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Abstract Accurate prediction of non-hydrocarbon (Non-

HC) gas components in the gas-oil separators reduces the

cost of gas and oil production in petroleum engineering.

However, this task is difficult because there is no known

relation among the properties of crude oil and the separa-

tors. There are studies that attempt to predict hydrocarbons

(HCs) components using either Computational Intelligence

(CI) techniques or conventional techniques like Equitation-

of-State (EOS) and Empirical Correlation (EC). In this

paper, we explore the applicability of CI techniques such as

Artificial Neural Network, Support Vector Regressions,

and Adaptive Neuro-Fuzzy Inference System to predict the

Non-HC gas components in gas-oil separator tank. Further,

we incorporate Genetic Algorithms (GA) into the Hybrid

Computational Intelligence (HCI) models to enhance the

accuracy of prediction. GA is used to determine the most

favorable values of the tuning parameters in the CI models.

The performances of the CI and HCI models are compared

with the performance of the conventional techniques like

EOS and EC. The experimental results show that accuracy

of prediction by CI and HCI models outperform the con-

ventional methods for N2 and H2S gas components. Fur-

thermore, the HCI models perform better than the non-

optimized CI models while predicting the Non-HC gas

components.
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Abbreviations

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

CC Correlation coefficient

CI Computational intelligence

CO2 Carbon di oxide

EC Empirical correlations
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EOS Equation-of-states

FIS Fuzzy inference system

FL Fuzzy logic

GA Genetic algorithm

GOSP Gas oil separation plant

H2S Hydrogen sulfide

HC Hydrocarbon

HCI Hybrid computational intelligence

LM Levenberg–Marquardt

MLP Multi-layer perceptron

MW Molecular weight

N2 Nitrogen

Non-HC Non-hydrocarbon

P Pressure (psi)

Pb Bubble point pressure (psi)

PR-EOS Peng–Robinson EOS

PEPs Petroleum engineering problems

RMSE Root-mean-square error

Rprop Resilient back-propagation

RT Reservoir temperature (�F)
SP Separator pressure (psi)

ST API Stock Tank American Petroleum Institute

ST Separator temperature (�F)
Subclust Subtractive clustering

SVM Support vector machine

1 Introduction

Hydrocarbon (HC) and non-hydrocarbon (Non-HC) gas

components compose crude oil in reservoirs. The oil is

extracted from reservoir and then collected in sequential

separator tanks in much lower temperature as well as much

lower pressure as shown in Fig. 1. Due to huge fall of

temperature and pressure, gas components are released

from each separator stage of the Gas–Oil Separation Plant

(GOSP). The amount of Non-HC gases, e.g., nitrogen (N2),

carbon di oxide (CO2) and hydrogen sulfide (H2S) in sep-

arators is on average around 5–6 % which is negligible

compare to other components. These gases usually vary in

a wide range, e.g., N2 (0–9 %), CO2 (0–16 %) and H2S

(0–19 %). Furthermore, the amount of mole percent of gas

in the output is usually higher in the separator than that of

the immediate previous stage, which varies in ranges hence

difficult to predict. In the separation process, the mixtures

of Non-HC gases are treated as impurities hence not

desirable in the remaining stock tank oil [21]. Therefore,

Non-HC gas components prediction beforehand will help

in cutting down the production cost, maximizing the pro-

duction efficiency and determining the quality of gas as

well as stock tank oil.

1.1 Background and motivation

Usually, the amount of gases and oil are measured in lab-

oratory experiments known as ‘‘separator tests’’. Separator

tests involve huge time and expensive equipment hence

uneconomical. As an alternative, complicated relations such

as EOS and EC are being used in the industry to compute the

amount of gases and oils. EOS is useful for description of

fluid properties such as pressure–volume–temperature

(PVT). Unfortunately there is no single EOS that accurately

estimates the properties of all substances under all condi-

tions [48]. Moreover, the EOS has adjustment issues against

the phase behavior data of reservoir fluid composition, while

the EC has limited accuracy [14]. A number of studies exist

that attempted to predict HCs using CI models [8, 14, 15,

45]. However, the performances of the existing CI models

are subjective and dependent on selection of optimal

parameters. Recently Hossain et al. [25] used only ANN to

predict the Non-HC gas components in separator that shows

good predictive accuracy and motivates us to explore the

applicability of more CI and HCI models. To the best of our

knowledge, no other significant studies have been noticed

that attempted to predict the Non-HC gases in separator

using either CI or HCI models. In this paper we propose HCI

models to predict the Non-HC gas components in gas-oil

separator and enhance the accuracy of prediction using GA.

1.2 Our contribution

We proposed a GA-based HCI models to predict the amount

of Non-HC gases (N2, CO2 and H2S) in a separator at GOSP.

It is reported that the prediction accuracy of the existing CI

models, e.g., ANN, SVR and ANFIS solely depends on the

suitable selection of model’s parameters [25]. In this paper,

determining the best favorable values of the tuning parameter

set of the CI models is achieved through application of GA

such that the HCI model becomes more capable of learning

the complex relationship between the input and the output

parameters accurately compared to the individual CI models

without having optimal/sub-optimal parameter sets. Experi-

mental results on the Asian reservoirs samples show that the

HCI models outperform of non-optimized CI models while

predictingNon-HCgas components in amulti-stage separator

of GOSP. Furthermore, the proposed HCI models outperform

the conventional methods in predicting at least two Non-HC

gas components out of the three, i.e., N2, CO2 and H2S.

2 Literature survey

In recent years several CI models, e.g., ANN, SVR and

ANFIS have gained huge popularity in solving various

research areas including petroleum engineering. In this
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section, we will discuss about the application of CI models

to solve petroleum engineering issues including oil and gas

reservoir related problem. We also discuss about the CI and

HCI models that resolved other Petroleum Engineering

Problems (PEPs) since to the best of our knowledge no

other significant studies have been noticed that attempted

to predict the Non-HC gases in multi-stage separators using

either CI or HCI models.

2.1 Application of CI models in solving PEPs

A number of studies attempted to use CI models in solving

many PEPs. ANN is vastly used to resolve various PEP,

e.g., PVT properties, viscosity, permeability and gas–oil

ratio (GOR) prediction etc. Sundgren et al. [45] analyzed

the signals from array of gas sensors with both conven-

tional models and ANN models. They showed that

hydrogen and acetone from the two-component mixture

were best predicted by the ANN model. Briones et al. [8]

applied ANN to predict reservoir hydrocarbon mixture

components. Production performance of gas reservoirs

using Type Curve is accomplished by Ameri et al. [6].

Elsharkawy and Foda [14] proposed to use GRNN to pre-

dict initial reservoir fluid compositions. They showed that

the GRNN models accurately predict the changes in ret-

rograde gas condensate composition and to estimate the

pressure depletion behavior of gas condensate reservoirs.

Elsharkawy [13] also used RBF network for modeling the

properties of crude oil and gas system. Varotsis et al. [47]

attempted a novel approach for predicting the complete

PVT behavior of reservoir oil and gas condensates by using

an ANN, and it is showed that the performance of ANN is

more accurate than EOS models. Osman et al. [42] pre-

sented ANN model for predicting the bubble point pressure

(Pb) and the oil formation volume factor (Bob). ANN cor-

relation was also developed to predict both Pb and the Bob

with the aid of two separate networks by Goda et al. [19].

Wong et al. [49] analyzed soft computing methods such as

ANN, FL, evolutionary computing, and probabilistic rea-

soning approaches to address the issues of data integration,

risk assessment and quantification of uncertainty in

petroleum exploration and development. Nikravesh and

Aminzadeh [38] highlighted the role of soft computing,

e.g., ANN, FL, GA, probabilistic reasoning in intelligent

reservoir characterization. Osman and Al-Marhoun [41]

proposed ANN models for predicting PVT properties of oil

filed brines. Al-Farhan and Ayala [3] developed a reliable

predictive tool using ANN for forecasting optimum oper-

ating conditions of a surface facility for the recovery of

condensates from natural gases. Jupudi et al. [30] used the

chemical percolation de-volatilization (CPD) model for

predicting light gas composition. Moghadassi et al. [34]

described in details about the importance of ANN against

EOS and EC for estimation of PVT properties of oil/gas

reservoirs. They concluded that ANN’s capability to esti-

mate the PVT properties is one of the best estimating

methods with high performance. Prediction of Crude Oil

Viscosity and Gas/Oil Ratio Curves Using Neural Net-

works are performed by Oloso et al. [40]. Elshafei et al.

[12] predicted the GOR in a separator using ANN. ANN is

used by Lashin and El-Din [32] to estimate and predict the

most important petro-physical parameters of Nullipore

reservoir based on well logging data and available core

plug analyses. Eventually, as described above, ANN has

been applied to predict PVT properties, viscosity, perme-

ability, Pb, Bob, etc. with varying success. It should be

noted that the performance of ANN could be further

enhanced by choosing appropriate ANN parameters, e.g.,

number of layers, nodes in the hidden layer, training

algorithm.

Fuzzy Logic (FL)-based models are also used in solving

various PEPs. Ali and Chawathe [4] introduced FL algo-

rithm to rank petrographic elements with respect to their

effects on permeability. Finol et al. [17] proposed a FL-

based approach for permeability prediction in which the

relationship between porosity and permeability was

developed based on fuzzy rules. Ilkhchi [27] used fuzzy

c-means clustering algorithm to classify the rock type

depending on the porosity and permeability data. FL aids

us with simplified knowledge acquisition and representa-

tion. Fuzzy Inference System (FIS) is a knowledge repre-

sentation model where each fuzzy rule describes a local

Fig. 1 Oil and gas flow in

multi-stage separator
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behavior of the system and can be easily modified. How-

ever, the development of a FIS is hard to implement and

require fine tuning and simulation before operational. The

drawbacks of a simple FIS can be resolved when training

with back-propagation algorithm results in Adaptive Neuro

Fuzzy Inference System (ANFIS). ANFIS is also found

very popular solving various PEPs. Permeability prediction

in high water-cut reservoir is estimated using ANFIS by

Sun et al. [44]. Chang and Chang [9] used ANFIS for

prediction of water level in reservoir. Hurtado et al. [26]

used ANFIS to obtain permeability from porosity core data.

ANFIS is also used for prediction of fracture porosity of

carbonate reservoir by Xiao-mei et al. [50].

SVR is also gained popularity in solving various PEPs.

Nagi et al. [37] proposed SVMs for prediction in uncer-

tain situations using the e-Support Vector Regression (e-
SVR) method for accurate determination of the PVT

properties such as the Pb and Bob. Al-Anazi and Gates [1,

2] applied SVM technique for classifying electrofacies of a

highly heterogeneous sandstone reservoir. They also suc-

cessfully predict permeability distributions by using SVR.

Khoukhi et al. [31] proposed SVMs for viscosity and gas/

oil ratio curves prediction. It is evident that the perfor-

mance of SVR depends on the kernel function, regular-

ization parameter C and epsilon (e), the control parameters

of support vectors. These important parameters can be

optimized using GA and thus overcome the performance

and complexity of a simple SVR.

2.2 Application of HCI models in solving PEPs

The trend of using HCI models is also appeared in solving

various PEPs and proved successful in literatures. The

evolutionary algorithm is adopted to ensure auto-design of

CI models without any intervention from the designer. A

hybrid Neuro Genetic approach is attempted for hydraulic

fracture treatment design and optimization by Mohaghegh

et al. [35]. In a later study Mohaghegh et al. [36] proposed

a method for selection of maximum number of candidate

well for stimulation of gas storage wells using Neural

Networks and Genetic Algorithms (GAs). Saemi et al. [43]

addressed the limitations of traditional design and struc-

tural optimization process of ANN. They proposed an

evolutionary ANN approach to predict permeability using

well log data. They have used GAs to determine the

number of neurons in the hidden layers, the momentum and

the learning rates for minimizing the time and effort

required to find the optimal architecture. In this paper, we

define the number of neurons in the hidden layer as well as

the hidden layer’s activation function and the training

algorithm that suits the structure. Oloso et al. [39] proposed

a genetically optimized ANN for predicting viscosity and

gas/oil ratio curves. Prediction of hydrocarbon reservoir

characteristics using GA-based optimized RBF neural

network are introduced by Chen et al. [10]. In this study,

unlike others, we tried to optimize the structure of the

network while optimizing the better training algorithm as

well as suitable activation function in the hidden layer.

GA-based Neuro-Fuzzy models are found in few related

studies. Xie et al. [51] developed a hybrid genetic pro-

gramming and Fuzzy/NN inference system to estimate

permeability for all rock types or lithologies by utilizing

lithologic and permeability facies as indicators. They

showed that the hybrid model is robust in estimating per-

meability in complex heterogeneous reservoirs. Ghouti and

Bukhitan [18] proposed prediction of both Pb and Bob using

Hybrid of Neuro-Genetic Fuzzy Inference System.

GA-based SVR are applied in solving various PEPs. Fei

et al. [16] proposed SVM with GA to forecast the ratios of

key-gas in power transformer oil. Helmy et al. [24] pro-

posed SVM and FL driven HCI models for characterization

of oil and gas reservoirs. In a different study, Helmy and

Fatai [23] also used SVM and FL driven HCI models for

porosity and permeability prediction of petroleum reser-

voirs. The problem that we are dealing with is more

challenging than the problems solved by the above studies.

To the best of our knowledge, no noticeable work has

been carried out in the field of gas composition prediction

in multistage separator using HCI models. Hossain et al.

[25] investigated the prediction of Non-HCs in separator

using ANN, and the results show prominent accuracy of

prediction. They showed that prediction accuracy of ANN

is comparable with the conventional methods which

motivate us to investigate the application of optimized HCI

models for predicting the Non-HC gas components. Hence,

the novelty of our work lies in twofold: application of HCI

to solve the problem of predicting the Non-HC gases of

multi-stage separator and enhance the accuracy for the

prediction using GA. In the industry, EOS and EC are used

to estimate oil and gas properties. We have used Peng–

Robinson-based EOS (PR-EOS) which takes reservoir gas

compositions, C7? molecular weight (MW) and density at

reservoir, separator stage temperature and pressure as

inputs to calculate the gas compositions on that stage. In

this paper, we compared the performance of the CI and

HCI models’ with the performance of PR-EOS.

3 Fundamentals of CI models

3.1 Artificial Neural Network

ANN is a CI model inspired by the way in which the brain

performs a particular learning task. Multi-layer perceptron

(MLP) is one of the most popular ANNs that has gained

vast popularity in many research areas including petroleum
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engineering [3, 6, 34, 45]. MLP has one input layer, one

output layer, and one or more hidden layers of processing

units. It can be trained to perform a particular function by

adjusting the values of the connections (weights) between a

particular input and the specific target output.

3.2 Support Vector Regression

SVM proposed by Boser et al. [7] which is based on the

basis of statistical learning theory. SVR is a regression

version of SVMs. The main idea is the same for both SVR

and SVM which is to minimize error and individualizing

the hyper-plane which follows the maximum margin

algorithm: a nonlinear function is learned by linear learning

machine mapping into high-dimensional kernel-induced

feature space (u) (Fig. 2). Margin is a distance between

optimal hyper-plane and the support vectors that lies closer

to it (Fig. 2). Figure 2a shows the two dimensional data

having the circular decision boundary which is linearly

non-separable. Figure 2b shows the mapping of the data

into three dimensional spaces where the circular decision

boundary becomes a linear hyper-plane. Figure 2c shows

the two dimensional projection of the Fig. 2b. To explain

this mathematically, considering x [ Rn and y [ R. The

hyper-plane function is presented as

y = f(a) = w�u(x) ? b where w [ Rn is the weight vector,

b [ R is the bias. The function u(x) denotes a nonlinear

transformation from Rn into a higher-dimensional space. It

is aimed to find the value of w and b such that values of x

can be determined by minimizing the regression risk

R ¼ 1

2

Xn

i¼1

f xið Þ � yif g2 þ k
2

wk k2

where n indicates the sample inputs (x1,…, xn), k is regu-

larization constant, (y1,…, yn) are the measurements.

SVM/SVR is successfully applied in various research

areas including petroleum, e.g., [1, 2, 31, 37]. The com-

putational complexity of an SVM/SVR depends on the

number of support vectors used in the procedure [46]. In

this research we have used the SVR model that trained with

reduced number of support vectors by using K-means

algorithm known as SVM-KM [5, 46, 52].

3.3 Adaptive Neuro Fuzzy Inference System

ANFIS is introduced by Jang [28] which serves as a basis

for constructing a trained FIS. The Neuro-Fuzzy methods

provide models in the form of the ‘‘IF–THEN’’ rules that

can be easily interpreted by human beings. The structure of

ANFIS consists of five-layered feed forward network. A

typical example of an ANFIS model is shown in Fig. 3. In

this hybrid model, the consequent parameters of Takagi–

Sugeno–Kang (TSK) fuzzy inference model [28] is trained

through least-square method and the antecedent parameters

are obtained with the help of gradient-descent method.

Figure 3a shows the reasoning mechanism that can be

implemented into a feed-forward neural network with

supervised learning capability, which is known as ANFIS

architecture (Fig. 3). Jang et al. developed a hybrid-learn-

ing rule for ANFIS which is faster than the classical back-

propagation method by combining the gradient method and

the least squares estimate to identify antecedent and con-

sequent parameters. The square nodes in Fig. 3 indicate

adaptive nodes with parameters and circle modes indicate

fixed nodes without parameters. ANFIS basically imple-

ments a first-order Sugeno-style fuzzy system. Although it

is quite easy to express linguistically the relation between

input and output, it is difficult to fit the fuzzy model to the

target data using trial and error. A better approach is to

approximate the target function with a piece-wise linear

function and interpolate it, in some way, between the linear

regions. In the TSK model the idea is that each rule in a

rule base defines a region for a model, which can be linear.

This is achieved by clustering the input space. We have

used subtractive clustering (Subclust) to create initial FIS

and then trained that FIS using ANFIS hybrid learning

algorithm. The functionality of nodes in ANFIS (Fig. 3), as

a five layered feed-forward neural structure layers can be

summarized as follows. Layer 1 consists of square nodes

that perform fuzzification with chosen membership. In

Layer 2 the T-norm operation is performed to produce the

firing strength of each rule. In Layer 3, the nodes are fixed

with outputs generating the normalized firing strengths by

calculating the ratio of the ith rule firing strength to the sum

of all rules’ firing strength is calculated in the third layer.

Layer 4 consists of square nodes that perform multiplica-

tion of normalized firing strengths with the corresponding

rule. The parameters in this layer are called consequent

parameters. In Layer 5, the single node is fixed with output

which calculated by the sum of all incoming signals. A

Two Rule Sugeno ANFIS of Fig. 3 has rules of the form:

If x is p1 and y is q1 THEN f1 ¼ p1xþ q1yþ r1

If x is p2 and y is q2 THEN f1 ¼ p1xþ q2yþ r2

The ANFIS architecture was successfully used to model

various PEPs [9, 26, 44, 50].

3.4 Genetic Algorithm

GA is a global stochastic search techniques based on bio-

logical evolution introduced by John Holland in the 1970s.

Robustness of GA in solving nonlinear optimization

problems are discussed later by Goldberg [20]. GA is used

to determine the global optima or the sub-optima of a given
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function or a process that may subject to constraints. GA

starts with a randomly generated population where the

variables are represented as a string of elements known as

chromosome. A set of ‘‘genetic’’ operators such as Selec-

tion, Crossover and Mutation is then applied to this pop-

ulation set so as to create a new population set in search of

the optimal solution. The selection operator chooses

chromosomes from the current population based on fitness

value of the individuals. The crossover operator combines

the features of two parent chromosomes to form two sim-

ilar offspring by swapping corresponding segments of the

parents. The mutation operator creates new chromosomes

by randomly changing the genes of existing chromosomes.

GA can explore the entire design space by the genetic

manipulations. It does not easily fall into a certain local

minima or maxima by maintaining a balance between the

two conflicting objectives of a search procedure, i.e., the

exploitation of the best solution and the exploration of the

search space. Therefore, GA is an aggressive search tech-

nique that quickly converges to find the optimal solution in

a large solution domain. The GA was successfully used to

model various PEPs [11, 22, 33].

4 Proposed HCI models for Non-HC gases
prediction: GA2MLP, GA2SVR
and GA2ANFIS

The accuracy of the CI models depends on their parameters

for a given set of data. Finding the optimal parameters of

the CI models is a big challenge. The parameters can be

chosen by trial and error basis which is not actually

Fig. 2 Mapping of input vectors in higher dimension in SVM

Fig. 3 Train and test steps of

ANFIS and its structure
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efficient and time consuming. Furthermore, trial and error

basis do not guaranty an optimal or sub-optimal solution. A

stochastic search technique is a better alternative to search

the optimal/sub-optimal parameters of the CI models in a

given search space. GA-optimized CI models are applied

successfully in various petroleum studies includes forecast

the ratios of key-gas in power transformer oil [16], char-

acterization of oil and gas reservoirs [24], porosity and

permeability prediction [23].

In this paper, the crucial parameters of ANN, SVR and

ANFIS are optimized using GA. To find the optimal/sub-

optimal parameters of CI models, 20 generations having 50

populations in each generation and 0.65 crossover fraction

are used as GA parameters. The objective function is

designed to achieve the optimal parameters for which the

CI models are having the minimum root-mean-square error

(RMSE). The CI models are trained and experimented on

the Non-HC gases in the separator of an GOSP. The Fig. 4

depicts the generic flow chart of the parameter optimization

of CI models using GA. As shown in Fig. 4, the accuracy

of the CI models depends on their parameters for a given

set of data. Finding the optimal parameters of the CI

models is a big challenge. The parameters can be chosen by

trial and error basis which is not actually efficient and time

consuming. Furthermore, trial and error basis do not

guaranty an optimal or sub-optimal solution. A stochastic

search technique is a better alternative to search the opti-

mal/sub-optimal parameters of the CI models in a given

search space. Performing optimization by GA with differ-

ent fixed parameters results into a completely different

architecture of the CI model in each run. The performance

of the HCI model mostly depends on the design of the

objective function. We have used RMSE as criterion of

measuring fitness (Eq. 1). We have designed the objective

functions where in the validation dataset of samples n is

having minimum RMSE.

Fitness RMSEð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � ynð Þ2

n

s

ð1Þ

4.1 Ga2MLP

In this paper we have optimized three crucial MLP

parameters such as number of hidden neurons in the hidden

layer, activation function of the hidden layer and the

training algorithm. As we have a limited number of train-

ing samples, we decided to keep the structure of MLP

small and use only one hidden layer. Additionally, we kept

the range of hidden nodes to be optimized between 1 and

63 to keep the network simpler. While performing the

initial runs, we observed that the results were fluctuating

among the log and tan sigmoidal activation functions. At

the same time, Levenberg–Marquardt (LM) training algo-

rithm was providing comparable results with resilient back-

propagation (Rprop). Therefore, we also decided to opti-

mize the suitable activation function in the hidden layer

and the type of the training algorithm that would fit that

structure using GA. We found that the training algorithm

LM performs better than the Rprop for all three Non-HCs.

On the other hand, log sigmoidal activation function in the

hidden layer is well fitted with N2, H2S and tan sigmoidal

activation function fitted with CO2. The other MLP

parameters that we kept fixed are the learning rate 0.001,

epochs 300 and error goal 0.00001. As we have predicted

one gas component at a time, we have used one node in the

output layer. We varied the output between -1 and ?1 and

so used tan sigmoidal activation function in the output

layer. Figure 5 shows the input and the output parameters

that fed into the MLPs to train the model to perform pre-

diction of N2, H2S and CO2 separately. Figure 6a depicts

the generic flowchart of the parameter optimization of

MLP using GA. Table 1 shows the optimal parameters of

MLP obtained through GA.

4.1.1 Chromosome encoding of GA-MLP

We have used binary encoding to represent chromosome

for MLP parameters optimization. The chromosome of

MLP includes bit string of 8 digits Fig. 6a where the right

most two bits were used to choose the training algorithm

and the activation function of the hidden nodes. And the

rest 6 digits were used to for finding the optimal network

structure, i.e., the number of hidden nodes in the hidden

layer.

4.2 Ga2SVR

The optimal parameter search on SVR plays a crucial

role in building a prediction model with high prediction

accuracy and stability. From the initial run of the

problems, we have decided to use ‘‘polynomial’’ type

kernel having degree of polynomial 0.5. GA can

Table 1 GA-optimized parameters of CI models for Non-HCs

prediction

Non-

HC

GA-optimized parameters

MLP ANFIS SVR

#

Nodes

Act

Fn

Radius C Lambda

(k)
Epsilon

(e)

N2 56 log 0.2998 0.9763 0.00067 0.1754

CO2 21 tan 0.612 6.2202 0.0005 0.0352

H2S 17 log 0.7959 0.8796 0.00044 0.0001
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automatically optimize the SVR parameters C, epsilon

(e) and lambda (k) and thus increase the predictive

accuracy and capability of generalization. The chromo-

some for SVR is encoded into real-valued encoding in

the following ranges of C (0.0001–100), e (0.0001–0.6),

k (0.000000001–0.001). The Fig. 6b depicts the generic

flow chart of the parameter optimization of SVR using

GA. The optimum parameters of SVR that are obtained

through GA are shown in Table 1.

4.2.1 Chromosome encoding of GA-SVR

We have used real-valued encoding to represent chromo-

some for SVR parameters optimization. The chromosome

of SVR includes the three real numbers representing C,

epsilon, lambda (Fig. 6b).
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Fig. 4 Flow chart for optimization of CI models using GA

Fig. 5 Structure of MLP with input and output parameters for Non-

HC gas prediction
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4.3 Ga2ANFIS

The performance of ANFIS depends on the initial FIS.

The more the initial FIS represented better, the better the

performance of ANFIS would be. We have created the

initial FIS by using Subclust. Subclust is one of the

clustering algorithms based on a measure of the density of

data points in the feature space. It generates the rules that

approximate a function. The rule extraction method first

uses Subclust to determine number of rules and input

membership functions equation. We decided to optimize

the radius of Subclust by GA. The range of the radius we

choose to be between 0.2 and 0.9. Figure 6c depicts the

flow chart of the parameter optimization of ANFIS using

GA. The optimum parameter that obtained through GA is

shown in Table 1.

4.3.1 Chromosome encoding of GA-ANFIS

We have used real-valued encoding to represent chromo-

some for ANFIS parameters optimization. In this case, it is

only one real value (Fig. 6c) that represents the radius of

the Subclust used to create the initial FIS to be trained in

ANFIS training phase.

5 Data and experimental setup

In this paper, around 80 reservoir crude oil compositions and

the corresponding separator gas compositions are collected

from various Asian reservoirs and related studies [29]. Our

goal is to predict the Non-HC gas components in the sepa-

rator at certain stage temperature and pressure from the
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Fig. 6 Flowcharts for GA-optimized CI models: a GA-MLP, b GA-SVR, c GA-ANFIS
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available reservoir crude oil compositions and other reser-

voir parameters. The training input parameters of the CI

models consist of mole percent of the Non-HC, e.g., N2, H2S

and CO2 and HC, e.g., methane (CH4 as C1), ethane (C2H6

as C2), propane (C3H8 as C3), butane (C4H10 as C4), pentane

(C5H12 as C5), hexane (C6H14 as C6), heptane and heavier

(C7?) contents of reservoir crude oil sample. The isomers of

C4 and C5 are counted separately. The other available

reservoir parameters that we have used as input to train the

CI and HCI models are Stock Tank American Petroleum

Institute (ST API) gravity, Pb, reservoir temperature (RT),

separator pressure (SP) and separator temperature (ST). The

pressures are measured in unit ‘‘psi’’ and temperatures in

unit ‘‘�F’’. MW and density parameters of C7? composi-

tions are also given as input parameters. In this paper, we

focused on the prediction of Non-HC consist of mole percent

of N2, CO2 and H2S. As we have only 80 reservoirs samples,

we have selected random 10 samples for testing and the

remaining samples used for training. Statistical character-

istics of the data samples used for Non-HCs gas prediction

are shown in Table 2. For the ANN, we have used learning

rate: 0.001, epochs: 300, error goal: 0.00001. The other

parameter we decided to be optimized by GA. We tried to

achieve the number of nodes in the hidden layer.We kept the

range of hidden nodes between 1 and 63 to keep the network

simpler. The second parameters that we achieved by GA is

the hidden neurons’ activation function. The possible

options for activation functions are either tan-sigmoid or

log-sigmoid. We have also found the training algorithm

either LM or Rprop (Resilient Back propagation). We have

used binary encoding to represent chromosome for MLP

parameters optimization. We have used population type bit

string. And the right most bit is to decide the training algo-

rithm. The second bit is to choose activation function in the

hidden layers. And the left most 6 bits is to choose the

number of nodes in the hidden layer. We have selected

different sizes of training set for different types of output. At

first we divided the whole datasets into training and testing.

Around 80 % of the whole datasets is used for training and

the 20 % of the relevant datasets were used for testing.

6 Performance evaluation

The commonly used techniques to evaluate the performance

of prediction in the related work are the RMSE and the Cor-

relation Coefficient (CC). Additionally, a good prediction

model should have significant level (p value) within 5 %. A

p value represents the probability of finding a co-relation by

chance. In terms of statistical significance, the lower the

p value, the less likely the result is if the null hypothesis is true,

and consequently themore ‘‘significant’’ the result is. The null

hypothesis is often rejected when the p value is less than 0.05

or 0.01. Furthermore, we have calculated the training time of

themodelswhich is computed by deducting the endCPU time

of training from the beginning of the training CPU time.

6.1 Performance metric

We have used box metric to represent CC and RMSE so as

to easily compare the outcomes of the models. We gave

most importance to error measure of a model that is the

RMSE values as long as it has an accepted CC value. In

statistics CC value greater than 0.75 represents strong cor-

relation between the predicted output and original values.

7 Experimental results and discussions

In this paper we have shown the performance of each

model in the Fig. 8a–f. Figure 8a, c, e depicts the perfor-

mance in terms of the metric CC versus RMSE and Fig. 8b,

d, f shows the regression analysis of the prediction of

testing data for the best performed model. Figure 7 shows

the training time taken by the CI and HCI models for Non-

HCs gas predictions in multi-stage separator. Tables 3, 4, 5

Table 2 Statistical characteristics of the data samples used for Non-

HCs gas prediction models

Parameters Min Max Mean SD

Input parameters

N2 0.00 4.70 0.35 0.76

CO2 0.00 7.38 1.69 2.19

H2S 0.00 12.37 0.77 1.84

C1 0.52 47.70 19.00 13.98

C2 1.29 14.05 7.13 3.08

C3 2.83 12.03 6.86 1.66

i_C4 0.79 3.34 1.42 0.60

n_C4 2.45 7.76 4.48 1.05

i_C5 1.13 4.22 1.97 0.69

n_C5 1.38 4.79 2.92 0.77

C6 1.88 9.79 4.36 1.64

C7? 23.06 75.11 49.08 15.18

C7? density 0.72 0.93 0.87 0.03

C7? MW 193.00 350.00 261.15 38.84

ST 50.00 315.00 117.38 33.65

SP 14.70 519.00 135.20 113.56

Pb 381.00 3986.00 2172.07 754.31

ST API 24.20 124.10 36.99 10.05

RT 130.00 280.00 193.71 27.32

Output parameters

N2 0.00 0.73 1.56 9.66

CO2 0.00 3.80 4.35 16.44

H2S 0.00 1.17 2.82 18.86

644 Neural Comput & Applic (2017) 28:635–649

123



and 6 show the numerical values of the CC, RMSE and

p values of all the models. The CC value represents how

good the prediction is and the p value shows how signifi-

cant the prediction is. The CC above 0.75 represents sta-

tistically acceptable correlation, and the p value less than or

equal to 0.05 means the significance level is within 5 %. In

Tables 3, 4, 5 and 6, we can see that the p value is less than

0.05 except one or two cases which shows that the pre-

diction of models are significant.

7.1 Nitrogen (N2)

In case of N2 prediction, the performance of two HCI and

one CI models is better than the PR-EOS-based model. N2

is best predicted by genetically optimized ANFIS model

(Fig. 8a). Figure 8b shows the regression analysis of the

GA ? ANFIS model on the test data. The performance of

only ANFIS is also close to the optimized ANFIS. The

performance of GA ? SVR is closer to the PR-EOS-based
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Fig. 7 Training time of CI and HCI models for Non-HCs gas prediction

Table 3 Performance of CI models on training data

Training PR-EOS MLP SVR ANFIS

Non-HC CC RMSE CC p value RMSE CC p value RMSE CC p value RMSE

N2 0.8008 1.1383 0.9233 0.0000 0.8834 0.8142 0.0000 1.2879 0.9426 0.0000 0.5110

CO2 0.9978 0.2926 0.9910 0.0000 0.6219 0.9865 0.0000 2.3149 0.9976 0.0000 0.2927

H2S 0.9947 0.5334 0.9908 0.0000 0.6097 0.9799 0.0000 2.9719 0.9944 0.0000 0.3241

Table 4 Performance of CI models on test data

Test PR-EOS MLP SVR ANFIS

Non-HC CC RMSE CC p value RMSE CC p value RMSE CC p value RMSE

N2 0.9586 0.7402 0.9403 0.0001 1.5183 0.9843 0.0000 1.2947 0.9764 0.0000 0.6331

CO2 0.9989 0.3114 0.9669 0.0000 1.2819 0.9419 0.0000 2.0379 0.9693 0.0000 1.1854

H2S 0.6800 2.0037 0.9160 0.0019 1.2807 0.9149 0.0002 2.8769 0.7828 0.0044 1.0078

Table 5 Performance of HCI models on training data

Training PR-EOS GA ? MLP GA ? SVR GA ? ANFIS

Non-HC CC RMSE CC p value RMSE CC p value RMSE CC p value RMSE

N2 0.8008 1.1383 0.9239 0.0000 0.6173 0.7954 0.0000 0.9110 0.8965 0.0000 0.6655

CO2 0.9978 0.2926 0.9932 0.0000 0.5030 0.9890 0.0000 0.6285 0.9991 0.0000 0.1845

H2S 0.9947 0.5334 0.9786 0.0000 0.7012 0.9963 0.0000 0.2969 0.9990 0.0000 0.1388

Neural Comput & Applic (2017) 28:635–649 645

123



method though having higher CC hence more accurate. It

can be observed from Fig. 8a is that the HCI models are

performed better than their corresponding simple CI

models. The GA ? SVR are having least training time

comparing to other models (Fig. 7). On the other hand, the

GA ? ANFIS having the highest training time though

having highest prediction accuracy. It can be observed

from Fig. 7a that the HCI models are performed better than

their corresponding simple CI models. The GA ? SVR

model is having least training time comparing to other HCI

models. On the other hand, the GA ? ANFIS model has

the highest training time among all the models though

having highest prediction accuracy in case of N2.

7.2 Carbon dioxide (CO2)

In case of CO2 the performance of PR-EOS-based model is

better than both the CI and HCI models (Fig. 8c). This is

may be because we do not perform post processing so that

very small value counted as negative. We believe that post

processing of the output can improve the performance of

CO2 prediction by eliminating negative predicted value.

Among the CI and HCI models, the performance of

GA ? MLP is better than any other models. The regression

analysis of the GA ? MLP model in Fig. 8d also shows

good co-relation among the test data with the prediction.

On the other hand, the performance of GA ? ANFIS is

comparable with GA ? MLP. Additionally, Fig. 8c clearly

shows the performance of HCI models is better than the

corresponding CI models. Figure 7 stated that the

GA ? MLP model took highest training time. The statis-

tics of Table 2 shows that the Non-HC component output

parameter CO2 varies in wide ranges. This could be a

reason that empirical PR-EOS model performs better than

the CI and HCI models. Another reason could be the less

error-prone behavior of PR-EOS model to CO2 calculation.

On the other hand, we came up with CI and HCI models

that perform in general better for the two Non-HCs com-

ponents (N2 and H2S). The point to be noted is, the per-

formance of PR-EOS is static and unable to improve

further, whereas the development of CI and HCI models is

open and further improvement of CI and HCI models are

still possible by using different CI models and optimization

techniques.

7.3 Hydrogen sulfide (H2S)

In case of H2S the performance of CI and HIC models is

better than the PR-EOS model except SVR (Fig. 8e). In

contrast the GA ? SVR outperformed all others models.

On the one hand, it is performing with lowest RMSE while

having highest co-relation (Fig. 8e) and on the other hand,

it took the least training time (Fig. 7). Among the other

models the performance of GA ? ANFIS and GA ? MLP

is comparable and closer to GA ? SVR. The training time

of GA ? MLP and GA ? ANFIS is huge comparing other

models (Fig. 7). Figure 7 shows that the HCI models took

huge training time comparing simple CI models though

having higher accuracy.

8 Conclusion and future work

In this paper, Non-HC gas components prediction in multi-

stage separator is accomplished by using various CI and

HCI models. Choosing optimal parameters of the CI

models is a big challenge. GA is used to find the optimal

parameters in the proposed HCI models. The results clearly

show that the proposed HCI models predict Non-HC gas

components in multi-stage separator with higher accuracy

than the conventional PR-EOS-based method for most

cases. We observed that the performance of both CI models

and HCI models are better than the performance of con-

ventional PR-EOS in predicting N2 and H2S. Though the

PR-EOS-based method performs well in predicting CO2,

the results obtained by the CI and HCI models are com-

parable. It is observed that different CI and HCI models are

suitable for different Non-HC. For example, GA ? ANFIS

performed well for N2 prediction, GA ? MLP for CO2 and

GA ? SVR for H2S. Therefore, one particular HCI model

cannot be recommended to predict all the gas components.

As a future work and to improve the accuracy of predic-

tion, different combination of CI or HCI models with

additional data including feature selection methods can be

Table 6 Performance of HCI models on test data

Test PR-EOS GA ? MLP GA ? SVR GA ? ANFIS

Non-HC CC RMSE CC p value RMSE CC p value RMSE CC p value RMSE

N2 0.9586 0.7402 0.8953 0.0005 1.1926 0.9767 0.0000 0.7183 0.9795 0.0000 0.5851

CO2 0.9989 0.3114 0.9920 0.0000 0.6492 0.9385 0.0001 1.6950 0.9827 0.0000 0.9162

H2S 0.6800 2.0037 0.8527 0.0017 0.9093 0.9119 0.0002 0.7088 0.8211 0.0036 0.9878
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Fig. 8 Performance of CI and HCI models for Non-HC gas predictions in multi-stage separator
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studied to select the appropriate models for predicting

every gas components in multi-stage separator.
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