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Abstract The objective of voice conversion is to replace

the speaker-dependent characteristics of the source speaker

so that it is perceptually similar to that of the target

speaker. The speaker-dependent spectral parameters are

characterized using single-scale interpolation techniques

such as linear predictive coefficients, formant frequencies,

mel cepstrum envelope and line spectral frequencies. These

features provide a good approximation of the vocal tract,

but produce artifacts at the frame boundaries which result

in inaccurate parameter estimation and distortion in re-

synthesis of the speech signal. This paper presents a novel

approach of voice conversion based on multi-scale wavelet

packet transform in the framework of radial basis neural

network. The basic idea is to split the signal acoustic space

into different salient frequency sub-bands, which are finely

tuned to capture the speaker identity, conveyed by the

speech signal. Characteristics of different wavelet filters

are studied to determine the best filter for the proposed

voice conversion system. A relative performance of the

proposed algorithm is compared with the state-of-the-art

wavelet-based voice morphing using various subjective and

objective measures. The results reveal that the proposed

algorithm performs better than the conventional wavelet-

based voice morphing.

Keywords Discrete wavelet transforms � Dynamic time

warping � Wavelet packet transform � Radial basis
function � Sub-bands � Voice conversion

1 Introduction

The aim of the voice conversion is to modify the charac-

teristics of source speaker utterance so that it impersonates

the target speaker utterance. Voice conversion has many

applications in the areas such as customization of text to

speech, speaker dubbing, health care, karaoke, broadcast-

ing and multimedia applications [1–3]. The voice conver-

sion system needs to identify the features relevant to voice

individuality and modify them in such a way that the

modified speech signal sounds natural and is perceived as if

spoken by a target speaker [4]. There are various single-

scale speech features which are used to represent vocal

tract. They can be classified into three different categories,

namely first category of features that belong to acoustic

phonetic models such as formant frequencies and formant

bandwidth [5]; second category of features derived without

considering the speech models such as mel cepstrum

envelope [4, 6], cepstrum coefficients and mel-frequency

cepstrum coefficients (MFCCs) [7]; and third category of

features which uses a parametric approach including linear

predictive coefficients (LPC) [8], reflection coefficients [9],

log area ratio [8] and line spectral frequencies (LSF) [1, 2,

10–12]. Techniques using LP-related features assume
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stationary characteristics of the speech signal within a

frame and therefore fail to analyze the local speech vari-

ation accurately. Also LPC techniques cannot capture

nostril and unvoiced sounds [13]. The MFCC is one of the

dominating techniques to capture the speaker-specific fea-

tures of the speech signal, due to its sub-band-based pro-

cessing using multi-scale filter bank. However, in the

synthesis stage MFCC loses pitch and phase-related

information [14, 15].

Various speaker-specific models have been found in the

literature, and amongst them, vector quantization (VQ)-

based codebook mapping and Gaussian mixture model

(GMM) are the most primitive approaches for transfor-

mation of vocal tract characteristics [1, 16–19]. In VQ-

based technique, the speakers voice signals are clustered

and the mapping rule for each cluster is formed using

minimum mean square error (MSE). But the main draw-

back of this technique is hard partitioning, which produces

discontinuities in the transition regions, and therefore, it

affects the quality and naturalness of converted speech

signal [19]. Fuzzy vector quantization [6] and a speaker

transformation algorithm using Segmental Codebook

(STASC) [2] are proposed to overcome the above limita-

tions. Dynamic frequency warping (DFW) transformation

technique is used to improve the quality of converted

speech. This DFW technique translates the formants to the

new frequencies without modifying the complete spectral

shape, which results in poor-quality speech signal [9]. In

GMM-based approaches, the quality of converted speech

signal is improved by modeling the joint distributions of

source and target speech features. In this GMM-based

technique, the speakers spectral space is partitioned into

overlapping classes and a continuous probabilistic linear

transformation function is defined from these partitions for

parametric vector representation of envelope [17]. How-

ever, the quality and the naturalness of the converted

speech signal are found to be inadequate due to recon-

struction of speech signal using the large number of

parameters which results in over-smoothing problem [13,

20]. To overcome the reconstruction and over-smoothing

problem of GMM, different approaches such as speech

transformation and representation using adaptive interpo-

lation of weighted spectrum (STRAIGHT) [19], harmonic

noise model (HNM) [16], phase reconstruction and post-

filtering [7] methods are proposed. The over-smoothing

and reconstruction problem is partially improved using

GMM with weighted frequency warping [21]. The novel

speech synthesis technique based on hidden Markov model

(HMM) is also proposed for voice conversion. This system

generates parameter vector sequences. When a text input is

given to a trained HMM [22] set, speech signal recon-

struction can be done. Thus, the voice conversion is done

by adopting HMMs [23] to the target speaker. However,

the quality of the reconstructed speech is limited due to

reconstruction and over-smoothing problems similar to that

of GMM-based voice conversion. Over-fitting problem of

GMM is overcome using partial least squares regression

technique [24].

Apart from these, various artificial neural networks

(ANN) are proposed to capture the acoustical nonlinearities

between source and target speakers [4, 11, 25–28]. The

wavelet transform is extensively used for signal analysis

and synthesis. Initially, sub-band-based approach is pro-

posed for voice transformation [29]. Wavelet-based

approach is used for voice morphing [11] by considering

only the low-frequency contents. In this approach, removal

of high-frequency contents introduces the muffed effect in

synthesized speech signal [30]. An auditory sub-band-

based wavelet neural network architecture is proposed for

voice conversion [31]. This architecture approximates the

human auditory system, which is widely used for speech

classification [31]. However, voice conversion requires

speaker-specific characteristics to be properly fitted for

stimulating transformation model [15]. Most of the speech-

related information is uniformly distributed in fundamental

frequency and its harmonics (i.e., formants). The first three

significant formants are encoded in 200–3 kHz frequency

band [32], whereas speaker-specific characteristics are

distributed non-uniformly in higher-frequency bands,

which are the cause of different articulatory speech organs

[13]. The glottis information is encoded between low-fre-

quency band from 100 to 400 Hz, and the piriform fossa

information is positioned in medium-frequency band

(around 4 kHz). Another speaker-specific constriction is

the consonant factors that exist in higher-frequency region

(around 7 kHz) [13].

In this paper, we have proposed a wavelet packet filter

structure that analyzes the speech signal without consid-

ering any underlying knowledge of the human auditory

system. A logical way to design proposed system is to

derive the speaker-specific characteristics confined in dif-

ferent sub-bands and treat them separately. The salient sub-

band-based feature set is derived to capture the speaker-

specific characteristics. The wavelet packet transform is

combined with the radial basis neural network (RBFNN) to

accomplish the nonlinearity between source and target

salient sub-bands. The contribution of this paper is to: (1)

explore the characteristics of different wavelet filters to

determine the best match for the proposed voice conversion

system, (2) propose salient multi-scale wavelet packet sub-

band-based feature set to modify the acoustic cues of

source speaker into target speaker and (3) design RBF-

based transformation model to capture the nonlinearity

between the source and the target feature sets.

The remainder of this paper is structured as follows: The

next section describes the selection of wavelet packet
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transform. Section 3 describes salient sub-band selection

methodology. The proposed algorithm is explained in

Sect. 4. Section 5 enlightens the design of RBF-based

voice conversion system. Experimentation results and

evaluations are reported in Sect. 6. Conclusions and dis-

cussion are given in Sect. 7.

2 Wavelet packet transform

The main motivation of using multi-scale wavelet packet

transform (WPT) is its ability to isolate the speaker-specific

information from the speech signal to overcome the inef-

ficiency of single-scale features. WPT repetitively divides

the wideband input signal into narrowbands by passing it

through low-pass and high-pass filters. Equal data rate is

maintained in all sub-bands with the use of sampling units

at each decomposition level [31].

WPT decomposes the input signal in the series of basis

functions called as wavelets, which are denoted as Wa;bðtÞ.
The variables a and b are scale and translation parameters

of the corresponding wavelet. The basis functions Wa;bðtÞ
are generated from the mother wavelet WðtÞ by scaling and

translation,

Wa;bðtÞ ¼
1
ffiffiffi

a
p W

t � b

a

� �

ð1Þ

where 1
ffiffi

a
p is energy normalization in different scales.

In the proposed voice conversion algorithm, we have

used WP instead of discrete wavelet transform (DWT) for

sub-band decomposition of input speech signal because

Heisenbergs uncertainty principle results in a logarithmic

frequency resolution. It limits the application of DWT in

noisy speech environment and also degrades the speech

quality. Unlike WT, WPT decomposes input speech signal

not only in low-frequency branches (i.e., approximation

coefficients) but also in high-frequency branches (i.e.,

detailed coefficients) at each level of decomposition.

Therefore, WPT with superior frequency localization is

used to segment input broadband signal into narrowband

signals [33–35].

The factors responsible for the choice of a particular

wavelet packet transform are: symmetry, regularity and

number of vanishing moments [34]. Symmetry deals with

linear-phase finite impulse response (FIR) in the digital

filter design for signal reconstruction. Since the quality of

converted speech signal after reconstruction is an integral

part of the voice conversion system, symmetry becomes

prime requirement for the synthesis stage. Regularity also

seems to be very important in voice conversion as it deals

with smoothness of the transform and has cosmetic influ-

ence of smoothing error during the reconstruction. Increase

in number of vanishing moments represents more support

and insignificant detailed coefficients in higher order. This

provides better representation of the signal using approxi-

mation coefficients. Wavelet basis with above required

characteristics gives us the choice of four wavelet filters,

namely Daubechies, symlet, biorthogonal and coiflet [31,

35, 36].

Different speech samples collected from male and

female are decomposed up to the fifth level using above-

mentioned wavelet families and again re-synthesized. The

best wavelet is selected using normalized mean squared

error (NMSE) criteria [30] between original speech signal

y(i) and reconstructed signal y�ðiÞ with sample length N

and frame index i, which is calculated as,

NMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðyðiÞ � y�ðiÞÞ2
PN

i¼1 yðiÞ
2

s

ð2Þ

We have calculated NMSE for different wavelet, and it

is found that the coiflet5 wavelet produces minimum

NMSE 1.204 for male and biorthogonal 6.8 produces 1.21

for female speaker, and therefore, for rest of the imple-

mentation, coiflet5 and biorthogonal 6.8 have been used.

3 WPT-based salient sub-band feature extraction

Speech signal possesses speech message content and

speaker identity. It is essential to identify and incorporate

speaker-specific information in the design of the voice

conversion system [25]. The speaker-specific characteris-

tics can be isolated from the speech signal by WPT via sub-

band decomposition of speech signal. Due to sub-band

decomposition of speech, information is localized in dif-

ferent frequency bands. In addition to energy measure,

entropy is used to select the salient sub-bands. To obtain

the speaker-specific salient sub-bands, the 100 utterances

of different speakers are taken from the ARCTIC database,

which is sampled at 16 kHz (i.e., 8 kHz bandwidth), and

after preprocessing (framing and windowing), each pre-

processed frame is decomposed using WPT up to at most

the fifth level [34]. Normalized energy and entropy con-

centration of each sub-band is computed at each approxi-

mation and detail level [36, 37]. In general, 90 % of voiced

speech energy is concentrated in the first N/2 levels in N-

level decomposed wavelet transformed sub-bands [38].

The normalized energy of all sub-bands shown in Fig. 1

represents that the lower sub-bands in the range of 0–4 kHz

carry most of the speech phonemic discriminative glottis

and resonant frequencies of the speech signal. But to pre-

serve the naturalness and speaker-specific information such

as piriform fossa, consonant constriction factors and qual-

ity of the speech signal, higher-frequency bands need to be

considered. For the selection of higher-frequency bands,
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entropy criteria are used. An energy criterion alone is

inadequate, as all the high-frequency bands carry low

energies. Discrimination between different iso-energetic

high-frequency sub-bands can be made by using sub-band

entropy calculation shown in Fig. 2. Conferring to Shan-

nons information theory [39], Shannon entropy measures

the predictable value of the information contained in a

signal. Considering a random variable Y with k conclusions

y1; . . .; yk, the Shannon entropy H(Y) is defined as,

HðYÞ ¼ �
X

k

i¼1

pðyiÞ logðpðyiÞÞ ð3Þ

In this equation, pðyiÞ is the probability density function

for ith conclusion. In the same way, considering histogram

of WPT sub-bands for different bin widths [40], the his-

togram approach uses the idea that the differential entropy

can be approximated by producing a histogram of the

frequency bins and then finding the discrete entropy of the

histogram [41, 42], which is itself a maximum-likelihood

estimate of the discretized frequency distribution, where

w is the width of the ith bin.

HðYÞ ¼ �
X

k

i¼1

f ðyiÞ log
f ðyiÞ
wðyiÞ

� �

ð4Þ

The Shannon entropy can be calculated for the extracted

wavelet packet sub-bands, using Eq. (4). This quantity, in

some sense, will evaluate the amount and the rate of

information, produced by a process that is represented as a

discrete information source. Therefore, sub-bands having

higher entropy are selected from high-frequency bands of

6–7 kHz. In lower sub-bands (5.0–5.15), the energy con-

centration is more than 40 %, and these speech segments

Fig. 1 Average energy content

of each sub-band from 100

speech samples

Fig. 2 Average entropy of each

sub-band from 100 speech

samples
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are voiced or combination of voiced and unvoiced [38]. In

the medium-frequency bands, the energy concentration is

less than that of 40 %, and these speech samples are found

as unvoiced part. The other constriction consonant factors

are distributed in higher bands [38]. Extreme sub-bands

(5.28–5.31) are excluded as they are mostly noise impaired.

This reduces the optimal number of sub-bands to 20 (i.e.,

5.0–5.15 and 5.24–5.27 as shown in Fig. 3). Energy dis-

tribution of salient sub-bands shown in Fig. 1 confirms that

99.76 % energy is confined in these salient sub-bands.

Finally, we have designed these salient sub-bands by

wavelet packet decomposition of each frame carried up to

two levels. This partitions the frequency axis into four

bands (0–2, 2–4, 4–6 and 6–8 kHz) each of 2 kHz band-

width. The frequency bands of 0–2 and 2–4 kHz are further

decomposed up to three levels with the bandwidth of

500 Hz. The band in the frequency range of 6–7 kHz is

also further decomposed up to two levels with 500 Hz

bandwidth each as shown in Fig. 3. The detailed procedure

for selection of salient sub-bands is illustrated in Table 1.

The synthesized speech signal is reconstructed from

salient sub-bands, and subjective listening test is performed

to confirm originality and high quality of the signal.

4 Proposed model

The functional block diagram of the proposed voice con-

version algorithm is depicted in Fig. 4. It consists of two

phases, namely (1) training phase and (2) testing phase.

During the training phase, the beginning and ending silence

periods of each phonetically balanced parallel utterance of

source and target speakers are removed using voice activity

detection (VAD) technique [24]. The residual signal is

normalized to have zero mean and unit variance. The

training samples of source and target speaker were seg-

mented into frames of 24 m sec (i.e., 400 samples per

frame) with 50 % overlap to maintain high quality during

reconstruction. Each frame of the source and target frame

is decomposed up to fifth level using WPT.

At fifth-level decomposition, a total of 32 sub-bands are

calculated, out of which only 20 sub-bands are considered

from each source and target speech frame (as discussed in

Sect. 3). This procedure is repeated for all utterances of

source and target directories. Usually, the length of source

and target feature vectors are different so dynamic timeFig. 3 Proposed wavelet filter bank for selection of salient sub-bands

Table 1 Steps to find salient sub-bands

1. Segment source speech signal in frames of 24 msec (i.e., 400 samples/frame) each with 50 % overlapping

2. Decompose each frame up to 5th level in 32 different sub-bands using best match wavelet packet transform

3. Calculate normalized sub-band energy of individual frame of each sub-band [36] as,

Ek ¼ 10 log10

PMk

i¼1
WP

k
xðiÞ½ �2

Mk

� �

ðdBÞ; k ¼ 1; 2; . . .;N (5)

whereWP
k xðiÞ is the wavelet packet transform of signal x atWP

k node, i is the sub-band frequency index, N is the total number of nodes,Mk is

the number of coefficients in the kth sub-band

4. Compute the Shannon entropy [37] of each sub-band as,

Hk ¼ �
P

i8N pi � logðpiÞ (6)

where, pi is the probability that wavelet coefficients ðWp
k Þ can be located within a bin and N is the number of partitions in histogram of the

coefficients space, k is sub-band index

5. Select optimum number of sub-bands based on higher energy, entropy of wavelet coefficients in different sub-bands as shown in Figs. 1, 2

6. Reconstruct the individual frame using selected sub-bands while setting remaining sub-bands coefficients as zero vectors

7. Concatenate reconstructed frames to form a complete speech signal using overlap-add method

8. Compute NMSE and perform listening test to confirm that the selected sub-bands represent original signal efficiently between original and

reconstructed speech
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warping is used to align it [16]. After the alignment, source

and target feature vectors are normalized and used as

training set to develop the RBFN-based mapping function

to capture the nonlinear relationship between source and

target speaker [37]. RBFN is described in the following

section. Several models are explored to decide the best

transformation model for proposed voice conversion sys-

tem. In order to obtain the best transformation model,

several RBF models are explored for proposed voice con-

version system. The testing phase is followed by training

phase.

In testing phase, the parallel utterances of test speaker

are preprocessed and split into an optimum number of sub-

bands. Feature vector of test speaker is obtained with the

procedure similar to that of the training set feature vector.

In order to produce transformed sub-band coefficients, the

test speaker feature vector is projected through the trained

RBFN model. These coefficients are then de-normalized

and combined with 12 zero vector sub-bands to reconstruct

the frames using inverse wavelet transform. Speech signal

reconstruction is accomplished through overlap-add

method to retain its original size. Speech enhancement is

made with post-filtering blocks. Similar process is repeated

for all other test signals. The transformed speech signal

contains the characteristics of the target speaker.

5 Radial basis function for mapping

The RBF neural network is a special case of feed forward

network, which maps input space nonlinearly to hidden

space followed by linear mapping from hidden space to

output space. The network represents a map from M0-di-

mensional input space to N0-dimensional output space

written as, S : RM0 ! RN0 . When a training dataset of input

output pairs [xk, dk], k ¼ 1; 2. . .M0, is presented to the

RBFNN model, the mapping function F is computed as,

FkðxÞ ¼
X

N

j¼1

wjk/ x� dj
�

�

�

�

� 	

ð7Þ

where :k k is a norm usually Euclidian and computes the

distance between applied input x and training data point dj.

Above equation can also be written in matrix form as [26],

Fx ¼ W/ ð8Þ

where /ð x� dj
�

�

�

�Þ, j ¼ 1; 2. . .N, in which N is the set of

arbitrary functions known as radial basis functions. The

commonly considered form of / is Gaussian function

defined as [26],

/ðxÞ ¼ e
x�lk k2

2r2 ð9Þ

RBFNN learning process includes training and gener-

alized phase. The training phase constitutes the optimiza-

tion of basis function parameters using only input dataset

with k-means algorithm in an unsupervised manner. In the

second phase, hidden-output neurons weights are opti-

mized in a least square sense by minimizing squared error

function,

E ¼ 1

2

X

n

X

k

fkðxnÞ � ðdkÞn½ �2 ð10Þ

where ðdkÞn is desired value for kth output unit when input

to the network is xn. The weight vector is determined as,

W ¼/TD ð11Þ

where /: matrix of size (n� j), D: matrix of size (n� k),

/T : transpose of matrix /.

/T/
� 	

W ¼ /TD ð12Þ

W ¼ /T/
� 	�1

/TD ð13Þ

where /T/
� 	�1

/T is pseudo-inverse of matrix /, D is

ðdkÞn. The weight matrix W can be calculated by linear

Fig. 4 Proposed architecture for voice conversion
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inverse matrix technique and used for mapping between the

source and target acoustic feature vector. Effective func-

tioning of the RBFNN needs to select optimized kernel

parameters which include kernel centers and spread factor.

In our work, we have calculated spectral distortion [19] for

different kernel spread factors and hidden neurons. We

have selected the spread factor of 0.01 with lowest spectral

distortion.

6 Experimental results

In order to train the RBF-based mapping functions, the

phonetically balance CMU ARCTIC corpus [43] is used.

For this experimentation, we have used samples of four

speakers, AWB (M1), CLB (F1), SLT (F2) and BDL (M2)

from the database. Using these samples developed the

different speaker combinations of M1–F1, F2–M2, F1–F2

and M1–M2 for voice conversion. The performance of

proposed and baseline techniques is evaluated using dif-

ferent objective and subjective measures.

6.1 Objective evaluation

In this work, various objective measures such as mel cep-

stral distortion (MCD), performance index (P-LSF), for-

mant deviation, formant distortion and spectrogram are

considered.

The MCD is correlated with subjective test results so it

is considered for the evaluation. The MCD between the

converted speech and target speech is calculated as [4, 24],

MCD ¼ 10 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

i¼1

mcctai �mcctri

v

u

u

t

0

@

1

A ð14Þ

where mcctai and mcctri are the ith mel cepstrum coeffi-

cients (MCC) of the target and transformed speech,

respectively. The zeroth term is not considered in MCD

computation as it describes the energy of the frame and it is

usually copied from the source.

The performance of voice conversion system experi-

mentally tests for different number of training samples

obtained from source and target speakers of male and

female, respectively. Figure 6 shows the MCD score for

different trained RBF models for M1–F1 are developed.

Similarly, the transformation models for M1–M2, F1–F2

and F2–M2 for different numbers of parallel utterances

(ranging from 2 to 500) of respective source and target

speakers are developed.

Figure 5, shows the MCD obtained for M1–F1 and F2–

M2, i.e., inter-gender voice conversion is lesser than the M1–

M2 and F1–F2, i.e., intra-gender voice conversion. We also

observe from Fig. 5 that the MCD values of RBF network

decrease with an increase in the number of training samples.

The performance index (PLSF) is calculated for

exploring the requirement of normalized error between the

various speaker combinations. The spectral distortion

between the target and converted samples, DLSFðdðnÞ;
dðnÞÞ, and the inter speaker spectral distortion, DLSFðdðnÞ;
sðnÞÞ, are employed for computing the PLSF measure.

Generally, the spectral distortion between speech signals u

and v, DLSFðu; vÞ, is computed as,

DLSFðu; vÞ ¼
1

N

X

N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

P

X

P

j¼1

LSFi;ju � LSFi;ju
� 	2

v

u

u

t

2

4

3

5 ð15Þ

where N denotes the number of frames, P denotes LSF

order and LSFi;ju is the jth LSF coefficients in the frame i.

The PLSF measure is defined as,

Fig. 5 Performance of RBF

model for different source and

target transforming pairs
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PLSF ¼ 1� DLSFðdðnÞ; d̂ðnÞÞ
DLSFðdðnÞ; sðnÞÞ

" #

ð16Þ

The performance index PLSF ¼ 1 specifies that the

transformed speech signal is indistinguishable to the

desired one, whereas PLSF ¼ 0 identifies that the trans-

formed speech signal is not at all related to the desired one.

The performance index operates on the input–output

parameters of the transformation function, and it directly

describes the performance of the transformation model. In

the computation of this index, four different converted

samples for each speaker combination of M1–F1, F2–M2,

M1–M2 and F1–F2 are considered. Table 2 shows that the

performance of M1–F1 in proposed voice conversion is

more effective than the other conversion combinations.

From Table 2, it is clear that the performance of the pro-

posed salient sub-band algorithm is more effective than the

baseline wavelet-based voice morphing using RBF.

Along with MCD and P-LSF, different objective mea-

sures such as deviation ðDkÞ, root mean square error

ðlRMSEÞ and correlation coefficients ðcx;yÞ are also calcu-

lated for same speaker combinations. Deviation is defined

as the percentage variation in the desired ðxkÞ and predicted
ðykÞ formant frequencies obtained from the speech frames.

It corresponds to the percentage of test frames within a

specified deviation. Deviation ðDkÞ is computed as,

Dk ¼
xk � ykj j

xk
� 100 ð17Þ

The root mean square error is calculated as percentage

of average of desired formant values attained from the

speech segments.

lRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

k
jxk�yk j2

N

q

�x
� 100 ð18Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

k

d2k

r

; dk ¼ ek � l; ek ¼ xk � yk;

l ¼
P

k xk � ykj j
N

ð19Þ

where the error ek is the difference between the actual and

predicted formant values, N is the number of observed

formant values of speech frames and the parameter dk is the

error in the deviation. The correlation coefficient cðx;yÞ is

the parameter which is to be determined from the covari-

ance COVðX; YÞ between the target (x) and the predicted

(y) formant values and the standard deviations rX , rY of the

target and the predicted formant values, respectively. The

parameters cðx;yÞ and COVðX; YÞ are calculated using

Eq. (20),

cx;y ¼
COVðX;YÞ

rXrY
;COVðX; YÞ ¼

P

k ðxk � xÞðyk � yÞj j
N

ð20Þ

The objective measures, namely deviation ðDiÞ, root

mean square error (RMSE) and correlation coefficients

ðcðx;yÞÞ of M1–F1, F2–M2, F1–F2 and M1–M2, are

obtained for state-of-the-art wavelet-based algorithm and

given in Table 3. Similarly, Table 4 shows the measures

obtained for proposed voice conversion algorithm. From

the tables, it can be observed that the lRMSE between the

desired and the predicted acoustic space parameters for

proposed model is less than the baseline model. However,

every time RMSE does not give strong information about

the spectral distortion. Consequently, scatter plots and

spectral distortion are employed additionally as objective

evaluation measures.

For evaluation of both the salient sub-band-based RBF

mapping function and wavelet-based voice morphing, var-

ious samples of intra-gender and inter-gender voice con-

version are considered. For each speech frame, the desired

speakers LSFs are predicted, and from that the corre-

sponding LPCs and formant frequencies are derived. All

these objective measures are tabulated for each of the

speaker combinations for M1–F1, F2–M2, F2–F1 and M1–

M2. First column of Tables 3 and 4 shows the formant

frequencies from f1 to f4. Column 3–9 indicate the per-

centage of speech frames predicting the formant frequencies

within specified deviation, and column 10 and 11 specify the

RMSE and correlation coefficients, respectively (Fig. 6).

The prediction performance of the optimized RBF

models for converting the salient sub-bands and baseline

wavelet-based approach is demonstrated using scatter

plots. For development of these scatter plots, different

utterances are selected randomly from the test samples.

The actual and predicted formants frequencies are derived

Table 2 Comparative

performance indices of different

speaker combinations for

proposed and baseline wavelet-

based approach

Sample 1 Sample 2 Sample 3 Sample 4

Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline

M1–F1 0.7815 0.5072 0.7626 0.4731 0.7706 0.5547 0.7504 0.5118

F2–M2 0.7685 0.4631 0.7922 0.4582 0.7603 0.4764 0.7531 0.4904

M1–M2 0.7249 0.4121 0.7306 0.4408 0.7193 0.4492 0.7403 0.4892

F1–F2 0.7156 0.4024 0.7236 0.4335 0.7375 0.4867 0.7309 0.5480
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from the chosen speech frames jointly and used for the

development of these scatter plots. Figures 7 and 8 show

the formant frequencies for different speaker combinations,

measuring the vocal tract prediction performance for pro-

posed algorithm.

The transformed formant patterns for a specific frame of

the target and transformed speech signal are obtained for

all speaker combinations using proposed and baseline

algorithm. Figure 8 depicts that the pattern of the corre-

sponding transformed signals produced using proposed is

closely following the particular target signal, whereas the

figure also shows that the predicted formant pattern of

baseline approach is closely following the target pattern

only for lower formants.

Table 3 Performance of baseline wavelet-based voice morphing for predicting formant frequencies within a specified percentage of deviation

Transformation model Formant frequencies % Predicted frame within deviation

2 (%) 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 50 (%) lRMSE cx;y

M1–F1 f1 56 76 82 87 88 89 92 4.36 0.74

f2 40 61 77 79 83 85 90 3.63 0.78

f3 22 45 61 66 70 73 89 3.25 0.71

f4 7 13 23 40 52 65 93 3.05 0.67

F2–M2 f1 51 65 71 77 79 82 91 3.92 0.65

f2 44 64 72 77 82 84 92 3.47 0.57

f3 29 48 59 65 70 73 88 3.31 0.22

f4 6 19 39 53 63 74 94 2.91 0.26

F1–F2 f1 53 69 80 84 86 90 91 4.28 0.69

f2 38 60 74 81 84 85 89 3.36 0.74

f3 27 39 58 67 72 73 86 3.51 0.73

f4 9 16 27 40 51 66 82 3.59 0.71

M1–M2 f1 40 55 66 74 78 80 90 3.98 0.67

f2 44 46 62 67 72 74 91 3.17 0.6

f3 27 46 57 63 68 74 82 3.12 0.42

f4 8 20 38 51 73 80 88 3.97 0.36

Table 4 Performance of proposed salient sub-band-based voice conversion for predicting formant frequencies within a specified percentage of

deviation

Transformation model Formant frequencies % Predicted frame within deviation

2 (%) 5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 50 (%) lRMSE cx;y

M1–F1 f1 42 76 86 92 93 94 94 3.26 0.86

f2 24 62 81 86 90 92 93 3.39 0.82

f3 58 80 88 91 92 93 98 2.29 0.77

f4 55 71 82 87 88 91 99 2.34 0.76

F2–M2 f1 30 48 65 73 77 80 87 3.51 0.88

f2 54 69 75 82 86 87 95 3.74 0.68

f3 72 82 85 89 91 94 96 3.05 0.71

f4 51 66 81 86 90 94 100 2.47 0.74

F1–F2 f1 38 73 85 89 95 95 97 4.51 0.58

f2 41 72 79 82 83 86 90 3.74 0.68

f3 79 82 85 89 90 93 95 3.05 0.71

f4 56 68 74 76 79 82 96 2.47 0.74

M1–M2 f1 15 30 50 56 56 60 72 4.51 0.58

f2 18 34 48 53 59 60 67 3.74 0.68

f3 23 47 58 64 68 74 90 3.05 0.71

f4 38 51 61 71 74 86 100 2.47 0.74
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Fig. 6 Desired and predicted

values of the formant

frequencies of M1–F1 for a first,

b second, c third and d fourth

formants
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Fig. 7 Desired and predicted

values of the formant

frequencies of F2–M2 for a first,

b second, c third and d fourth

formants
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Figure 9 shows the spectrograms of the (a) target speech

signal and transformed speech signal of (b) wavelet-based

morphing and (c) salient sub-band-based voice conversion. It

is clear from the figure that the formant structure of the desired

speech signal is almost similar to that of converted speech

signal of the proposed algorithm than the baseline algorithm.

6.2 Subjective evaluation

The basic goal of voice conversion system is to modify the

source speaker speech so that it mimics the target speaker

speech. Therefore, the closeness between the transformed

and desired speech signals is evaluated using different

subjective listening tests. For inter-gender and intra-gender

conversion, different source and target parallel utterances

are extracted from the source and target directories and

different mapping functions were developed for 2–500

samples. For each one, different utterances are recon-

structed from their associated trained functions. The sub-

jective listening tests such as ABX and mean opinion score

(MOS) are used to assess the closeness of speech identity

and quality between synthesized speech and desired

speech, respectively. For these evaluations, we have

developed transformation models from 40 parallel utter-

ances. The synthesized speech and their corresponding

utterances of target directories presented to the 13 student

listeners to judge their comparative performance with

corresponding source and target. The student listeners have

given their opinion in the scale of 1–5. A speaker indi-

viduality test, ABX comprised of A: Source, B: Target and

X: Transformed speech signal is also conducted using the

same set of utterances. In the ABX test, the listeners are

asked to judge which of A or B sounds was closer to X in

terms of speaker individuality. Higher the value of ABX,

the more the nearness of the transformed speech to the

desired utterance. The ABX score 5 of a synthesized

speech indicates the exact target speech, whereas score 1

indicates exact source speech. These ratings represent the

Fig. 8 Comparing spectral envelope for M1–F1 voice conversion

Fig. 9 Spectrogram comparison of M1–F1 voice conversion
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closeness between source and target on a scale of 1 to 5 as

shown in Fig. 10. To assess the speech quality and natu-

ralness of converting a speech signal and transformed

speech signal, MOS (i.e., Preference) is conducted, and

here listeners were asked to judge the speech quality and

naturalness in the rank of 1–5. The MOS score 5 of a

converted speech represents high-quality natural utterance,

whereas score 1 indicates highly distorted speech signal.

The obtained MOS represents the effectiveness of mapping

function for inter-gender and intra-gender conversion. The

same listeners have given their opinion also shown in

Fig. 10. In conclusion, we have compared our subjective

analysis with that of the state-of-the-art algorithm [22] and

inferred that the perceptual results of the proposed algo-

rithm are superior for inter-gender voice conversion.

In inter-gender (male to female or female to male)

conversion, the MOS is more as compared to intra-gender

conversion. This MOS variation is clearly reflected with

respect to their gender, and the difference in the length of

the vocal tract and intonation pattern of inter-gender

speaker is large.

7 Conclusion

In this paper, wavelet packet sub-band-based RBF frame-

work is studied for transforming source speaker acoustics

into target speaker acoustics. Initially, available wavelet

filters above needed constraints are analyzed to select the

suitable mother wavelet. Further, 20 finely tuned sub-bands

are selected to capture voice individuality, naturalness and

quality of speech signals and verified under energy as well

as entropy maximization criteria. The RBF-based neural

network is established to generalize the relationship

between source and target feature vectors. The permutation

of source and target speakers helps in generating various

transformation models. Multiple objective and subjective

measures are employed to justify the improved perfor-

mance of the proposed over the state-of-the-art voice

morphing technique.

The performance of the proposed approach verified the

significance of combining the high-frequency information

with low-frequency information to use it effectively for

voice conversion. Hence, the muffed effect at the output of

the state-of-the-art voice morphing technique can be alle-

viated. The results also reveal that the conversion for

source and target speakers of dissimilar genders (inter-

gender) performs slightly better while maintaining high

speech quality. The optimization of sub-bands in the pro-

posed algorithm reduces the computational complexity and

accelerates the network convergence. System performance

can further be improved by using phonetically aligned or

syllable level aligned database during training phase.
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