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Abstract In this paper, we study the global asymptotic

stability of fractional-order BAM neural networks. We take

both time delay and impulsive effects into consideration.

Based on Lyapunov stability theorem, fractional Barbalat’s

lemma and Razumikhin-type stability theorem, some sta-

bility conditions that are independent of the form of

specific delays can be obtained. At last, two illustrative

examples are given to show the independence of the

obtained two main results and to show the effectiveness of

the obtained results.

Keywords Fractional-order � BAM � Asymptotic

stability � Impulsive � Delay

1 Introduction

As an extension of integer-order calculus, fractional-order

calculus has drawn much attention from many researchers.

Lots of dynamics can be described by fractional differential

equations, such as electrochemistry [1], diffusion [2], vis-

coelastic materials [3] and control [4]. Recently, fractional

neural networks have been studied. Kaslik studied stability,

bifurcations and chaos of fractional-order Hopfield neural

networks [5]. Ref. [6] investigated the global Mittag–Lef-

fler stability and synchronization of a class of fractional-

order memristor-based neural networks. Due to the finite

speed of the signal transmission between neurons, time

delay often exists in almost every neural networks. At the

same time, time delay could also effect the dynamic

behavior of neural networks. Thus, time delay is

unavoidable in the analysis of neural networks. Time-de-

layed fractional-order neural networks also have been

researched. For example, Chen discussed the existence,

uniqueness and stability of a fractional-order delay neural

network’s equilibrium point [7]; Stamova investigated

global Mittag–Leffler stability and synchronization of

impulsive fractional-order cellular neural networks with

time-varying delays [8]. More results about fractional

neural networks can be found in Refs. [9–12].

Bidirectional associative memory (BAM) neural net-

works attract many studies due to its applications in many

fields, such as signal processing [13], image processing

[14] and pattern recognition [15]. In 1987, Kosko intro-

duced BAM neural networks [16], which are composed of

neurons arranged in two layers, i.e., the U-layer and V-

layer. The neurons in one layer are fully interconnected to

the one in the other layer, while there are no interconnec-

tions among neurons in the same layer. Stability plays an

important role on the study of neural networks, which is the

premise for the application. There are also lots of results

about the stability for BAM neural networks in recent

years. For instance, in [17], Sakthivel analyzed the stability

for a class of delayed stochastic BAM neural networks with

Markovian jumping parameters and impulses. The global

robust stability problem of BAM neural networks with

multiple time delays under parameter uncertainties has

been researched by Feng et al [18]. Exponential stability
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via impulsive control is investigated in [19] for the

Markovian jumping stochastic BAM neural networks with

mode-dependent probabilistic time-varying delays. Ref.

[20] discussed the stabilization of BAM neural networks

with time-varying delays in the leakage terms by using

sampled-data control. More impressive results can be

found and their references in herein [21–25].

So far, the study of BAM neural networks mainly

focused on neural networks with only first derivative of the

states. As we all known, the memory is one of the main

features of BAM neural networks [16]. There is a particular

attract point that fractional-order derivative is nonlocal and

has weakly singular kernels. Thus, the major advantage of

the fractional-order derivatives is the description of mem-

ory [26, 27]. However, a few studies focused on fractional

BAM neural networks [28, 29]. Cao investigated the finite-

time stability of fractional-order BAM neural networks

with distributed delay in [28]. Ref. [29] studied the uniform

stability analysis of fractional-order BAM neural networks

with delays in the leakage terms. Instead of Lyapunov

approach, inequality technique plays an important role in

the previous two papers [28, 29]. As is well known, most of

results related to stability of integer-order BAM neural

networks are obtained by constructing Lyapunov function

[17–25]. Some results about the stability of fractional-order

systems via Lyapunov function approach have been pub-

lished [30–33]. Based on Lyapunov function approach, this

paper devotes to presenting a sufficient criterion for

asymptotic stability of fractional-order BAM neural

networks.

In addition, many real-world systems often suddenly

receive external disturbance, which makes systems

undergo abrupt changes in a very short time. This phe-

nomenon is called impulse. Dynamic systems with

impulses are neither purely continuous time nor purely

discrete time and exhibit a combination of continuous and

discrete characteristics. It is clear that such a short-time

disturbance must have some effects on dynamics of sys-

tems. There are some results about integer-order impulsive

network systems (see for example [34–36]). Due to the

finite speed of the signal transmission between neurons,

time delay exists in almost every neural networks. Since

the existence of delays and impulses is frequently result in

instability, bifurcation and chaos for neural networks, it is

necessary to study the delay and impulse effects on the

stability of networks. Integer-order BAM neural networks

with delay and impulse effects have gotten some results

[17, 22, 37, 38], but impulsive fractional-order BAM neural

networks with time delay have not been seen yet.

Motivated by the above discussions, we study the

asymptotic stability of a class of impulsive fractional-order

BAM neural networks with time delay. We shall study the

fractional-order BAM neural networks by employing both

fractional Barbalat’s lemma [33] and Razumikhin-type

stability theorems [39]. Some stability criteria are obtained

for ensuring the equilibrium point of the system to be

global asymptotic stability.

The rest of this paper is organized as follows: In Sect. 2,

we introduce some definitions and some lemmas which are

necessary for presenting our results in the following. The

main results about stability conditions for fractional-order

BAM neural networks are presented in Sect. 3. Then, two

examples will be given to demonstrate the effectiveness of

our results in Sect. 4. Conclusions are finally drawn in

Sect. 5.

2 Model description and preliminaries

In this section, some definitions and lemmas about frac-

tional calculus are introduced, which will be used in

deriving the main results. Then, the time-delayed frac-

tional-order BAM model with impulsive effects will be

introduced.

There are some definitions for fractional derivative, such

as Riemann–Liouville derivative (R–L derivative), Caputo

derivative and Grünwald–Letnikov derivative (G–L

derivative).

R–L fractional operator often plays an important role in

the stability analysis of fractional-order systems. Moreover,

the R–L derivative is a continuous operator of the order a
and is a natural generalization of classical derivative [40].

Consequently, we will choose R–L derivative in this paper.

Definition 1 [4] The fractional integral of order a for a

function w(t) is defined as

D�a
t0
wðtÞ ¼ 1

CðaÞ

Z t

t0

ðt � sÞa�1
wðsÞds ð1Þ

where t > t0 and a[ 0.

Definition 2 [4] The R–L fractional derivative with order

a for a continuous function x(t) is defined as follows:

RLDa
t0;t
xðtÞ ¼ dm

dtm
D

�ðm�aÞ
t0;t xðtÞ

h i

¼ 1

Cðm� aÞ
dm

dtm

Z t

t0

ðt � sÞm�a�1
xðsÞds

ð2Þ

in which m� 1\a\m; m 2 Zþ:

Without loss of generality, the order a of R–L derivative

is given as 0\a\1 in Definition 2. For simply, denote

DaxðtÞ as the R–L derivative RLDa
t0;t
xðtÞ. Some properties of

R–L derivative are listed in the following lemma.

Lemma 1 [4] If wðtÞ; uðtÞ 2 C1½t0; b�, and a[ 0; b[ 0,

then

346 Neural Comput & Applic (2017) 28:345–352

123



1: DaD�bwðtÞ ¼ Da�bwðtÞ
2: D�aDawðtÞ ¼ wðtÞ
3: DaðwðtÞ � uðtÞÞ ¼ DawðtÞ � DauðtÞ

Considering the following time-delayed fractional BAM

neural networks with impulsive effects:

DaxiðtÞ ¼ �aixiðtÞ þ
Pm

j¼1 cijfj yj t � sð1Þji

� �� �
þ Ii

DxiðtkÞ ¼ cð1Þk ðxiðtkÞÞ i ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .

DayjðtÞ ¼ �bjyjðtÞ þ
Pn

i¼1 djigi xi t � sð2Þij

� �� �
þ Jj

DyjðtkÞ ¼ cð2Þk ðyjðtkÞÞ j ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .

8>>>>>><
>>>>>>:

ð3Þ

There were two layers in a BAM, where U ¼
fx1; x2; . . .xng and V ¼ fy1; y2; . . .ymg. In which, xiðtÞ and

yjðtÞ denote the membrane voltages of ith neuron in the U-

layer and the membrane voltages of jth neuron in the V-

layer, respectively. ai [ 0; bj [ 0 denote decay coefficients

of signals from neurons xi to yj, respectively. fi and gj
denote the transfer function for neurons. cij and dji denote

connection strengths between neuron xi and yj. Ii and Jj
denote external input of U-layer and V-layer, respectively.

In addition, DxiðtkÞ ¼ xiðtþk Þ � xiðt�k Þ and

DyjðtkÞ ¼ yjðtþk Þ � yjðt�k Þ. Impulsive moment ftkjk ¼
1; 2; 3; . . .g satisfies 0 6 t0\t1\t2\. . .\tk\. . .; tk !
þ1 as k ! þ1, and xðtþk Þ ¼ limt!tþ

k
xðtÞ and

xðt�k Þ ¼ xðtkÞ.

Lemma 2 [33] (Fractional Barbalat’s lemma) IfR t
t0
wðsÞds has a finite limit as t ! þ1;DawðtÞ is bounded,

then wðtÞ ! 0 as t ! þ1, where 0\a\1.

Lemma 3 [39] Suppose that x1;x2: R ! R are contin-

uous nondecreasing functions, x1ðsÞ and x2ðsÞ are positive

for s[ 0, and x1ð0Þ ¼ x2ð0Þ ¼ 0;x1;x2 strictly increas-

ing. If there exists a continuously differentiable function

V : R ! R such that x1ðk xðtÞ kÞ 6 Vðt; xðtÞÞ 6 x2ðk
xðtÞ kÞ holds, and there exist two constants q[ p[ 0 such

that for any given t0 2 R the R–L fractional derivative of

V along the solution x(t) of R–L system DaxðtÞ ¼
f ðt; xðtÞ; xðt � sÞÞ satisfies

DaVðt; xðtÞÞ 6 �qVðt; xðtÞÞ þ p sup
�s6h60

Vðt þ h; xðt þ hÞÞ

for t > t0, then R–L system DaxðtÞ ¼ f ðt; xðtÞ; xðt � sÞÞ is

globally asymptotically stable.

Furthermore, the transfer functions fj; gi and impulsive

operator satisfy the following assumptions:

(H1) The functions fi; gjði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ are

Lipschitz continuous. That is, there exist positive constants

Fj;Gi such that

j fjðxÞ � fjðyÞ j6 Fj j x� y j;
j giðxÞ � giðyÞ j6 Gi j x� y j;
8x; y 2 R:

ð4Þ

(H2) The impulsive operators cð1Þk ðxiðtkÞÞ and cð2Þk ðyjðtkÞÞ
satisfy

cð1Þk ðxiðtkÞÞ ¼ �kð1Þik ðxiðtkÞ � x�Þ i ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .

cð2Þk ðyjðtkÞÞ ¼ �kð2Þjk ðyjðtkÞ � y�Þ j ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .

(

ð5Þ

where kð1Þik 2 ð�2; 0Þ; ði ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .Þ and

kð2Þjk 2 ð�2; 0Þ; ðj ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .Þ.

3 Main results

In this section, we will state our main results in the fol-

lowing theorems.

Theorem 1 Suppose that (H1) and (H2) hold, and then

the equilibrium ðx�; y�Þ of system (3) is globally asymp-

totically stable if n̂ð1Þ [ 0 and n̂ð2Þ [ 0, where

n̂ð1Þ ¼min
i
fnð1Þi g; n̂ð2Þ ¼ min

j
fnð2Þj g;

nð1Þi ¼Gi

ai

Gi

�
Xm
j¼1

jdjij
( )

; nð2Þj ¼ Fj

bj

Fj

�
Xn
i¼1

jcijj
( )

:

Proof Translating the equilibrium point to the origin via

the transformation: xiðtÞ ¼ uiðtÞ þ x�; yiðtÞ ¼ viðtÞ þ y�,
then Eq. (3) is converted into:

DauiðtÞ ¼ �aiuiðtÞ þ
Pm

j¼1 cij fj yj t � sð1Þji

� �� �
� fjðy�j Þ

� �

uiðtþk Þ ¼ 1 � kð1Þik

� �
uiðt�k Þ i ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .

DavjðtÞ ¼ �bjvjðtÞ þ
Pn

i¼1 dji gi xi t � sð2Þij

� �� �
� giðx�i Þ

� �

vjðtþk Þ ¼ 1 � kð2Þjk

� �
vjðt�k Þ j ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .

8>>>>>>>><
>>>>>>>>:

ð6Þ

Consider a Lyapunov function defined by

VðtÞ ¼ D
�ð1�aÞ
t0

Xn
i¼1

juiðtÞj þ
Xm
j¼1

jvjðtÞj
 !

þ
Xn
i¼1

lð1Þ
Xm
j¼1

Fjjcijj
Z t

t�sð1Þ
ij

jvjðsÞjds

þ
Xm
j¼1

lð2Þ
Xn
i¼1

Gijdjij
Z t

t�sð2Þ
ji

juiðsÞjds
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When t 6¼ tk, calculating the derivatives of V(t) along the

solutions of system (6), based on the definition of R–L

derivative and Lemma 1, we obtain

then, for 8t 2 ½tk�1; tkÞ, we have

VðtÞ þ
Z t

tk�1

n̂ð1Þ
Xn
i¼1

uiðsÞj j þ n̂ð2Þ
Xm
j¼1

vjðsÞ
�� ��

 !
ds 6 Vðtþk�1Þ:

_VðtÞ ¼
d D

�ð1�aÞ
t0

Pn
i¼1 uiðtÞj j þ

Pm
j¼1 vjðtÞ
�� ��� �n o

dt

þ
d
Pn

i¼1

Pm
j¼1 Fj cij

�� �� R t
t�sð1Þ

ij

vjðsÞ
�� ��dsþPm

j¼1

Pn
i¼1 Gi dji

�� �� R t
t�sð2Þ

ji

uiðsÞj jds
n o

dt

¼ Da
Xn
i¼1

uiðtÞj j þ
Xm
j¼1

vjðtÞ
�� ��

 !( )

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� vjðtÞ

�� ��� vj t � sð1Þij

� ����
���

� �
þ
Xm
j¼1

Xn
i¼1

Gijdjij juiðtÞj � ui t � sð2Þji

� ����
���

� �

6

Xn
i¼1

sgnðuiðtÞÞDauiðtÞ þ
Xm
j¼1

sgnðvjðtÞÞDavjðtÞ

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� vjðtÞ

�� ��� vj t � sð1Þij

� ����
���

� �
þ
Xm
j¼1

Xn
i¼1

Gi dji
�� �� uiðtÞj j � ui t � sð2Þji

� ����
���

� �

6

Xn
i¼1

sgnðuiðtÞÞ �aiuiðtÞ þ
Xm
j¼1

cij fj yj t � sð1Þji

� �� �
� fjðy�j Þ

� �( )

þ
Xm
j¼1

hðvjðtÞÞ �bjvjðtÞ þ
Xn
i¼1

dji gi xi t � sð2Þij

� �� �
� gi x

�
i

� �� �( )

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� vjðtÞ

�� ��� vj t � sð1Þij

� ����
���

� �
þ
Xm
j¼1

Xn
i¼1

Gi dji
�� �� uiðtÞj j � ui t � sð2Þji

� ����
���

� �

6 �
Xn
i¼1

ai uiðtÞj j �
Xm
j¼1

bi vjðtÞ
�� ��

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� vj t � sð1Þij

� ����
���þX

m

j¼1

Xn
i¼1

Gi dji
�� �� ui t � sð2Þji

� ����
���

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� vjðtÞ

�� ��� vj t � sð1Þij

� ����
���

� �
þ
Xm
j¼1

Xn
i¼1

Gi dji
�� �� uiðtÞj j � ui t � sð2Þji

� ����
���

� �

6 �
Xn
i¼1

ai uiðtÞj j �
Xm
j¼1

bi vjðtÞ
�� ��þX

n

i¼1

Xm
j¼1

Fj cij
�� �� vjðtÞ�� ��þX

m

j¼1

Xn
i¼1

Gi dji
�� �� uiðtÞj j

6

Xn
i¼1

Gi � ai

Gi

þ
Xm
j¼1

dji
�� ��

( )
uiðtÞj j þ

Xm
j¼1

Fj � bj

Fj

þ
Xn
i¼1

cij
�� ��

( )
vjðtÞ
�� ��

¼ �
Xn
i¼1

nð1Þi uiðtÞj j �
Xm
j¼1

nð2Þj vjðtÞ
�� ��

6 �n̂ð1Þ
Xn
i¼1

uiðtÞj j � n̂ð2Þ
Xm
j¼1

vjðtÞ
�� ��
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On the other hand, from (5), one has

Vðtþk Þ ¼ D
�ð1�aÞ
t0

Xn
i¼1

uiðtþk Þ
�� ��þX

m

j¼1

vjðtþk Þ
�� ��

 !

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� Z tþ

k

tþ
k
�sð1Þ

ij

vjðsÞ
�� ��dsþX

m

j¼1

Xn
i¼1

Gi dji
�� �� Z tþ

k

tþ
k
�sð2Þ

ji

uiðsÞj jds

¼ D
�ð1�aÞ
t0

Xn
i¼1

1 � kð1Þik

���
��� uiðt�k Þ
�� ��þX

m

j¼1

1 � kð2Þjk

���
��� vjðt�k Þ
�� ��

 !

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� Z tþ

k

tþ
k
�sð1Þ

ij

vjðsÞ
�� ��dsþX

m

j¼1

Xn
i¼1

Gi dji
�� �� Z tþ

k

tþ
k
�sð2Þ

ji

uiðsÞj jds

\D
�ð1�aÞ
t0

Xn
i¼1

uiðt�k Þ
�� ��þX

m

j¼1

vjðt�k Þ
�� ��

 !

þ
Xn
i¼1

Xm
j¼1

Fj cij
�� �� Z tþ

k

tþ
k
�sð1Þ

ij

vjðsÞ
�� ��dsþX

m

j¼1

Xn
i¼1

Gi dji
�� �� Z tþ

k

tþ
k
�sð2Þ

ji

uiðsÞj jds

¼ Vðt�k Þ

let UðtÞ ¼
Pn

i¼1 uiðtÞj j þ
Pm

j¼1 vjðtÞ
�� ��, then 8t 2 ½tk�1; tkÞ;

VðtÞ 6 �
R t
tk�1

UðsÞds þVðtþk�1Þ 6 �
R t
tk�1

UðsÞds þVðt�k�1Þ
6 �

R t
tk�2

UðsÞds þVðt�k�2Þ 6 . . . 6 �
R t
t0
UðsÞdsþ Vðt0Þ:

Thus

VðtÞ þ
Z t

t0

UðsÞds 6 Vðt0Þ;

let t ! þ1, it is obviously that limt!þ1 UðtÞ is bounded.

According to Eq. (6), j DauiðtÞ j and j DavjðtÞ j are boun-

ded. From the fractional Barbalat’s lemma, it followsPn
i¼1 juiðtÞj ! 0 and

Pm
j¼1 jvjðsÞj ! 0 as t ! þ1.

Therefore, the equilibrium ðx�; y�Þ of system (3) is global

asymptotic stability. This completes our proof. h

Corollary 1 Suppose that (H1) and (H2) hold, then the

equilibrium ðx�; y�Þ of system (3) is globally asymptoti-

cally stable if

q1 ¼ max
16i6n

Gi

Pm
j¼1 jdjij
ai

� �
\1;

q2 ¼ max
16j6m

Fj

Pn
i¼1 jcijj
bj

� �
\1:

Proof By some simple computations, all the conditions of

Theorem 1 hold, then the equilibrium ðx�; y�Þ is globally

asymptotically stable. h

Theorem 2 Under (H1) and (H2), then the equilibrium

ðx�; y�Þ of system (3) is globally asymptotically stable if

q[ p[ 0, where

q ¼ minfâ; b̂g; â ¼ min
i
faig; b̂ ¼ min

j
fbjg;

and

p ¼ maxfd̂; ĉg; ĉ ¼ max
j
fc�j Fjg; d̂ ¼ max

i
fd�i Gig;

c�j ¼ max
i
fjcijjg; d�i ¼ max

j
fjdjijg:

Proof Based on Eq. (6), considering the following Lya-

punov function:

VðtÞ ¼
Xn
i¼1

juiðtÞj þ
Xm
j¼1

jvjðtÞj:

When t 6¼ tk, calculating the derivatives of V(t) along the

solutions of system (6), one has

DaVðtÞ ¼
Xn
i¼1

DajuiðtÞj þ
Xm
j¼1

DajvjðtÞj

¼
Xn
i¼1

sgnðuiðtÞÞDauiðtÞ þ
Xm
j¼1

sgnðvjðtÞÞDavjðtÞ

¼
Xn
i¼1

sgnðuiðtÞÞ �aiuiðtÞ þ
Xm
j¼1

cij fj yj t � sð1Þji

� �� �
� fj y�j

� �� � !

þ
Xm
j¼1

sgnðvjðtÞÞ �bjvjðtÞ þ
Xn
i¼1

dji gi xi t � sð2Þij

� �� �
� gi x

�
i

� �� � !

6

Xn
i¼1

�aijuiðtÞj þ
Xm
j¼1

cijFj vj t � sð1Þij

� ����
���

 !

þ
Xm
j¼1

�bjjvjðtÞj þ
Xn
i¼1

djiGi ui t � sð2Þji

� ����
���

 !

6 �â
Xn
i¼1

juiðtÞj � b̂
Xm
j¼1

FjjvjðtÞj

þ
Xn
i¼1

Xm
j¼1

cij vj t � sð1Þij

� ����
���þX

m

j¼1

Xn
i¼1

djiGi ui t � sð2Þji

� ����
���

6 �qVðtÞ þ
Xm
j¼1

c�j g
ð1ÞFj vj t � sð1Þij

� ����
���

 !

þ
Xn
i¼1

d�i Gi ui t � sð2Þji

� ����
���

 !

6 �qVðtÞ þ ĉ
Xm
j¼1

vj t � sð1Þij

� ����
���þ d̂

Xn
i¼1

ui t � sð2Þji

� ����
���

6 �qVðtÞ þ p �VðtÞ

where �VðtÞ ¼ supt�s�6s6tVðsÞ.
On the other hand, by (H2), we have

Vðtþk Þ ¼
Xn
i¼1

juiðtþk Þj þ
Xm
j¼1

jvjðtþk Þj

¼
Xn
i¼1

j1 � kð1Þik jjuiðt�k Þj þ
Xm
j¼1

j1 � kð2Þik jjvjðt�k Þj

\
Xn
i¼1

juiðtkÞj þ
Xm
j¼1

jvjðtkÞj

¼Vðt�k Þ

From Lemma 2, the equilibrium ðx�; y�Þ of system (3) is

global asymptotic stability. This completes our proof. h

Remark 1 Because the R–L derivative is a continuous

operator of the order a, when a ¼ 1, the fractional-order

BAM neural network will become the first-order derivative

model. From the proof of above results, it is obvious that

when a ¼ 1, both Theorems 1 and 2 still hold.
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Remark 2 In addition, the sufficient conditions in Theo-

rems 1 and 2 are independent, which can be checked in the

numerical simulations.

4 Numerical simulations

In this section, we will illustrate our results from two

examples.

Two low-dimensional cases of Example 1 will be used

to compare our results in Theorems 1 and 2. We will also

give a higher dimension to illustrate the usefulness of our

results in Example 2. The algorithm to simulate the R–L

fractional-order neural network can be seen in Ref. [33].

Example 1 Case 1 Consider the following impulsive

fractional-order BAM neural network with five neurons,

three in the first field and others in the second field, which

can be described as:

DaxiðtÞ ¼ �aixiðtÞ þ
P2

j¼1 cijtanhðyjðt � 0:1ÞÞ þ Ii

DxiðtkÞ ¼ �0:7ðxiðtkÞ � x�Þ i ¼ 1; 2; 3; k ¼ 1; 2; . . .

DayjðtÞ ¼ �bjyjðtÞ þ
P3

i¼1 djitanhðxiðt � 0:1ÞÞ þ Jj

DyjðtkÞ ¼ �0:8ðyjðtkÞ � y�Þ j ¼ 1; 2; k ¼ 1; 2; . . .

8>>><
>>>:

In this case, set a1 ¼ 1:5; a2 ¼ 0:5; a3 ¼ 0:5; b1 ¼ 0:5;

b2 ¼ 1:5;C ¼ ½�0:05; 0:1; 0:02; 0:2; �0:01; 1�; D ¼
½�0:05; 0:1; 0:02; 0:7;�0:01; 0:01�; Ii ¼ Jj ¼ 0; i ¼
1; 2; 3; j ¼ 1; 2; Let Fj ¼ Gi ¼ 1; i ¼ 1; 2; 3; j ¼ 1; 2, by

some simple computations, one has nð1Þ1 ¼ 0:75; nð1Þ2 ¼
0:39; nð1Þ3 ¼ 0:47, and nð2Þ1 ¼ 0:42; nð2Þ2 ¼ 0:2; it is easy to

check that n̂ð1Þ ¼ 0:39[ 0 and n̂ð2Þ ¼ 0:2[ 0, the condi-

tions in Theorem 1 are satisfied. So, the equilibrium point

of system (3) is globally asymptotically stable. Figures 1

and 2 show the trajectories of variable xiðtÞ and yjðtÞ of

system (3).

Case 2 In this case, set a1 ¼ 1:5; a2 ¼ 0:5; a3 ¼ 0:5; b1 ¼
0:5; b2 ¼ 1:2;C ¼ ½�0:1; 0:45; 0:3; 0:45; 0:3; 0:4�; D ¼
½0:45;�0:45; 0:3;�0:1;�0:4; 0:45�; Ii ¼ Jj ¼ 0; i ¼ 1; 2;

3; j ¼ 1; 2; Let Fj ¼ Gi ¼ 1; i ¼ 1; 2; 3; j ¼ 1; 2, by some

simple computations, one has ĉ ¼ d̂ ¼ 0:5; â ¼ 0:7 and

b̂ ¼ 0:6; it is easy to check that q ¼ 0:6[ p ¼ 0:5[ 0, the

conditions in Theorem 2 are satisfied. So, the equilibrium

point of system (3) is globally asymptotically stable.

Figures 3 and 4 show the trajectories of variable xiðtÞ and

yjðtÞ of system (3).

Remark 3 In Example 1, it is easy to get that â ¼ b̂ ¼
0:5; ĉ ¼ 1 and d̂ ¼ 0:7, then q ¼ 0:5\p ¼ 0:7, which does

not meet the criteria in Theorem 2. On the other hand, in

Example 2, one has nð1Þ1 ¼ 0:95; nð1Þ2 ¼ �0:35; nð1Þ3 ¼
�0:25 and nð2Þ1 ¼ �0:2; nð2Þ2 ¼ �0:1, it is easy to check that
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Fig. 1 Time response of state variables x(t) in system (3)
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Fig. 2 Time response of state variables y(t) in system (3)
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Fig. 3 Time response of state variables x(t) in system (3)
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n̂ð1Þ ¼ �0:35[ 0 and n̂ð2Þ ¼ �0:2\0, which does not

meet the criteria in Theorem 1. Thus, the sufficient con-

ditions in Theorems 1 and 2 are independent.

Example 2 Consider the following impulsive fractional-

order BAM neural network with two hundred neurons, one

hundred in the first field and others in the second field.

Under the conditions of Theorems 1 and 2, we select

suitable higher-dimensional matrices A, B, C and D. Other

parameters are the same with them of Example 1. The time

responses of state variables are shown in Figs. 5 and 6.

Remark 4 The uniform stability of fractional-order BAM

neural networks has been investigated in Ref. [29]. Time

delay has been taken into account, but the impulsive effects

have not been considered, compared with which this paper

has studied the asymptotic stability of time-delayed BAM

neural networks with impulsive effects, and the above

numerical simulation can be checked for our theoretical

result.

5 Conclusion

Two sufficient conditions were obtained to ensure the

impulsive fractional-order BAM networks to be globally

asymptotically stable in this paper. By employing the

fractional Barbalat’s lemma and Razumikhin-type stability

theorems, the new results were easy to test in the practical

fields. Furthermore, the methods employed in this paper

were useful to study some other time-delayed fractional-

order neural systems. In the end, two examples were given

to show that two sufficient conditions that we have got are

independent of each other. We would like to point out that

there are lots of results of BAM neural networks about

practical application in engineering science; however, there

are few results about the practical application of fractional-

order BAM, which will be our future works.
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