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Abstract In this paper, a generalized memristor-based

recurrent neural network model with variable delays and

impulse effects is considered. By using an impulsive

delayed differential inequality and Lyapunov function, the

exponential stability of the impulsive delayed memristor-

based recurrent neural networks is investigated. Several

exponential and uniform stability criteria of this impulsive

delayed system are derived, which promotes the study of

memristor-based recurrent neural networks. Finally, the

effectiveness of obtained results is illustrated by two

numerical examples.

Keywords Memristor-based recurrent neural networks �
Exponential stability � Impulse effects � Impulsive

differential inequality

1 Introduction

Constructing a neural network model to mimic the human

brain is an important potential applications in the future. In

the past decades, there were many researchers paying

attention to the investigations of neural networks [1–5]. For

example, the authors studied the properties of cellular

neural networks in [1]. In [2, 3], the authors investigated

the second-order dynamic consensus of multi-agent net-

work systems. The authors discussed the linear program-

ming problem of a recurrent neural networks in [4]. Hu and

Wang [5] constructed a memristor-based neural network

model with time delays by exploring a piecewise-linear

mathematical model of the memristor to characterize its

feature of pinched hysteresis. In these studies, the

dynamical behaviors of neural networks are very important

research fields. For instance, the authors investigated the

attractivity of memristor-based delayed cellular neural

networks in [6]. In [7], the authors studied the exponential

stability of memristive neural networks. The consensus of

multi-agent network systems has been investigated in

[8–10].

Since the delayed neural networks may undergo abrupt

changes arising from unexpected internal or external

effects, it is necessary to study the dynamical behaviors of

impulsive control neural networks. In [11–13], the syn-

chronization problems of complex dynamical networks

with delays were studied via impulsive distributed control.

Recently, the stability of impulsive differential equations

has been widely investigated [14–18]. For instance, in [14,

15], the stability of impulsive delayed neural networks was

investigated by means of differential inequality. The

authors in [16] studied the robust exponential stability of

delayed neural networks with parameter uncertainties,

stochastic perturbation, and impulses. Chen and Zhang [17]

investigated the global exponential stability of impulsive

neural networks with variable delay by means of an LMI

approach. In [18], the authors studied the stability of high-

order BAM neural networks with time delays and impulse

effects. All these results are about the case of time-trig-

gered impulse control. Event-triggered impulse control

strategy [9, 19] may be considered in the future research.
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Since the first physical memristor device was invented

by Hewlett-Packard (HP) Laboratory [20, 21], memristor

has attracted much attention [22–25] because it has the

similar features just as the neurons in the human brain.

Moreover, it may promote the development of the next-

generation computer and powerful brain-like neural com-

puters [24]. As a new neural network model, memristor-

based neural network (MNN) systems have attracted much

attention in recent years. Investigating the dynamic prop-

erties of MNNs is very important because it could play the

key role in the designation of MNNs. Wu et al. [26] for-

mulated the memristor-based neural networks and investi-

gated their dynamical properties. In [27, 28], the authors

studied the stability of memristor-based delayed recurrent

neural networks. Zhang et al. researched the synchroniza-

tion stability of chaotic memristive neural networks in [29].

As the literature indicates, the majority of these works

focused on the stability analysis and synchronization of

delayed MNNs without considering abrupt internal or

external changes. However, the states of delayed MNNs

(DMNNs) are not usually stable, and they could also

undergo abrupt internal or external changes. Therefore, it is

necessary to consider the impulsive effect on the stability

of DMNNs. Recently, the stability problem of the mem-

ristive delayed neural networks with impulses was studied

in [30]. In [31], the passivity and passification of stochastic

impulsive memristive systems was investigated . Although

there have been several dynamic study results of impulsive

DMNNs, the stability analysis of these systems has not

been fully investigated, which motivates the research of

this paper.

In this paper, we formulate a generalized impulsive

delayed memristor-based recurrent neural network

(DMRNN) model and analyze the exponential stability of

this model. The global exponential stability of DMRNNs

with impulse effects is investigated by utilizing impulsive

differential inequality and Lyapunov function. Several

stability criteria are obtained, which implies that frequency

and strength of impulses can maintain the stability of the

original stable continuous delayed DMRNNs. Furthermore,

it is worth noting that several uniformly stable criteria of

the impulsive DMRNNs could also be derived. Two

examples and their simulations are given to illustrate the

effectiveness of the results.

The remaining part of this paper consists of four sec-

tions. In Sect. 2, models and preliminaries are introduced.

And the main results are derived in Sect. 3. In Sect. 4, two

illustrative examples are given to demonstrate the effec-

tiveness of the proposed results. Finally, concluding

remarks are included in Sect. 5.

2 Preliminaries

2.1 DMRNN model and notations

In recent years, some initial study results of the

DMRNNs have been obtained [5, 26–28], where the

DMRNN model can be described by the following dif-

ferential equation:

_uiðtÞ ¼ � diðuiðtÞÞuiðtÞ þ
Xn

j¼1

aijðuiðtÞÞfjðujðtÞÞ

þ
Xn

j¼1

bijðuiðtÞÞgjðujðt � sijðtÞÞÞ þ Ii; t� 0; i ¼ 1; 2; . . .; n;

ð1Þ

where n denotes the number of units, uiðtÞ corresponds to

the state of the ith unit at time t, the time-varying delays

sijðtÞ are nonnegative continuous functions satisfying

0� sijðtÞ� s (s[ 0 is a constant) for i; j ¼ 1; 2; . . .; n; fjð�Þ
and gjð�Þ are the bounded feedback functions satisfying

fjð0Þ ¼ gjð0Þ ¼ 0; Ii denotes external constant input,

diðuiðtÞÞ; aijðuiðtÞÞ and bijðuiðtÞÞ represent memristor-based

weights, and

diðuiðtÞÞ ¼
d̂i juiðtÞj\Ti
�di juiðtÞj[ Ti

(
; aijðuiðtÞÞ ¼

âij juiðtÞj\Ti

�aij juiðtÞj[ Ti

�
;

bijðuiðtÞÞ ¼
b̂ij juiðtÞj\Ti
�bij juiðtÞj[ Ti

(
;

in which the switching jumps Ti [ 0; d̂i [ 0; �di [ 0; âij;

�aij; b̂ij and �bij are constants for i; j ¼ 1; 2; . . .; n: When

juiðtÞj ¼ Ti; diðuiðtÞÞ is �di or d̂i; aijðuiðtÞÞ is �aij or âij;

bijðuiðtÞÞ is �bij or b̂ij:

In this paper, solutions of all the considered systems are

intended in the Filippov’s [32] sense. Rn denotes the

n-dimensional space with the Euclidean vector norm j � j;
and ½�; �� represents the interval. Let di ¼ maxfd̂i; �dig; di ¼
minfd̂i; �dig; aij ¼ maxfâij; �aijg; aij ¼ minfâij; �aijg; bij ¼
maxfb̂ij; �bijg; bij ¼ minfb̂ij; �bijg; ~di ¼ minfjd̂ij; j�dijg; ~aij ¼
maxfjâijj; j�aijjg; ~bij ¼ maxfjb̂ijj; j�bijjg; for i; j ¼ 1; 2; . . .; n:

co½a; a� denotes closure of the convex hull generated by

real numbers a and a or real matrices a and a:

2.2 Impulsive DMRNN model

In this subsection, basing on the references [5, 26–28], the

impulsive DMRNN model can be described as the fol-

lowing differential inclusion by applying the theories of

set-valued maps and differential inclusions [32]:
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or equivalently, for i; j ¼ 1; 2; . . .; n; there exist �diðtÞ 2
co½di; di�; �aijðtÞ 2 co½aij; aij�; �bijðtÞ 2 co½bij; bij�; such that

where JikðuÞ 2 C½Rn;Rn� is the jump operator at time tk;

uðtkÞ¼ uðtþk Þ¼ limh!0þuðtkþhÞ; uðt�k Þ¼ limh!0�uðtkþ
hÞ; k¼ 1;2; . . .; and 0\t1\t2\. . .\tk\ � � � ðtk !1 as

k!1Þ; /ðtÞ¼ ð/1ðtÞ;/2ðtÞ; . . .;/nðtÞÞT and /ðtÞ 2
PCð½�s;0�;RnÞ; here PCð½�s;0�;RnÞ denotes the set of

piecewise right continuous function /ðtÞ : ½�s;0�!Rn

with the norm defined by jj/ðtÞjjs ¼ sup�s�s�0 j/ðtþ sÞj: If

Jikðuiðt�k ÞÞ¼ uiðt�k Þ; then model (3) becomes model (1),

which have been widely investigated in [26–29].

Suppose u� ¼ ðu�1; u�2; � � � ; u�nÞ is an equilibrium point of

the impulsive DMRNN (2) or (3), let xiðtÞ ¼ uiðtÞ � u�i for

i ¼ 1; 2; . . .; n; then, we have

where uiðtÞ ¼ /iðtÞ � u�i ;
~fjðxjðtÞÞ ¼ fjðxjðtÞ þ u�j Þ � fjðu�j Þ;

~gjðxjðtÞÞ ¼ gjðxjðtÞ þ u�j Þ � gjðu�j Þ; likðxiðtÞÞ ¼ JikðxiðtÞþ
u�i Þ � Jikðu�i Þ:

In order to derive the exponential stability criteria, the

following definitions, assumptions, and lemmas are needed

to be introduced.

Definition 1 ([16]) The Dini’s upper right-hand deriva-

tive of a continuous function VðtÞ : R ! R is defined by

DþVðtÞ ¼ lim
h!0þ

sup
1

h
fVðt þ hÞ � VðtÞg:

Definition 2 ([26, 28]) Let u� ¼ ðu�1; u�2; � � � ; u�nÞ be an

equilibrium point of system (2.3). If there exist constants

k[ 0 and b� 1 such that for every solution uðtÞ ¼

_uiðtÞ 2 �co½di; di�uiðtÞ þ
Pn

j¼1 co½aij; aij�fjðujðtÞÞ þ
Pn

j¼1

co½bij; bij�gjðujðt � sijðtÞÞÞ þ Ii; t 6¼ tk; t� 0;

uiðtþk Þ ¼ Jikðuiðt�k ÞÞ; k 2 Zþ;

uiðtÞ ¼ /iðtÞ; t 2 ½�s; 0�; i ¼ 1; 2; . . .; n;

8
>>>><

>>>>:

ð2Þ

_uiðtÞ ¼ ��diðtÞuiðtÞ þ
Pn

j¼1 �aijðtÞfjðujðtÞÞ þ
Pn

j¼1
�bijðtÞgjðujðt � sijðtÞÞÞ

þIi; t 6¼ tk; t� 0;

uiðtþk Þ ¼ Jikðuiðt�k ÞÞ; k 2 Zþ;

uiðtÞ ¼ /iðtÞ; t 2 ½�s; 0�; i ¼ 1; 2; . . .; n;

8
>>><

>>>:
ð3Þ

_xiðtÞ 2 �co½di; di�xiðtÞ þ
Pn

j¼1 co½aij; aij�~fjðxjðtÞÞ þ
Pn

j¼1

co½bij; bij�~gjðxjðt � sijðtÞÞÞ; t 6¼ tk; t� 0;

xiðtþk Þ ¼ likðxiðt�k ÞÞ; k 2 Zþ;

xiðtÞ ¼ uiðtÞ; t 2 ½�s; 0�; i ¼ 1; 2; . . .; n;

8
>>>><

>>>>:

ð4Þ

or equivalently,

_xiðtÞ ¼ ��diðtÞxiðtÞ þ
Pn

j¼1 �aijðtÞ~fjðxjðtÞÞ þ
Pn

j¼1
�bijðtÞ~gjðxjðt � sijðtÞÞÞ;

t 6¼ tk; t� 0;

xiðtþk Þ ¼ likðxiðt�k ÞÞ; k 2 Zþ;

xiðtÞ ¼ uiðtÞ; t 2 ½�s; 0�; i ¼ 1; 2; . . .; n;

8
>>><

>>>:
ð5Þ
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ðu1ðtÞ; u2ðtÞ; � � � ; unðtÞÞ of system (2.3) with any initial

value /ðtÞ ¼ ð/1ðtÞ;/2ðtÞ; . . .;/nðtÞÞT ,

juðtÞ � u�j � bjj/ð0Þ � u�jjse�kt; t� 0;

where jj/ð0Þ � u�jjs ¼ sup�s� s� 0 j/ðsÞ � u�j; then the

equilibrium point x� is said to be globally exponentially

stable.

Lemma 1 ([14]) Let a, b be an constants with 0\b\a

and u(t) satisfy the following scalar impulsive differential

inequality

DþuðtÞ� � auðtÞ þ b�uðtÞ; t 6¼ tk; t� t0;

uðtþk Þ� lkuðt�k Þ; k 2 Zþ;

uðtÞ ¼ /ðtÞ; t 2 ½t0 � s; t0�;

8
><

>:

where u(t) is continuous at t 6¼ tk; t� t0;

�uðtÞ, supt�s� s� tfuðsÞg; uðtþk Þ ¼ uðtkÞ and uðt�k Þ exists,

/ðtÞ 2 PC with n ¼ 1: Then,

uðtÞ�
Y

t0\tk � t

dk

 !
jj/ðt0Þjjse�kðt�t0Þ; t� t0;

where dk ¼ maxf1; jlkjg and k[ 0 is a solution of the

inequality k� aþ beks � 0:

Assumption 1 For j ¼ 1; 2; . . .; n; the neuron activation

functions fjðujÞ and gjðujÞ in (2) are bounded, and there

exist nonnegative scalars qj and rj such that, for 8x1; x2 2
R; x1 6¼ x2;

0� fjðx1Þ � fjðx2Þ
x1 � x2

� qj; 0� gjðx1Þ � gjðx2Þ
x1 � x2

� rj:

Lemma 2 Under Assumption 1, we have

0� sup
xj 6¼0

~fjðxjÞ
xj

� qj; 0� sup
xj 6¼0

~gjðxjÞ
xj

� qj:

Assumption 2 For i ¼ 1; 2; . . .; n; the jump operator

JikðuÞ satisfies the Lipschitz condition with Jikð0Þ ¼ 0; i.e.,

there exists nonnegative scalar lik such that for 8x1; x2 2
R; x1 6¼ x2;

jJikðx1Þ � Jikðx2Þj � likjx1 � x2j:

3 Main results

In this section, the global exponential stability of the

impulsive DMRNNs (2) or (3) will be investigated, and the

stability criteria will be presented by the following

theorems.

Theorem 1 Let u� be the equilibrium point of impul-

sive DMRNN (2) or (3) and suppose Assumption 1 and

Assumption 2 hold. Then, the equilibrium point u� of

impulsive DMRNN (2) or (3) is globally exponentially

stable if for k 2 Zþ; the following conditions are

satisfied.

(i) a[ b; where a ¼ min1� j� n

�
~dj � max

�
0; ~ajj

þ
Pn

j 6¼i;i¼1 j~aijj
�
qj

�
[ 0; b ¼ max1� j� nð

Pn
i¼1 j~bijjrjÞ;

(ii) k[ d; where k[ 0 is a solution of k� aþ beks � 0;

d ¼ supk2Zþf ln dk
tk�tk�1

g with dk ¼ maxf1; jlkjg and

lk ¼ max1� i� nflikg:

Proof We only consider the exponential stability of the

equilibrium point of impulsive DMRNN (4) or (5), which

can guarantee the exponential stability of impulsive

DMRNN (2) or (3).

Construct a Lyapunov function VðtÞ ¼
Pn

i¼1 jxij; when

t 6¼ tk; the Dini right derivative of V(t) can be calculated as

follows:

DþVðtÞ ¼
Xn

i¼1

sgnðxiðtÞÞ ��diðtÞxiðtÞ þ
Xn

j¼1

�aijðtÞ~fjðxjðtÞÞ
"

þ
Xn

j¼1

�bijðtÞ~gjðxjðt � sijðtÞÞÞ
#

� �
Xn

i¼1

~dijxiðtÞj þ
Xn

i¼1

�
~aii þ

Xn

i 6¼j;j¼1

j~aijj
�
j~fjðxjðtÞÞj

þ
Xn

i¼1

Xn

j¼1

j~bijjj~gjðxjðt � sijðtÞÞÞj

� �
Xn

i¼1

~dijxiðtÞj þ
Xn

i¼1

�
~aii þ

Xn

i 6¼j;j¼1

j~aijj
�
qjjxjðtÞj

þ
Xn

i¼1

Xn

j¼1

j~bijjrjjxjðt � sijðtÞÞj

¼
Xn

j¼1

�
� ~dj þ

�
~ajj þ

Xn

j6¼i;i¼1

j~aijj
�
qj

�
jxjðtÞj

þ
Xn

j¼1

Xn

i¼1

j~bijjrjjxjðt � sijðtÞÞj

� � aVðtÞ þ b �VðtÞ; ð6Þ

where �VðtÞ ¼ supt�s� s� tfVðsÞg:
When t ¼ tk;

Vðtþk Þ ¼
Xn

i¼1

jxiðtþk Þj �
Xn

i¼1

jlikxiðt�k Þj �
Xn

i¼1

jlkjjxiðt�k Þj

¼ jlkjVðt�k Þ: ð7Þ

Employing Lemma 1, from (6), (7) and conditions (i)

and (ii), we can get
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VðtÞ� d1d2 � � � dk�1jjVð0Þjjse�kt; t 2 ½tk�1; tkÞ; k 2 Zþ

� edt1edðt2�t1Þ � � � edðtk�1�tk�2ÞjjVð0Þjjse�kt

� edtjjVð0Þjjse�kt

¼jjVð0Þjjse�ðk�dÞt:

Hence, we have

VðtÞ� jjVð0Þjjse�ðk�dÞt; t� 0:

That is,

Xn

i¼1

jxij � sup
�s� s� 0

juðsÞje�ðk�dÞt; t� 0:

Since xiðtÞ ¼ uiðtÞ � uH; we have

Xn

i¼1

juðtÞ � uHj � sup
�s� s� 0

j/ðsÞ � uHje�ðk�dÞt ð8Þ

for any t� 0: Therefore, the equilibrium point u� of

impulsive DMRNN (2) or (3) is globally exponentially

stable. This completes the proof. h

Remark 1 Let k ¼ d; the inequality (8) can be rewritten

by
Pn

i¼1 juðtÞ � uHj � sup�s� s� 0 j/ðsÞ � uHj: Then, we

can conclude that the equilibrium point u� of impulsive

DMRNN (2) or (3) is uniformly stable. Therefore, under

the conditions of Theorem 1, the equilibrium point of

system (2) or (3) is uniformly stable if k� d: In this

theorem, impulsive differential inequality was used to

obtain the stability criteria, which is different with the

techniques used in [10, 11]. Impulsive differential

equations were used to study the consensus multi-agent

networks in [10], and impulsive distributed control

scheme was designed to achieve the network synchro-

nization based on the concept of control topology in

[11].

Theorem 2 Let u� be the equilibrium point of impulsive

DMRNN (2) or (3) and suppose Assumption 1 and As-

sumption 2 hold. Then, the equilibrium point u� of impul-

sive DMRNN (2) or (3) is globally exponentially stable if

for any k 2 Zþ; there exist cj [ 0; j ¼ 1; 2; . . .; n; such that

the following conditions are satisfied.

(i) c[ d; where c ¼ min1� j� nð~dj � 2
Pn

i¼1

Pn
k¼1

cið~aikqkÞ2

~dicj
Þ[ 0; d ¼ max1� j� n

Pn
i¼1

Pn
k¼1

2cið~bikqkÞ2

~dicj
;

(ii) k[ d; where k[ 0 is a solution of k� cþ deks � 0;

d ¼ supk2Zþf ln dk
tk�tk�1

g with dk ¼ maxf1; jlkjg and

lk ¼ max1� i� nflikg:

Proof In this theorem, we still consider the exponential

stability of the equilibrium point of impulsive DMRNN (4)

or (5), which can also guarantee the exponential stability of

impulsive DMRNN (2) or (3).

Construct a Lyapunov function VðtÞ ¼
Pn

i¼1
1
2
cix

2
i ðtÞ;

when t 6¼ tk; the Dini right derivative of V(t) can be

calculated as follows:

DþVðtÞ¼
Xn

i¼1

cixiðtÞ
�
� �diðtÞxiðtÞþ

Xn

j¼1

�aijðtÞ~fjðxjðtÞÞ

þ
Xn

j¼1

�bijðtÞ~gjðxjðt�sijðtÞÞÞ
�

�
Xn

i¼1

�
� ~dicix

2
i ðtÞþjxiðtÞj

Xn

j¼1

cij~aijjj~fjðxjðtÞÞj

þjxiðtÞj
Xn

j¼1

cij~bijjj~gjðxjðt�sijðtÞÞÞj
�

�
Xn

i¼1

�
�1

2
~dicix

2
i ðtÞþjxiðtÞj

Xn

j¼1

cij~aijjj~fjðxjðtÞÞj

�1

2
~dicix

2
i ðtÞþjxiðtÞj

Xn

j¼1

cij~bijjj~gjðxjðt�sijðtÞÞÞj
�
:

According to Lemma 2 and mean-value inequality, we

have

DþVðtÞ�
Xn

i¼1

�
� 1

2
~dicix

2
i ðtÞ þ jxiðtÞj

Xn

j¼1

cij~aijjqjjxjðtÞj

� 1

2
~dicix

2
i ðtÞ þ jxiðtÞj

Xn

j¼1

cij~bijjrjjxjðt � sijðtÞÞj
�

�
Xn

i¼1

�
� 1

2
~dicix

2
i ðtÞ þ

1

4
~dicix

2
i ðtÞ

þ 1

~dici

Xn

j¼1

cij~aijjqjjxjðtÞj
 !2

� 1

2
~dicix

2
i ðtÞ þ

1

4
~dicix

2
i ðtÞ

þ 1

~dici

Xn

j¼1

cij~bijjrjjxjðt � sijðtÞÞj
 !2�

¼
Xn

i¼1

�
� 1

2
~dicix

2
i ðtÞ þ

1

~dici

Xn

j¼1

cij~aijjqjjxjðtÞj
 !2

þ 1

~dici

Xn

j¼1

cij~bijjrjjxjðt � sijðtÞÞj
 !2�

;

Then, by Cauchy-Schwarz inequality, we obtain
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Xn

j¼1

cij~aijjqjjxjðtÞj
 !2

�
Xn

j¼1

ðci~aijqjÞ2
Xn

j¼1

x2
j ðtÞ

¼
Xn

k¼1

ðci~aikqkÞ2
Xn

j¼1

x2
j ðtÞ;

Xn

j¼1

cij~bijjrjjxjðt� sijðtÞÞj
 !2

�
Xn

j¼1

ðci~bijrjÞ2
Xn

j¼1

x2
j ðt� sijÞ

¼
Xn

k¼1

ðci~bikrkÞ2
Xn

j¼1

x2
j ðt� sijÞ;

As a result,

DþVðtÞ�
Xn

i¼1

�
� 1

2
~dicix

2
i ðtÞ þ

1

~dici

Xn

k¼1

ðci~aikqkÞ2
Xn

j¼1

x2
j ðtÞ

þ 1

~dici

Xn

k¼1

ðci~bikrkÞ2
Xn

j¼1

x2
j ðt � sijÞ

�

¼
Xn

j¼1

�
� ~dj þ 2

Xn

i¼1

Xn

k¼1

cið~aikqkÞ2

~dicj

�
1

2
cjx

2
j ðtÞ

þ
Xn

j¼1

Xn

i¼1

Xn

k¼1

2cið~bikqkÞ2

~dicj

1

2
cjx

2
j ðt � sijÞ

� � cVðtÞ þ d �VðtÞ;
ð9Þ

where �VðtÞ ¼ supt�s� s� tfVðsÞg:
When t ¼ tk;

Vðtþk Þ ¼
Xn

i¼1

1

2
cix

2
i ðtþk Þ�

Xn

i¼1

1

2
ciðlikxiðt�k ÞÞ

2

�
Xn

i¼1

1

2
cil

2
kx

2
i ðt�k Þ ¼ l2

kVðt�k Þ:
ð10Þ

Employing Lemma 1, from (9), (10) and conditions (i)

and (ii), we can get

VðtÞ� d1d2 � � � dk�1jjVð0Þjjse�kt; t 2 ½tk�1; tkÞ; k 2 Zþ

� edt1edðt2�t1Þ � � � edðtk�1�tk�2ÞjjVð0Þjjse�kt

� edtjjVð0Þjjse�kt

¼jjVð0Þjjse�ðk�dÞt:

Hence, we have

VðtÞ� jjVð0Þjjse�ðk�dÞt; t� 0:

Simultaneously,

1

2
min

1� i� n
fcig

Xn

i¼1

x2
i ðtÞ�VðtÞ ¼

Xn

i¼1

1

2
cix

2
i ðtÞ�

1

2
max

1� i� n
fcig

�
Xn

i¼1

x2
i ðtÞ:

Therefore,

Xn

i¼1

x2
i ðtÞ�M sup

�s� s� 0

juðsÞje�ðk�dÞt; t� 0;

where M ¼ 1
min1� i� nfcig

: Since xiðtÞ ¼ uiðtÞ � uH; we have

Xn

i¼1

ðuðtÞ � uHÞ2 �M sup
�s� s� 0

j/ðsÞ � uHje�ðk�dÞt ð11Þ

for any t� 0: Thus, the equilibrium point u� of impulsive

DMRNN (2) or (3) is globally exponentially stable. This

completes the proof. h

Remark 2 Let k ¼ d; the inequality (11) can be rewritten

by
Pn

i¼1ðuðtÞ � uHÞ2 �M sup�s� s� 0 j/ðsÞ � uHj: Then,

we can conclude that the equilibrium point u� of impulsive

DMRNN (2) or (3) is uniformly stable. Therefore, under

the conditions of Theorem 2, the equilibrium point of

system (2) or (3) is also uniformly stable if k� d: More-

over, if likðuÞ ¼ u for any i; k 2 Zþ in the system (2) or

(35), then we can obtain new stable criteria of delayed

memristor-based recurrent neural networks (DMRNNs)

without impulsive effects from Theorem 1 and 2.

Remark 3 The two theories are about the stability criteria

of impulsive delayed memristor-based recurrent neural

networks. By means of impulsive differential inequality

and some assumptions, several important stability condi-

tions have been obtained, which is different with some

published results. In [26–29], the authors mainly studied

the dynamic behaviors of DMRNNs without impulsive

effects. The authors only discussed the dynamic behaviors

of classical impulsive complex networks and neural net-

works instead of memristor-based neural networks in [10–

18]. In this paper, both memristor-based recurrent neural

networks and impulsive effects are combined to be inves-

tigated, which enriches the research results of neural

networks.

In Theorem 2, if different numerical numbers of ci are

chosen, we can obtain several important results. For

example, let ci ¼ 1 for any i ¼ 1; 2; . . .; n; then, we can get

the following corollary.

Corollary 1 Let u� be the equilibrium point of impulsive

DMRNN (2) or (3) and suppose Assumption 1 and As-

sumption 2 hold. Then, the equilibrium point u� of impul-

sive DMRNN (2) or (3) is globally exponentially stable if

for any k 2 Zþ; the following conditions are satisfied.

(i) min1� j� nð~dj � 2
Pn

i¼1

Pn
k¼1

ð~aikqkÞ2

~di
Þ � max1� j� n

Pn
i¼1

Pn
k¼1

2ð~bikqkÞ2

~di
[ 0;
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(ii) k[ d; where k[ 0 is a solution of k� cþ deks � 0;

d ¼ supk2Zþf ln dk
tk�tk�1

g with dk ¼ maxf1; jlkjg and

lk ¼ max1� i� nflikg:

If let
Pn

j¼1 cij~aijj ¼ 1; the following corollary can be

obtained.

Corollary 2 Let u� be the equilibrium point of impulsive

DMRNN (2) or (3) and suppose Assumption 1 and As-

sumption 2 hold. Then, the equilibrium point u� of impul-

sive DMRNN (2) or (3) is globally exponentially stable if

for any k 2 Zþ; the following conditions are satisfied.

(i) min1� i�nð~di � 2
Pn

j¼1

j~aijjq2
k

~djci
Þ �max1� i�n

Pn
j¼1

Pn
k¼1

2ð~bjkqkÞ2cj
~djci

[0;

(ii) k[ d; where k[ 0 is a solution of k� cþ deks � 0;

d ¼ supk2Zþf ln dk
tk�tk�1

g with dk ¼ maxf1; jlkjg and

lk ¼ max1� i� nflikg:

Remark 4 In this two corollaries, if let likðuÞ ¼ u for any

i; k 2 Zþ; we can obtain the Theorems 1 and 2 of [28],

which only considered the exponential stability of

DMRNNs without impulse effects. In this sense, we push

on the research of the DMRNNs. Furthermore, in these

theories and corollaries, we could choose jlikj[ 1 or

jlikj � 1 for any i; k 2 Zþ: As we know, when jlikj[ 1;

Lyapunov function may jump out of the state trajectories of

DMRNNs (2) or (3) at impulsive points tkðk 2 ZþÞ: Thus,

the impulse effects may potentially destroy the stability of

the original continuous DMRNNs (1). However, from these

theories and corollaries, we can obtain that sufficient

conditions concerned with the proper frequency and

strength of impulses can maintain the stability of the

original continuous stable DMRNNs.

4 Illustrative examples

Two numerical examples will be presented to illustrate the

effectiveness of the above results in this section.

Example 1 Consider the following two-dimensional

impulsive memristor-based recurrent neural networks with

time-varying delays

where i ¼ 1; 2; fiðxÞ ¼ giðxÞ ¼ 1=2ðjxþ 1j � jx� 1jÞ;
s11ðtÞ ¼ s12ðtÞ ¼ s21ðtÞ ¼ s22ðtÞ ¼ 1 � 0:6 sinðtÞ; s ¼ 1

and

a11 ¼
�2; ju1ðtÞj\6

2; ju1ðtÞj[ 6

�
; a12 ¼

2; ju1ðtÞj\6

�2; ju1ðtÞj[ 6

�
;

a21 ¼
3; ju2ðtÞj\6

�3; ju2ðtÞj[ 6

�
; a22 ¼

�2; ju2ðtÞj\6

2; ju2ðtÞj[ 6

�
;

b11 ¼
1; ju1ðtÞj\6

�1; ju1ðtÞj[ 6

�
; b12 ¼

1; ju1ðtÞj\6

�1; ju1ðtÞj[ 6

�
;

b21 ¼
1; ju2ðtÞj\6

�1; ju2ðtÞj[ 6

�
; b22 ¼

1; ju2ðtÞj\6

�1; ju2ðtÞj[ 6

�
:

In terms of the parameters defined in Theorem 1, we can

obtain a ¼ 3[ b ¼ 2; and the solution of k� aþ beks ¼ 0

is k 	 0:3001: Let tk � tk�1 ¼ 0:35; Pik ¼ dk ¼ 1:1 for any

i ¼ 1; 2; . . .; n and k ¼ 1; 2; . . .; we can get d ¼
ln dk

tk�tk�1
� 0:2725� k 	 0:3001: Therefore, the equilibrium

point ð0; 0ÞT of impulsive DMRNN (12) is globally expo-

nentially stable, which is shown by Fig. 2. If let tk � tk�1 ¼
0:7; Pik ¼ �1:23 for any i ¼ 1; 2; . . .; n and k ¼ 1; 2; . . .; we

can get d ¼ ln dk
tk�tk�1

� 0:2960� k 	 0:3001 according to the

conditions (ii) and (iii) of Theorem 1. Then, the equilibrium

point ð0; 0ÞT of impulsive DMRNN (12) is also globally

exponentially stable. The simulations are shown in Fig. 3.

Remark 5 From Fig. 1, it can be seen that the equilibrium

point ð0; 0ÞT of DMRNN (12) without impulse effects is

globally exponentially stable. As we all know, if let dk [ 1;

impulsive disturbances may potentially destroy the neural

network stability. However, from Figs. 2 and 3, it can be

seen that sufficient conditions concerned with the magni-

tude and frequency of impulses can maintain the expo-

nential stability of DMRNN (12).

_u1ðtÞ ¼ �4u1ðtÞ þ a11ðu1ðtÞÞf1ðu1ðtÞÞ þ a12ðu1ðtÞÞf2ðu2ðtÞÞ
þb11ðu1ðtÞÞg1ðu1ðt � s11ðtÞÞÞ þ b12ðu1ðtÞÞg2ðu2ðt � s12ðtÞÞÞ; t 6¼ tk;

_u2ðtÞ ¼ �3u2ðtÞ þ a21ðu2ðtÞÞf1ðu1ðtÞÞ þ a22ðu2ðtÞÞf2ðu2ðtÞÞ
þb21ðu2ðtÞÞg1ðu1ðt � s21ðtÞÞÞ þ b22ðu2ðtÞÞg2ðu2ðt � s22ðtÞÞÞ; t 6¼ tk;

uiðtþk Þ ¼ Pikuiðt�k Þ; k 2 Zþ;

8
>>>>>><

>>>>>>:

ð12Þ
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Example 2 In impulsive DMRNNs (12), let fiðxÞ ¼
giðxÞ ¼ tanhðxÞ; s11ðtÞ ¼ s21ðtÞ ¼ 1 � 0:6 cosðtÞ; s12ðtÞ ¼
s22ðtÞ ¼ 1 þ 0:6 sinðtÞ and

d1 ¼
1:5; ju1ðtÞj\1

1; ju1ðtÞj[ 1

�
; d2 ¼

1; ju2ðtÞj\1

1:5; ju2ðtÞj[ 1

�
;

a11 ¼

1

5
; ju1ðtÞj\1

� 1

5
; ju1ðtÞj[ 1

8
><

>:
; a12 ¼

1

4
; ju1ðtÞj\1

� 1

4
; ju1ðtÞj[ 1

8
><

>:
;

a21 ¼

1

6
; ju2ðtÞj\1

� 1

6
; ju2ðtÞj[ 1

8
><

>:
; a22 ¼

1

8
; ju2ðtÞj\1

� 1

8
; ju2ðtÞj[ 1

8
><

>:
;

b11 ¼

1

5
; ju1ðtÞj\1

� 1

5
; ju1ðtÞj[ 1

8
><

>:
; b12 ¼

1

4
; ju1ðtÞj\1

� 1

4
; ju1ðtÞj[ 1

8
><

>:
;

b21 ¼

1

6
; ju2ðtÞj\1

� 1

6
; ju2ðtÞj[ 1

8
><

>:
; b22 ¼

1

4
; ju2ðtÞj\1

� 1

4
; ju2ðtÞj[ 1

8
><

>:
:

In terms of the parameters defined in Theorem 2, we can

obtain c ¼ 0:7082[ d ¼ 0:3856; and the solution of k�
cþ deks ¼ 0 is k 	 0:1683: Let tk � tk�1 ¼ 0:35; Pik ¼
dk ¼ 1:05 for any i ¼ 1; 2; . . .; n and k ¼ 1; 2; . . .; we can

get d ¼ ln dk
tk�tk�1

� 0:1395� k 	 0:1683: Therefore, the

equilibrium point ð0; 0ÞT of impulsive DMRNN (12) is

globally exponentially stable, which is shown by Fig. 5. If

let tk � tk�1 ¼ 0:7; Pik ¼ 1:12 for any i ¼ 1; 2; . . .; n and

k ¼ 1; 2; . . .; we can get d ¼ ln dk
tk�tk�1

� 0:1620� k 	 0:1683

according to the conditions (ii) and (iii) of Theorem 2.

Then, the equilibrium point ð0; 0ÞT of impulsive DMRNN

(12) is also globally exponentially stable. The simulations

are shown in Fig. 6. On the other hand, if let tk � tk�1 ¼
0:7; Pik ¼ 2:12 for any i ¼ 1; 2; . . .; n and k ¼ 1; 2; . . .; we

can get d ¼ ln dk
tk�tk�1

	 1:0735[ k 	 0:1683; which shows

that the conditions of Theorem 2 are not satisfied. The

simulation results are shown in Fig. 7.

Remark 6 We can see that the equilibrium point ð0; 0ÞT of

DMRNN (12) without impulse effects is globally expo-

nentially stable in Fig. 4. From Figs. 5 and 6, it can be seen

that the exponential stability of DMRNN (12) depends on

the values of tk � tk�1 and Pik: And the values of tk � tk�1

are directly proportional to that of Pik; which shows that the

proper magnitude and frequency of impulses can maintain

the exponential stability of DMRNN (12).

Remark 7 When the impulsive jump operators dk [ 1; the

stable neural network could be potentially destroyed by
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impulsive disturbances, which is shown in from Fig. 7. In

this case, some conditions are needed to give to maintain

the stability. From Figs. 2, 3, 5, and 6, it can be seen that

sufficient conditions concerned with the magnitude and

frequency of impulses can maintain the stability of

DMRNN, which illustrates that the conditions of this paper

are effective.

5 Conclusions

In this paper, impulse effects have been exerted on the

delayed memristor-based recurrent neural networks

(DMRNNs), and a generalized impulsive DMRNN model

has been introduced. Based on the published works of

impulsive system and DMRNNs, the global exponential

stability of the impulsive DMRNNs has been investigated.

By means of impulsive differential inequality and Lya-

punov function, several novel exponential stabilization

criteria of this system have been obtained. Furthermore, it

can be found that the uniformly stable criteria have also

been derived by weakening the condition of Theorem 1

and 2. Finally, two numerical examples have been given to

illustrate the effectiveness of the presented results, which

shows that frequency and strength of impulses could sta-

bilize the original DMRNNs. In the future, the concept of

control topology and event-triggered impulse control

strategy could be used to design impulsive control

scheme to study the stability and synchronization of

DMRNNs.
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