi(t1, 12 — 0.2)) +I:}7 i=1,2
j=1

dy(t1, ¢ 2 Qyit1, 1o —03
% + Z"fi(l#) = —¢i(yi(t, ) {di (11, 12))

i= l

- Zt,,g, xi(t1 —0.1,10), y,(t1,12702))+lj},171 2

(31)

where a;(x;(t1, 1)) = 5+ cos(x;), fi(x,y) = 0.1|x| + 0.1]y|,
bi(xi) = 2.1x;, I = 1, ¢;(y;(t1, 12)) = 4 + sin(y;), gi(x,y) =
0.1|x| +0.1]y|, d;(y;) = 3.1y;, J; = 2,i,j = 1,2. The initial
value conditions given by x; =%0+2+1n, x=
100+1n, y=%20+1+1n y= 409+2—t1, 0c
[-0.3,0]. Let r=1,B; =2,D; =3,c; =3,c, =5,a1 =4,
a; = 6,511 =0.1,51, =0.1,551 = 04,500 = 04,1, =0.1,
l12:0.1,l‘21:0.4,l22:0.4,i,j:1,2, p,-:Z,qj:Z,
% =0.1,5=0.1,& = 0.1,y = 0.1,1; = 0.1,v; = 0.1,
i,j = 1,2. With a simple calculation, one has m; = 29.44,
w; =25.92,n;, =35.12,1; =31.6, and —2ra;PB+M+
2 —2.5185 0
e wii= (7" s
—0.8294 0
0 —0.8294

verify that all conditions are satisfied. According to

> <0, and —2rc; QD+

N+ IVIP L = ( )<o. It is casy to

m
| <Bl(r} 5) |+ Blew(n, n)| + > lsyl - 1 (g (#1,13) 3 (1. )| + I,

e (30)
Oey;i(11, Ole,i(ty, ¢ “
| e}]étlz 2)|§ |ey]ét12 - <D}y (1, )| + D} leyi(tr, )| + > [t - lgi (xi (5, 85), 3i (4, 85)) | + ;.
i—1
Let fl B'}x,(t’f,tz)| +ZJ syl - M(XJ( fz) y,(t]f,tz))| Theorem 1, one has that the equilibrium point (x*,y*)

+ [ and g; = Dj ’y] t’f,t2)| + >0 5] ‘gi(xi( 1712)7

yi(t5,85))| +J;, it is easy to get that At —#f > BL/,
I () — x|+ 1) and AT — > LS
fi J &

yi(#,15) — y;| + 1), for all k € Z. The proof is completed.

(here,  x*=(x},x5)" =(0.0037,0.0201)" ,y* = (yi,y3)" =
(0.0066,0.0265)T) of system (31) is existent and
asymptotically stable. It can be seen from Figs. 1, 2, 3,
4, 5 and 6 that the equilibrium point (x*,y*) of system
(31) is indeed asymptotically stable under the above
conditions.
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Example 2 For system (22), we define

oxy (t1,¢ ox(t; — 0.1, ¢
Mé; 2) +0.1 AU o 2 _ —(bi(x1(t,12)) = 0.1fi(x1(t1, 12), 31 (11, 12)) + 1),
1 1 (32)
Oy (1, ¢ Oy (ty,6, — 0.1
yl(atlz 2) +0.1 v 652 ) = —(di(yi(t1,12)) —0.1g1(x1(t1, 1), y1(t1, 1)) + J1),

where fi(x,y) = 2sin(x) + 2sin(y), b1(x1) = 1.5x;, 1 =4, s=0.1,t=01m=1, a=2,=2,(=2,p=2, P=
gi1(x,y) = 2cos(x) +2cos(y), di(y1) =15y, J1 =3, p=4,0=q=3.Withasimple calculation, one has m; =
6=0,7=0,0=0,7=0. The initial value conditions mps(a+ ) + 2spa + 2tq¢ + pB =10, w; =pB+
givenby x; =490 +0.5+ 1,y =201,0 € [-0.1,0].One  mps(e+ ) = 72, n=mqt(&+n)+2tqn + 2spf+
can calculate the equilibrium point. 1.5x; — 0.1(2sin(x;) + gD =82, I} =¢gD +mqt((+n)=54. And —2PB+
2sin(y1)) +4 =0 and 1.5y; —0.1(2cos(x;)+ 2cos(y1)) m+e*w; =—1.2 and —20D +n; +vi; = —0.2. It is
+3=0. Get (xj,y}) = (—2.8166,—2.2054). Using the  easy to verify that all conditions are satisfied. According to
result, one can get B=14,D=14,¢=0.1, v=0.1, Corollary 1, one has that the equilibrium point (x},y}) =

10

"I/

iy
// A i
\\'\’ (i,

“l]h

t1 0o t u 0 2

Fig. 1 The numeric simulation of x; (1, ;) in system (31) Fig. 3 The numeric simulation of y; (1, £2) in system (31)

20 20
t1 0 o0 2 t1 0o 2

Fig. 2 The numeric simulation of x,(#,,) in system (31) Fig. 4 The numeric simulation of y,(#,,) in system (31)
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x1
x2 |4
y1
6 — Ak

x1,x2,y1,y2

0 10 20 30 40 50 60 70
t1

Fig. 5 The numeric simulation of x;, y; about f; in system (31)

x1
x2

—y2 |

VV

x1,x2,y1,y2
o

_1 0 1 1 1 1 ! !
0 10 20 30 40 50 60 70

t2

Fig. 6 The numeric simulation of x;, y; about #, in system (31)

(—2.8166,—2.2054) of system (32) is existent and
asymptotically stable. It can be seen from Figs. 7, 8, 9 and
10 that the equilibrium point (x},y}) of system (32) is
indeed asymptotically stable under the above conditions.

Remark 6 In Figs. 1,2, 3 and 4, the state variables tend to
constants when #; and 7, tend to infinity. That is, the state

15

.

i
il
ﬂﬂﬂ"" Il

100

20
t1 00 t2

Fig. 7 The numeric simulation of x; (¢, %) in system (32)

variables are asymptotically stable when #; and t, tend to
infinity. Figures 5 and 6 show the numeric simulation of
state variables in system (31) about ¢, and f,, respectively.
Similarly, Figs. 7, 8, 9 and 10 show the numerical solution
of model (32). one can also see that the state variables tend
to the constants when 7, and f, tend to infinity.

Example 3 The dynamical process in gas absorption,
water stream and air drying can be described by the fol-
lowing equation

0%s(x,1)

Os(x, 1) Os(x, 1)
axdr *

or P ox

= aps(x,t) +a; + bf (x,1).

(33)
where s(x, 7) is an unknown function of x and ¢; ag,ay,a»
and b are real coefficients, f(x, ¢) is the input function.

Considering the time delay, we change (33) to the fol-
lowing equation with ¢ € [—h, 00)

0%s(x,1) 0%s(x,t — h) Os(x, 1)
o " ST +“°;(’E’ t))”‘ or
s(x, 1 — s(x, ¢
+a o +a = + bf(x,1), (34)
with the initial and boundary condition s5(0,1) =
¢(0,1),s(x,0) = ¢(1,0),0 € [=h,0]. Define X(x,t) =

s(x,f) = C and Y(x,1) = asg;z) —ais(x,r), where C is a
constant, the following 2-D system can be obtained:

0X(x,1)
Tzalx—f—alC—i— Y7
oY (x,t oY (x,t—h
g ) as (xat ) = (a1a2 + ap)X + a2Y + (a1a2 + ao)C + bf (x, 1),
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100
50 o0 0
40
20

t1 00 2

Fig. 8 The numeric simulation of y;(#1,,) in system (32)

16 T T T T

x1,y1

t1

Fig. 9 The numeric simulation of x;, y; about #; in system (32)

x1,y1

0 20 40 60 80 100
t2

Fig. 10 The numeric simulation of x|, y; about #, in system (32)

@ Springer

with the initial and boundary condition X(0, ) = s(0,¢) —
C=¢(0,1) = C,Y(x,0) = 250 _ 4,5(x,0),0 € [~h,0]. It
is worth nothing that #; = x is the space variable and #, = ¢
is the time variable.

Let ap=1.25,a; = —1.5,ar=—1.5,a3=0.1,b=1, C=
2,f(x,t) =0.1 %sin(X) 4+ 0.05xcos(Y) — (aja, +ap)X and
5(0,1) =2%1,5(x,0) = x* 4+ 0%, the system can be given by

Xt g sxyyos,
oV oG-
ajzc" +0.1 xéz = —1.5Y 4 0.1 +sin(X) + 0.05 * cos(¥) — 2,

where initial and boundary conditions are X(0,7) =
2%t —2,Y(x,0) =2x+ 0> —al(x* + 0%). For h=02,
one can have P=1,0=2, m =3.6,w =3,n =
5.502,1; = 3.102, and —2PB+m; + ¢*w; = —0.2 and
—20D + ny +vil; = —0.067. It is easy to verify that all
assumptions are satisfied. By using the MATLAB tool, one

80~

t1 00 t2

Fig. 11 The numeric simulation of X(x,7) in system (35)

150 :

100

t1 0o t2

Fig. 12 The numeric simulation of Y(x,¢) in system (35)
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12

—X
—Y

10

Fig. 13 The numeric simulation of X, Y about x in system (35)

t2

Fig. 14 The numeric simulation of X, Y about ¢ in system (35)

has that the equilibrium point is (X*,Y*) = (1.1522,
4.7283) in system (35), which is asymptotically stable. It
can be seen in Figs. 11, 12, 13 and 14 that the equilibrium
point (X*,Y*) of system (35) is indeed asymptotically
stable under the above conditions.

5 Conclusions

The asymptotical stability problem of two-dimensional
neutral-type Cohen—Grossberg BAM neural networks has
been discussed in this paper. Mathematical models have
first been designed to show two-dimensional structure and
the neutral-type delays of Cohen—Grossberg BAM neural
networks. Based on some inequality technique, a sufficient

condition has been given to achieve the stability of two-
dimensional neutral-type continuous Cohen—Grossberg
BAM neural networks. Finally, numerical examples with
the simulations have been provided to illustrate the use-
fulness of the obtained criterion.
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