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Abstract Maximum power point tracking (MPPT) is

used in photovoltaic (PV) systems to maximize its output

power. This paper introduces a new MPPT control design

to PV system supplied switched reluctance motor (SRM)

based on PI controller. The developed PI controller is used

to reach MPPT by monitoring the voltage and current of

the PV array and adjusting the duty cycle of the DC/DC

converter. The design task of MPPT is formulated as an

optimization problem which is solved by BAT algorithm to

search for optimal parameters of PI controller. Simulation

results have shown the validity of the suggested technique

in delivering MPPT to SRM under atmospheric conditions.

Also, the performance of the developed BAT algorithm is

compared with particle swarm optimization for various

disturbances to confirm its robustness.

Keywords BAT search algorithm � Particle swarm

optimization � SRM � MPPT control � PI controller �
Photovoltaic system

1 Introduction

Photovoltaic (PV) systems have been used in remote

applications as cost comes down such as wireless highway

call boxes and standalone power generation units. PV

generation is gaining importance as a renewable source due

to its advantages [1, 2], such as the absence of fuel cost,

little maintenance, no noise and wear due to the absence of

moving parts.

The actual energy conversion efficiency of PV module is

rather low and is affected by the weather conditions and

output load. So, to overcome these problems and to get the

maximum possible efficiency, the design of all the ele-

ments of the PV systems have to be optimized. The PV

array has highly nonlinear current–voltage characteristics

varying with solar illumination and operating temperature

[3, 4], that substantially affect the array output power. At

particular solar illumination, there is a unique operating

point of PV array at which its output power is maximum.

Therefore, for maximum power generation and extraction

efficiency, it is necessary to match the PV generator to the

load such that the equilibrium operating point coincides

with the maximum power point of the PV array. The

maximum power point tracking (MPPT) control is there-

fore critical for the success of the PV systems [5, 6]. In

addition, the maximum power operating point varies with

insolation level and temperature. Therefore, the tracking

control of the maximum power point is a complicated

problem. To mitigate these problems, many tracking con-

trol strategies have been introduced such as perturb and

observe [7], incremental conductance [8], parasitic capac-

itance [9], constant voltage [10] and reactive power con-

trol [11]. These strategies have some disadvantages such as

high cost, difficulty, complexity and instability. In an

effort to overcome aforementioned disadvantages, several
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researches have used artificial intelligence approach such

as fuzzy logic controller (FLC) [12, 13] and artificial neural

network (ANN) [14–18]. Although these methods are

effective in dealing with the nonlinear characteristics of the

current–voltage curves, they require huge computation. For

example, FLC has to deal with fuzzification, rule base

storage, inference mechanism and defuzzification opera-

tions. For ANN, the large amount of data required for

training are a major source of constraint. Furthermore, the

operating conditions of the PV system vary continuously.

Clearly, a low-cost processor cannot be employed in such a

system.

An alternative approach is to employ evolutionary

algorithm (EA) techniques. Due to its ability to handle

nonlinear objective functions [19], EA is visualized to be

very effective to deal with MPPT problem. Among the EA

techniques, genetic algorithm (GA) [20], artificial bee

colony (ABC) [21, 22] and bacteria foraging (BF) [23, 24]

have attracted the attention in MPPT and controller design.

However, these algorithms appear to be effective for the

design problem, these algorithms suffer from slow con-

vergence, and algorithms may lead to possible entrapment

in local minimum solutions. A relatively newer evolu-

tionary computation algorithm, called BAT search algo-

rithm, has been presented by [25] and further established

recently by [26–34]. It is a very simple and robust algo-

rithm. In addition, it requires less control parameters to be

tuned. Hence, it is a suitable optimization tool for locating

the maximum power point (MPP) regardless of atmo-

spheric variations.

The main objective of this paper is to design PI con-

troller via BAT algorithm to increase the tracking response

of MPP for PV systems to power switched reluctance

motor (SRM) with high efficiency. A comparison between

the proposed algorithm and PSO is carried out to ensure the

robustness of the developed algorithm. Simulation results

have proved that the suggested controller gives better

performance.

2 System under study

The system under study consists of PV system which acts

as a voltage source for a connected SRM. The MPPT loop

is designed using BAT search algorithm. The error signal

is obtained by comparing between the reference load

resistance and the actual one. The output of the PI con-

troller is denoted as duty cycle. The schematic block dia-

gram is shown in Fig. 1.

2.1 Construction of SRM

The construction of a 8/6 (8 stator poles, 6 rotor poles)

poles SRM has doubly salient construction [35]. The

number of stator and rotor poles is even and the con-

struction is well shown in Fig. 2. The windings of the SRM

are simpler than those of other types of motors, and

winding exists only on stator poles, and is simply wound on

it with no winding on the rotor poles. The winding of

opposite poles is connected in series or in parallel forming

Fig. 1 Overall system for SRM control
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a number of phases and exactly half the number of stator

poles and the excitation of a single phase excites two stator

poles. The rotor has a simple laminated salient pole

structure without winding. SRMs have the merit of

reducing copper losses while its rotor is winding. Its

stampings are made of silicon steel, especially in higher

efficiency applications [36–38].

Torque is developed in SRMs due to the tendency of the

magnetic circuit to adopt the configuration of minimum

reluctance. The magnetic behavior of the SRM is highly

nonlinear. The static torque produced by one phase at any

rotor position is given using the following equations [38].

Co energy ¼ W 0 ¼
Z

wðh; iÞdi ð1Þ

Static torque ¼ Tstatic ¼ dW 0=dh ð2Þ

From Eqs. (1) and (2), a similar static torque matrix can be

estimated where current will give the row index and h will

give the column index as in [38].

The value of actual speed can be calculated from the

following mechanical equations:

dx=dt ¼ Tðh; iÞ � Tmechð Þ=J ð3Þ

where the speed error is obtained from the difference

between the rotor speed and its reference. The value of

rotor angular displacement h can be calculated from the

following equation:

dh=dt ¼ x ð4Þ

where the angle d corresponding to the displacement of

phase A in relation to another phase is given by:

d ¼ 2p
1

Nr

� 1

Ns

� �
ð5Þ

where Nr and Ns are the number of rotor and stator poles,

respectively. Also, the positive period of phase is deter-

mined by the following equation:

Duty period ¼ 2p
1

qNr

� �
Cr ð6Þ

where q is number of phases and Cr is the commutation

ratio.

Cr can be calculated by the following equation:

Cr ¼ 2p
1

br
� 1

bs

� �
ð7Þ

where bs and br are the stator and the rotor pole arc

respectively.

Duration of negative current pulses depended on the

stored energy in phase winding. The parameters of SRM

are shown in ‘‘Appendix’’.

2.2 Photovoltaic system

To overcome the variations of illumination, temperature and

load resistance, voltage controller is required to track the new

modified reference voltage whenever load resistance, illu-

mination and temperature variation occur. I–V characteristics

of solar cell are given by the following equations [39]:

Ic ¼ Iph � Io e
qo
AKT

Vc þ IcRsð Þ � 1
n o

ð8Þ

Vc ¼
AKT

qo
ln

Iph þ Io � Ic

Io

� �
� IcRs ð9Þ

I ¼ Iph � Io e
qo

nsAKT
V þ nsIRsð Þ½ � � 1

n o
ð10Þ

V ¼ nsAKT

qo
ln

Iph þ Io � I

Io

� �
� nsIRs ð11Þ

where

Iph ¼
G

1000
Isc þ ki T � Trð Þ½ � ð12Þ

Io ¼ Ior
T

Tr

� �3

e
qoEg
AK

1
Tr
�1

Tð Þ½ � ð13Þ

The module output power can be determined simply

from

P ¼ V � I ð14Þ

where, I and V: module output current and voltage, Ic and

Vc: cell output current and voltage, Iph and Vph: the light

generation current and voltage, Is: cell reverse saturation

current, Isc: the short circuit current, Io: the reverse satu-

ration current, Rs: the module series resistance, T: cell

temperature, K: Boltzmann’s constant, qo: electronic

charge, KT: (0.0017 Å/�C) short circuit current temperature

coefficient, G: solar illumination in W/m2, Eg: band gap

energy for silicon, A: ideality factor, Tr: reference tem-

perature, Ior: cell rating saturation current at Tr, ns: series

connected solar cells, ki: cell temperature coefficient.

Stator

Coils 

Rotor

Shaft

Fig. 2 SRM 8/6 poles construction
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Thus, if the module parameters such as module series

resistance (Rs), reverse saturation current (Io) and ideality

factor (A) are known, the I–V characteristics of the PV

module can be simulated by using Eqs. (12) and (13). The

parameters of PV system are given in ‘‘Appendix’’.

2.3 DC–DC converter

Many converters have been used and tested; buck converter

is a step-down converter, while boost converter is a step-up

converter [40, 41]. In this paper, a hybrid (buck and boost)

DC/DC converter is used. The equations for this converter

type in continuous conduction mode are given below [42]:

VB ¼ �k

1� k
Vph ð15Þ

IB ¼ k � 1

k
Iph ð16ÞÞ

where k is the duty cycle of the pulse width modulation

(PWM) switching signal. VB and IB are the output con-

verter voltage and current respectively. The MATLAB/

Simulink of PV system can be shown in Fig. 3.

3 Maximum power point tracking

As the power supplied by the solar array depends on the

illumination, temperature and PV array power (voltage and

current), an important consideration in the model of

efficient solar array systems is to track the maximum power

point correctly [43, 44]. The purpose of the MPPT is to

move the array operating voltage close to the MPP under

changing atmospheric conditions and load. So far, three

methods were often used to achieve the MPPT, these are;

perturbation and observation method [45, 46], incremental

conductance method [47, 48] and intelligent method [49–

51]. The perturbation and observation method has been

widely used due to its simple feedback structure and fewer

measured parameters [45, 46]. The peak power tracker

operates by periodically incrementing or decrementing the

solar array voltage. If a given perturbation leads to an

increase (decrease) in array power, the subsequent pertur-

bation is made in the same (opposite) direction. In this

manner, the peak power tracker continuously hunts or

seeks the peak power condition. Although this algorithm

benefits from simplicity, it lacks the speed and adaptability

necessary for tracking fast changing atmospheric condi-

tions. The control system oscillates around the MPP for-

ward and backward, even tracking in a wrong way under

rapidly changing atmospheric conditions. This method

neglects the changing of atmospheric conditions. The

incremented conductance method [47, 48] is based on the

concept that the maximum power point (dP/dV = 0), and

since P = V 9 I, it yields dV/dI = -I/V. A PI controller is

employed to regulate the PWM control signal of the DC/

DC converter until the condition (dV/dI) ? (I/V) = 0 is

achieved. Although the incremental conductance method

presents good performance under rapidly changing

Fig. 3 MATLAB/Simulink for PV system
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atmospheric conditions, it lacks from the circuit complex-

ity and four-sensor devices require more conversion time

which results in a large amount of power loss and results in

a higher system cost.

4 Objective function

A performance index can be defined by the Integral of

Time multiplied by Absolute Error (ITAE). Thus, the

objective function Jt is set to be:

Jt ¼
Z1

0

t ej jð Þdt ð17Þ

where e = RLreference - RLactual and RLactual = V/I.

Based on this objective function, Jt optimization prob-

lem can be stated as: Minimize Jt subjected to:

Kminimum
p �KP �Kmaximum

p ; Kminimum
i �Ki �Kmaximum

i

ð18Þ

Normal limits of the optimized parameters are [0.001, 20].

This paper converges on optimal tuning of PI controller for

MPPT of PV system supplied SRM via BAT search

algorithm.

5 Optimization algorithms

5.1 Overview of BAT search algorithm

BAT search algorithm is an optimization algorithm

inspired by the echolocation behavior of natural bats in

locating their foods. It is developed by Yang [25–28] and is

used for solving various optimization problems. Each vir-

tual bat in the initial population employs a homologous

manner by performing echolocation way for updating its

position. Bat echolocation is a perceptual system in which

a series of loud ultrasound waves are released to create

echoes. These waves are returned with delays and various

sound levels which qualify bats to spot a specific prey.

Some rules are introduced to extend the structure of BAT

algorithm and use the echolocation characteristics of bats

[29–32].

(a) Each bat utilizes echolocation characteristics to

classify between prey and barrier.

(b) Each bat flies randomly with velocity vi at position xi
with a fixed frequency fmin, varying wavelength k
and loudness L0 to seek for prey. It regulates the

frequency of its released pulse and adjusts the rate of

pulse release r in the range of [0, 1], relying on the

closeness of its aim.

(c) Frequency, loudness and pulse released rate of each

bat are varied.

(d) The loudness Literm changes from a large value L0 to a

minimum constant value Lmin.

The position xi and velocity vi of each bat should be

defined and updated during the optimization task. The new

solutions xti and velocities v
t
i at time step t are performed by

the following equations [32–34]:

fi ¼ fmin þ fmax � fminð Þa ð19Þ

vti ¼ vt�1
i þ xti � x�

� �
fi ð20Þ

xti ¼ xt�1
i þ vti ð21Þ

where a in the range of [0, 1] is a random vector drawn

from a uniform distribution. x� is the current global best

location, which is achieved after comparing all the loca-

tions among all the n bats. As the product kifi is the

velocity increment, one can consider either fi (or ki) to set

the velocity change while fixing the other factor. For

implementation, every bat is randomly assigned a fre-

quency which is drawn uniformly from (fmin, fmax). For the

local search, once a solution is chosen among the current

best solutions, a new solution for each bat is generated

using random walk.

xnew ¼ xold þ eLt ð22Þ

where, e 2 ½�1; 1� is a random number, while Lt is the

average loudness of all bats at this time step. As the

loudness usually reduces once a bat has found its prey,

while the rate of pulse emission increases, the loudness can

be elected as any value of convenience. Assuming

Lmin = 0 means that a bat has just found the prey and

temporarily stops emitting sound, one has:

Ltþ1
i ¼ bLti; rtþ1

i ¼ r0i ½1� expð�ctÞ� ð23Þ

where, b is constant in the range of [0, 1] and c is positive
constant. As time reaches infinity, the loudness tends to be

zero, and cti equal to c0i . The flowchart of BAT algorithm is

shown in Fig. 4, and the parameters of BAT are given in

‘‘Appendix’’.

5.2 Particle swarm optimization algorithm

Particle swarm optimization (PSO) is a form of evolu-

tionary computation technique developed by Kennedy and

Eberhart [52]. It is inspired by the behavior of a flock of

birds in searching for food. One major difference between

particle swarm and traditional evolutionary computation

methods is that particles’ velocities are adjusted, while

evolutionary individuals’ positions are acted upon; it is as

if the ‘‘fate’’ is altered rather than the ‘‘state’’ of the particle

swarm individuals [53–55]. Moreover, PSO is a meta-
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All the bats considered? 

Yes 

Consider 
next bat

Next 
iteration

Is the bat new temporary 
location better than its old 

location? 

Is the loudness of this bat 
bigger than a random number 

between 0 and 1? 

Keep the old location of 
this bat as its new 

location

Select the temporary location as new 
location and increase pulse rate and also 

reduce loudness of this bat

Yes Yes 

No No 

Initialize the bat population

Start 

Define pulse frequency and initialize rates 
and loudness

Fitness evaluation for each bat location

Generation new locations by adjusting 
frequency and updating velocities

Consider the first bat

Generate a local solution around the best 
location

Replace the new temporary location with the 
solution of local search

Evaluate fitness of the new temporary 
location of this bat

Is a random number between 
0 and 1, bigger than the pulse 
rate produced from this bat? 

Is the algorithm converged? 

Save the best location and pulse rate and also 
loudness of the bats

End 

No 

No 

No 

Yes 

Yes 

Fig. 4 Flowchart of BAT search algorithm
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heuristic as it makes few or no assumptions about the

problem being optimized and can search very large spaces

of candidate solutions. However, PSO does not guarantee

an optimal solution is ever found. Also, PSO suffers from

the partial optimism, which causes the less exact at the

regulation of its velocity and the position. Moreover, the

algorithm cannot work out the problems of scattering and

optimization [56, 57]. The flowchart of PSO is given in

Fig. 5.

6 Results and discussion

In this section, several comparative cases are examined to

show the effectiveness of the developed BAT algorithm

compared with PSO under variations of ambient temper-

ature, radiation and load torque. The designed parameters

of PI controller with the proposed BAT and PSO are

given in Table 1. The proposed BAT methodology and

PSO are programmed in MATLAB 7.1 and 4.00 GB of

RAM.

6.1 Response under change of radiation

In this case, the system responses under variation of PV

system radiation are illustrated. Figure 6 shows the varia-

tion of the PV system radiation as an input disturbance

while temperature is constant at 27 �C. The characteristic

of PV cell for different radiations is given in Fig. 7.

Moreover, the variations of PV system response based on

different algorithms are shown in Figs. 8 and 9. It is clear

from these figures that the proposed BAT-based controller

improves the MPPT control effectively w.r.t the estimated

value. Furthermore, the value of power per cell based on

BAT algorithm is greater than twice its value at open loop

(without MPPT controller). Also, an increment of

0.5 W/cell is achieved based on BAT algorithm over its

value based on PSO. Hence, BAT algorithm is better than

PSO in achieving MPP. In addition, PI controller based on

BAT enhances the performance characteristics of PV sys-

tem and reduces the number of PV cells compared with that

based on PSO technique.

6.2 Response under change of temperature

The system responses under variation of PV system tem-

perature are discussed in this case. Figure 10 shows the

change of the PV system temperature as an input distur-

bance while radiation is constant at 1000 W/m2. The

characteristic of PV cell for different temperatures is given

in Fig. 11. Also, the PV system responses based on dif-

ferent algorithms are given in Figs. 12 and 13. It is clear

from these figures that the suggested technique-based

controller enhances the tracking efficiency of MPP.

Moreover, the developed method outperforms and outlasts

PSO in designing the MPPT controller. Also, the value of

power/cell based on BAT algorithm is greater than PSO

and open loop case. As a result, the number of solar cells

and cost are largely reduced. Hence, PI-based BAT greatly

improves the performance characteristics of MPPT over

other algorithms.

Set number of particle and maximum iteration number 

Start 

Initial population with random position (x) and velocity (v) 

Reached 
goal? 

Search for local best position of each particle & 
Search for the global position 

Evaluate fitness function for each particle 

Gbest= parameters of best solution 

End

Yes 

Update velocity 

Next iteration 

Update position 

Fig. 5 Flowchart of PSO algorithm

Table 1 Parameters of PI con-

troller for different algorithms
KP Ki

PSO 0.0032 8.527

BAT 0.0046 8.936
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Fig. 6 Change of radiation
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6.3 Response under change of radiation

and temperature

In this case, the system responses under variation of PV

system radiation and temperature are examined. The vari-

ations of the PV system radiation and temperature as input

disturbances are shown in Fig. 14. Moreover, the changes

of PV system response based on different algorithms are

presented in Figs. 15 and 16. It is shown that the developed

BAT-based controller increases power of PV system

compared with PSO and consequently reduces the number

of solar cells and cost.
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6.4 Response under step of load torque, radiation,

and temperature

Figure 17 shows the step change of load torque of SRM,

radiation, and temperature of PV system. The responses

of PV system are given in Figs. 18 and 19. It is shown

that the developed BAT-based controller increases the

power of PV system compared with PSO and conse-

quently reduces the number of solar cells and cost. In

addition, the designed controller is robust in its operation

and gives a superb performance compared with PSO

tuning PI controller.
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6.5 Response under change of load torque,

radiation, and temperature

Figure 20 shows the change of load torque, radiation and

temperature. Figures 21 and 22 show the responses of PV

system with different controllers. It is clear from these

figures that the suggested controller is efficient in

enhancing MPPT of PV system compared with PSO.

Hence, the potential and superiority of the developed

controller over the PSO are demonstrated.
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7 Conclusions

In this paper, a novel method for MPPT of PV system

supplying SRM is proposed via BAT search algorithm.

The controlled system comprises of a PV generator that

feeds a SRM through buck–boost DC/DC converter. The

design problem of the proposed controller is formulated

as an optimization process and BAT is employed to seek

for optimal parameters of PI controller. By minimizing

the time domain objective function, in which the
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for various controllers
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difference between the reference load resistance and

actual one is involved, MPPT of PV system supplying

SRM is improved. Simulation results confirm that the

designed BAT-based PI controller is robust in its

operation and gives a superb performance for the change

in load torque, radiation and temperature compared with

PSO. The future work will include the experimental val-

idation of this paper.
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step change of variables
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Appendix

(a) SRM parameters [38, 39]: Ns = 8, Nr = 6, rating

speed = 13,700 rpm, Cr = 0.8, q = 4, Phase resis-

tance of stator = 17 X, Phase inductance of aligned

position = 0.605 H, Phase inductance of unaligned

position = 0.1555 H, Step angle = 15�.
(b) PV parameters: A = 1.2153; Eg = 1.11; Ior = 2.35-

e-8; Isc = 4.8; Tr = 300; K = 1.38e-23; ns = 36;

qo = 1.6e-19; ki = 0.0021.
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Fig. 21 Change of PV volt for

variable load torque and PV

system parameters
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(c) Theparameters ofBATsearchalgorithmare as follows:

Max generation = 100; population size = 50;

b = c = 0.9, Lmin = 0; L0 = 1, fmin = 0; fmax = 100.

(d) PSO parameters: Max generation = 100; No. of

Population in swarm = 50; C1 = C2 = 2; x = 0.9.
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