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Abstract Optimization of woven fabric parameters for

ultraviolet protection factor (UPF) and comfort properties

has been attempted using hybrid artificial neural network

(ANN)–genetic algorithm (GA) system. ANN was used for

developing the prediction models, and GA was employed

as an optimization tool. Four feasible combinations of

UPF, air permeability and moisture vapor transmission rate

(MVTR) were chosen from the Pareto charts of UPF–air

permeability and UPF–MVTR. Penalty function method

was adopted to form a single objective function by com-

bining the objectives and constraints related to UPF, air

permeability and MVTR. The developed ANN–GA hybrid

system was executed to obtain the solution set of input

parameters for achieving the targeted fabric properties. To

validate the developed ANN–GA-based fabric parameter

optimization system, four fabric samples were woven using

the solution sets of input parameters and functional prop-

erties of these engineered fabrics were evaluated. The

targeted and achieved values of fabric properties of four

validation samples were in reasonably good agreement.

Keywords Artificial neural network � Fitness function �
Genetic algorithm � Optimization � Ultraviolet radiation

1 Introduction

Ozone layer depletion in the atmosphere has caused sig-

nificant rise in the amount of ultraviolet radiation (UVR)

reaching the earth. This in turn has increased the incidence

of skin cancers, specially in countries with high solar

exposure such as Australia and South Africa. Covering the

skin by clothing is the most common and convenient way

of solar UV protection [1–3]. There are various parameters

which influence the UV protection capability of fabrics and

clothing. These parameters include fiber type, yarn struc-

ture, fabric cover factor, fabric areal density, fabric thick-

ness, finishing process, coloration process and presence of

UVR absorbers. Fabric cover indicates the percentage of

fabric area which is actually covered by the constituent

yarns. Increased cover and areal density of fabrics facili-

tates the blocking and absorption of incident UV rays.

UV protection characteristics of a fabric are generally

measured by using a spectrophotometer according to in vitro

method. Ultraviolet protection factor (UPF) is the parameter

that expresses the UV protective capability of a fabric. UPF

value of 20 implies that only 1/20 part or 5 % of the incident

rays can pass through the fabric [4–6]. Along with sufficient

UV protection, clothing should also allow the transmission

of fluids like air and moisture vapor to ensure comfort to the

wearer. However, improved UPF attained by enhancing the

fabric cover causes deterioration in comfort properties and

vice versa. Therefore, clothing should be engineered in such

a manner that desired levels of all these properties (UPF, air

permeability and moisture vapour transmission rate or

MVTR) are achieved simultaneously. Designing a fabric to

meet these multiple functional properties, which are con-

flicting to each other, is a very challenging task. This type of

problems is known as multi-objective optimization where

more than one objective is to be met simultaneously [7, 8].
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Functional properties of woven fabrics are mainly

governed by the basic constructional parameters like blend

proportion of fibers, ends per inch, picks per inch and

linear densities or count (mass per unit length) of warp and

weft yarns. At present, trial and error approach, which

takes the leverage of human expertise and thumb rules, is

generally adopted for producing fabrics to meet the tar-

geted functional properties. As the quality requirements of

fabrics are becoming stringent in a customer-centric mar-

ket, it has become essential to have a robust scientific

approach for fabric parameter optimization. A fabric

parameter optimization should essentially possess two sub-

systems, namely a predictive model and an optimization

tool. Traditional techniques like regression model and

linear or goal programming can be used for attempting

simple fabric optimization problems. For handling com-

plex fabric optimization problems, advanced soft comput-

ing techniques can be invoked. Among the soft computing

techniques, artificial neural network (ANN) has been used

extensively for modeling complicated systems. Besides

genetic algorithm (GA) has been successfully employed as

an efficient searching algorithm in multi-objective opti-

mization problems [9]. The main advantage of GA is that it

works with a number of solution points (population) in

each iteration instead of point-by-point searching. There-

fore, GA has a greater probability to converge at global

solution [7, 8, 10].

In recent years, textile materials have received signifi-

cant attention as engineered materials. Attempts have been

made to develop computational models for thermal resis-

tance, moisture transmission and impact resistance of

woven fabrics [11–13] using finite element modeling.

ANN–GA has been used as a computational platform in

various domains of materials engineering including pro-

cesses of powder metallurgy of pure iron [14], injection

molding of plastic [15] and laser welding of stainless steel

[16]. Zhou et al. [17] applied ANN and GA for material

selection for sustainable products. Lin [18] utilized GA to

search four woven fabric parameters for obtaining desired

fabric weight at minimum cost. Karthikeyan and Sztandera

[19] used hybrid ANN–GA algorithm-based system to

identify a suitable set of mechanical properties of fabric for

a required tactile comfort score.

In the present research, fabric parameter optimization

for ultraviolet protection and comfort properties (air per-

meability and MVTR) has been attempted using hybrid

ANN–GA system. ANN has been used to predict the fabric

functional properties (UPF, air permeability and MVTR)

using fiber blend proportion in yarn, yarn count (warp and

weft) and thread density (ends per inch and picks per inch)

as inputs. These models have been used to define the fitness

function of GA. Finally, GA has been used to search the

optimum combination of fabric construction parameters for

attaining targeted functional properties.

2 Woven fabric and fabric cover

Woven fabric is an interlaced structure made up of two sets

yarns, namely warp (singular: end) and weft (singular:

pick). Figure 1 depicts the structure of a plain woven fabric

which is produced by regularly recurring interlacement

between longitudinal warp (gray) and transverse weft

(black) yarns. The basic construction parameters of a

woven fabric are blend proportion of fibers in warp and

weft yarns, warp count (Ne), weft count (Ne), ends per inch

and picks per inch. Ne, an indicator of yarn diameter, is the

unit of yarn count, and it represents the number of hanks

(840 yards) which can be produced from 1 pound of yarn.

Higher value of yarn count implies finer yarn and vice

versa as indicated by Eq. 1.

Yarn diameter in:ð Þ ’ 1

28
ffiffiffiffiffiffi

Ne
p ð1Þ

The transmission of ultraviolet rays, air and moisture vapor

through the fabrics largely depends on fabric cover. Fig-

ure 2 depicts the repeat unit of a plain woven fabric and the

pore between the warp and weft yarns. Fractional fabric

cover is expressed by Eq. 2.

Fractional fabric cover

¼ Area of oneweave repeat� area of the porewithin that repeat

Area of oneweave repeat

ð2Þ

Fractional warp cover is defined as the ratio of area covered

by the warp yarns to the total area of the fabric. This can be

expressed by d1
p1
and similarly fractional weft cover can be

expressed by d2
p2
, where d1 is diameter of warp yarn, d2 is

diameter of weft yarn, p1 is end spacing and p2 is pick

Fig. 1 A plain woven fabric
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spacing. End spacing (p1) and pick spacing (p2) imply the

distances between two consecutive warp yarns and weft

yarns, respectively, and they are the reciprocals of end

density (ends per inch) and pick density (picks per inch),

respectively. The fractional fabric cover is the ratio of area

covered by the warp and weft yarns together to the total

area of the fabric and it can be expressed by Eq. 3.

Fractional cover of fabric ¼ d1p1 þ d2p2 � d1d2

p1p2

¼ d1

p2
þ d2

p2
� d1d2

p1p2
ð3Þ

3 Materials and methods

3.1 Sample preparation

Among the textile fibers, polyester is known to be the best

UV-absorbing material due to its large conjugate aromatic

polymer chain. However, 100 % polyester fabric is gen-

erally uncomfortable due to its lower moisture absorption

capacity. On the contrary, cotton fibers possess very good

moisture absorption capacity. However, cotton is the

poorest UV-absorbing textile fiber. Hence, the polyester–

cotton blended fabrics can yield the best characteristics in

terms of UV protection and comfort. Therefore, apart from

100 % cotton and 100 % polyester, two polyester–cotton

blends (50:50 and 65:35) were used in this study.

The yarn counts were 20, 30 and 40 Ne for each of the

three blends (100 % cotton, 100 % polyester and 50:50

polyester–cotton). Polyester–cotton yarn (65:35) of 30 Ne

was also used for preparing validation sample. At first, 13

plain woven square fabrics having same proportion of

polyester, yarn count and thread density in warp and weft

were woven following Box and Behnken design of

experiment plan for three factor and three level. To

increase the diversity in the sample pool, weft-related

parameters, namely proportion of polyester in weft, weft

count and pick density, were then varied randomly for each

of the aforesaid 13 fabrics to produce another 29 non-

square fabrics making the sample pool of 42 plain woven

fabrics. All the fabrics were woven on SL 8900S CCI Tech

single rigid rapier loom. The fabric parameters and their

levels are given in Table 1. The range of thread density

was chosen selectively as 50–70 in.-1 keeping in mind the

weaveability and fabric cover of the fabric samples. All

gray fabric samples were processed through preparatory

wet treatments, i.e., enzymatic desizing, alkaline scouring

and peroxide bleaching.

3.2 Testing

The actual end and pick densities were measured in the

fabric samples after wet treatment using counting glass

(pick counter) according to ASTM D3775-08. The UPF of

fabric samples was measured in UV transmittance analyzer

(Labsphere 2000F) according to the AATCC 183:2004

standard. Equation 4 was used for calculating UPF.

UPF ¼
P400

290 EðkÞSðkÞDðkÞ
P400

290 EðkÞSðkÞTðkÞDðkÞ
ð4Þ

where EðkÞ is relative erythemal spectral effectiveness,

SðkÞ is solar spectral irradiance (W/m2/nm), Dk is

Fig. 2 A repeat unit of plain woven fabrics

Table 1 Parameters and their levels used for fabric sample

preparation

Parameters Levels Details

Proportion of polyester (%) 3 0, 50 and 100

Yarn count (Ne) 3 20, 30 and 40

Thread density on loom (in.-1) 3 50, 60 and 70
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measured wavelength interval (nm) and TðkÞ is average

spectral transmittance of the specimen.

The air permeability of the fabric samples was measured

in TEXTEST air permeability tester (FX3300). Air per-

meability was calculated from the rate of air flow through

known area of fabric at a specified air pressure differential

according to standard BS 5636. Moisture vapor transmis-

sion rate of the fabric samples was measured in WVTR

testing instrument (Labthink, W3/060). Water method as

specified in ASTM E96/E96M-13 was followed during

MVTR testing. MVTR was calculated from the rate of loss

of mass of water at a constant humidity differential and

temperature through known area of fabric. The temperature

and humidity of the controlled chamber were kept at

32.2 �C and 50 %, respectively.

4 Results and discussion

4.1 Development of ANN models for UPF, air

permeability and MVTR

Overall proportion of polyester fiber in fabric was calcu-

lated for all the samples using yarn counts and actual thread

densities. Overall proportion of polyester fiber in fabric,

warp count, weft count, end density and pick density were

the five input parameters to the ANN models. The output of

ANN models were UPF, air permeability and MVTR. Total

42 datasets were randomly divided into 36 and six datasets

for training and testing, respectively. Separate ANN mod-

els were developed for UPF, air permeability and MVTR.

Only one hidden layer with four nodes was used for all the

models. Tan-sigmoid transfer function was used for both

hidden and output layers. Levenberg–Marquardt algorithm

was used for training of ANN models. The learning rate

was kept at 0.3, and mean-squared error (MSE) was set at

0.01 as stopping criteria. Table 2 presents the mean values

and ranges of input parameters and functional properties of

42 fabric samples. The ranges of UPF, air permeability and

MVTR are 4–202, 2–199 and 2214–2550, respectively,

implying that the dataset is covering a huge range of

functional properties of woven fabrics.

While selecting ANN models, emphasis was given on

trend analysis results along with the commonly used per-

formance criteria, namely coefficient of determination (R2)

and mean absolute percentage error (MAPE). Trend anal-

ysis was performed by increasing the value of a particular

input parameter, in steps, while keeping all other parame-

ters constant at their mean value and observing the effect

on the output variable. Only those models which produced

logical trend analysis results were considered further.

Finally, three ANN models were chosen after extensive

training and trend analysis. The models were named as

ANNUPF, ANNAP and ANNMVTR for UPF, air permeability

and MVTR, respectively. The prediction performances of

the developed models are summarized in Table 3. The

coefficient of determination (R2) values are very high

(around 0.99) in all the cases except for testing dataset of

MVTR. The MAPE values are hovering between 10 and

13 % which is at the higher side. However, these models

were accepted for fabric parameter optimization endeavor

as the trend analysis results were plausible implying that

the models have been able to capture the roles of various

input parameters on the outputs.

The overall trend analysis results of ANNUPF model is

shown in Fig. 3. It is noticed that UPF increases with

increasing end and pick densities when all other input

parameters are kept constant at respective mean values.

The UPF decreases with finer warp and weft yarns, i.e.,

higher Ne values. UPF increases with increasing proportion

of polyester in the fabric. All these trends are in agreement

with the findings of previous researches, and thus, it can be

inferred that the ANNUPF model has correctly learned the

input–output relationships. The trend analysis results of

other two models, i.e., ANNAP and ANNMVTR, also

demonstrated logical relationship between the input and

output parameters.

4.2 Selection of feasible combinations of target

properties

Pareto chart provides various combinations of achievable

objectives in a multi-objective problem. In this study,

Pareto charts were developed for selecting the achievable

Table 2 Input and output fabric parameters for ANN models

Input parameters Output parameters

Proportion of polyester

in fabric (%)

Warp

count

(Ne)

Weft

count

(Ne)

End density in

fabric (in.-1)

Pick density in

fabric (in.-1)

UPF Air permeability

(cm3/cm2/s)

MVTR

(g/m2 24 h)

Minimum 0 20 20 56 57 4 2 2214

Maximum 100 40 40 88 84 202 199 2550

Mean 52 29 31 71 69 36 57 2417
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combinations of UPF, air permeability and MVTR for

validation samples by considering two functional proper-

ties at a time. Figure 4 depicts the Pareto chart for UPF and

air permeability when warp and weft counts were kept

constant at 30 Ne and proportion of polyester was kept

constant at 50 %. Three lines in the figure represent the

achievable levels of UPF and air permeability at three pick

density levels, namely 60, 70 and 80 in.-1. It is noticed that

air permeability decreases as UPF increases at all pick

density levels. Two points (A, B) were chosen from this

Pareto chart for UPF and air permeability for 30 Ne warp

and weft counts and 50 % proportion of polyester (Fig. 4).

These points are (15, 48) and (18, 53) where the first and

second values represent UPF and air permeability,

respectively. The associated MVTR values were obtained

from the UPF–MVTR Pareto chart for 30 Ne warp and weft

counts and 50 % proportion of polyester as shown in

Fig. 5. The points are C (15, 2374) and D (18, 2449) where

the first and second values represent UPF and MVTR,

respectively. Then two sets of achievable combinations of

UPF, air permeability and MVTR were obtained by

amalgamating the achievable binary combinations of

functional properties. These combinations are (15, 48,

2374) and (18, 53, 2449) where the first, second and third

values represent UPF, air permeability and MVTR,

respectively. Similarly, from the Pareto charts of UPF–air

permeability and UPF–MVTR for 20 Ne and 30 Ne yarn

counts and 65 % proportion of polyester, another two sets

of achievable combinations of functional properties were

chosen. Total four combinations of functional properties,

as given in Table 4, were selected for validation samples.

4.3 Optimization by ANN–GA hybrid approach

The schematic representation of hybrid ANN–GA is shown

in Fig. 6. Genetic algorithm works with population of

potential solutions for producing a better solution of the

given problem in iterative steps. First, it encodes a potential

solution into a chromosome-like data structure. Initial

population is formed by generating a large number of such

Table 3 Prediction accuracy of developed ANN models

Model Performance

parameter

Dataset

Training Testing

ANNUPF R2 0.997 0.988

MAPE (%) 11.40 10.35

ANNAP R2 0.993 0.989

MAPE (%) 12.90 10.77

ANNMVTR R2 0.988 0.436

MAPE (%) 0.24 1.84
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Fig. 3 Trend analyses of ANNUPF model
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chromosomes. Then, genetic operators are applied to direct

the initial population toward the optimal solution in suc-

cessive iterations. Popular genetic operators are reproduc-

tion/selection, crossover, mutation, etc.

In this study, GA was amalgamated with ANN for

searching the best combination of fabric construction

parameters for achieving the targeted fabric functional

properties. The process is comprised of several steps as

follows.

Encoding As GA works on a genetic space, the search

space was converted to a genetic space. The five input

variables were overall proportion of polyester in fabric (%),

warp count (Ne), weft count (Ne), end density (in.-1) and

pick density (in.-1). The search space for the five input

parameters were [0, 100], [20, 40], [20, 40], [56, 88] and

[57, 84], respectively. For each input variable, 14 bits were

used and thus the total length of the chromosome was 70

bits. Initial population consisting of such chromosomes

was generated randomly. The population size was taken as

1000. Figure 7 shows an example of binary coding. Here, a

solution point comprising five input parameters is con-

verted into a 30-bit chromosome using binary coding.

Fitness evaluation Each individual chromosome or

solution point was then evaluated using the objective

function known as fitness function. In this study, one

objective, i.e., UPF, and two constraints, i.e., air perme-

ability and MVTR, were considered. Therefore, the fol-

lowing optimization problem was formulated.

Minimize f ðxÞ ¼ UPFT � UPFP

UPFT

� �2

ð5Þ

Subject to the constraints

gðxÞ ¼ APT � APP ¼ 0 ð6Þ
�50� hðxÞ ¼ MVTRT �MVTRP � 50 ð7Þ

where UPFT, APT and MVTRT are the targeted values and

UPFP, APP and MVTRP are the predicted values by ANN

models for UPF, air permeability and MVTR, respectively.

Penalty function method was adopted for converting the

above-mentioned constrained optimization problem to an

unconstrained optimization problem having single objec-

tive. If a constraint is violated, the objective function is

penalized by an amount based on the extent of constraint

violation. As there are multiple constraints, normalization

was done to improve the performance of penalty method as

shown below.

Pðx;KÞ ¼ f ðxÞ þ X K;
gðxÞ
APT

;
hðxÞ

MVTRT

� �

ð8Þ

where K is a set of penalty parameters which controls the

extent of penalty and X is a bracket penalty operator. The

value of K was set to 10,000 by trial and error.

The bracket penalty operator (X) was as follows:

X ¼ K
hgðxÞi
APT

� �2

;
hhðxÞi
MVTRT

� �2
 !

ð9Þ

where the bracket operator hg(x)i = g(x) when g(x) is

positive or negative and zero otherwise; bracket operator

hh(x)i = h(x) when h(x) B -50 or h(x) C 50 and zero

otherwise.

The bracket penalty operator assigned a positive value

and added it with the f(x) of Eq. 8 when a constraint was

violated. As indicated in Eqs. 6 and 7, some penalty was

added when the targeted and predicted air permeability was

different, i.e., g(x) was positive or negative. For MVTR,

penalty was given if the deviation between targeted and

predicted value exceeded ±50.

GA is usually suitable for maximization problems as it

follows the Darwinian theory of survival of the fittest.

Therefore, the minimization problem was transformed into

maximization problem using the following transformation

of fitness function.

Table 4 Specification of validation samples

Sample no. UPF Air permeability

(cm3/cm2/s)

MVTR

(g/m2 24 h)

V1 15 48 2374

V2 18 53 2449

V3 15 68 2376

V4 30 23 2358

Fig. 6 Schematic representation of hybrid ANN–GA

2572 Neural Comput & Applic (2016) 27:2567–2576

123



FðxÞ ¼ 1

1þ Pðx;KÞ ð10Þ

Each of the 1000 individual chromosomes or solution

points of the initial population was used as inputs to the

developed ANN models for obtaining the predicted UPF,

air permeability and MVTR. After that, the fitness of the

whole population was calculated using Eq. 10.

Reproduction or selection Reproduction or selection

operator is the first operator applied on population. Chro-

mosomes are selected from the population according to

their fitness value to form a mating pool. In this study,

Roulette-wheel selection procedure was adopted. It is a

proportionate reproduction operator where a chromosome

is selected from the population with a probability propor-

tional to its fitness value Fi. The probability of selection of

ith chromosome, i.e., pi is expressed as follows:

pi ¼
Fi

Pn
i¼1 Fi

ð11Þ

where n is the population size.

Crossover and mutation After forming the mating pool,

crossover operator was applied to create better chromo-

somes or solution points. Crossover is a recombination

operator, and it works in three steps. First, a random pair of

chromosomes is selected from the mating pool, then a

cross-site is selected randomly along with the chromosome

length, and finally, their position values are swapped fol-

lowing the cross-site. Here, uniform crossover with a

probability of 0.8 was used. It means that a chromosome of

the mating pool had 80 % chance for undergoing crossover

operation. Mutation operator is generally applied to intro-

duce new genetic attributes in the population to create

diversity. It operates by flipping a bit, i.e., changing 0 to 1

or vice versa in a chromosome. However, there is a danger

to lose good solutions due to excessive mutation. There-

fore, mutation probability was kept at a very low level

(0.005). Thus, new population was generated by modifying

the old population using different GA operators.

Termination criteria The chromosomes of newly gener-

ated population were used as inputs to the developed ANN

models for predicting UPF, air permeability and MVTR.

The fitness of the chromosomes of new population was

then evaluated using the fitness function (Eq. 10). The

convergence of this search method was tested by the ratio

(r) of average fitness value of chromosomes to the maxi-

mum fitness value of a chromosome in a generation. The

maximum number of generation (800) or minimum r value

(0.95) was the termination criteria for this system.

MATLAB� version 7.1 was used to write the ANN–GA

codes and execute the algorithm.

4.4 Optimization results of hybrid ANN–GA system

The ANN–GA system was run to obtain the solution set of

input parameters for achieving the targeted fabric properties

of first validation sample V1. The entire search domain was

chosen for searching except the first input parameter, i.e.,

overall proportion of polyester in fabric. As the target fabric

properties were chosen from the Pareto chart of 50 %

polyester blend, the search domain was narrowed down by

specifying the proportion of polyester as 50 %. The program

was operated for ten runs, and the results are presented par-

tially in Table 5. It is noticed that the UPF and air perme-

ability are achieved with very high accuracy. However,

MVTR shows some deviations from the target value of

2374 g/m2 24 h. This can be ascribed to the higher allow-

ance of ±50 g/m2 24 h that was given for MVTR through

bracket operator to lower down its impact in the searching

procedure. Although the r value did not reach stopping cri-

terion level (0.95), the fitness value with the optimized input

parameters was above 0.99 except in one case. Searching was

stopped when the maximum number of generation (800) was

reached. It is pertinent to mention here that the optimization

system did not converge to the same point of the search space

in different runs though the output fabric parameters were

more or less the same. The optimization system resulted

different sets of input parameters, in different runs, except for

Fig. 7 Binary coding of a

chromosome
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the proportion of polyester which was fixed at 50 %. It is

observed from the Table 5 that warp and weft counts varied

within a broad range of 22–36 Ne and 23–37 Ne, respec-

tively. Similarly, the obtained end and pick densities varied

within the range of 58–78 and 63–76 in.-1, respectively.

Thus, the hybrid ANN–GA system was accurate in achieving

targeted fabric functional properties but lacked repeatability

in terms of input parameter combinations. It was therefore

important to investigate the reason behind such behavior of

ANN–GA system.

All the three fabric functional parameters, namely UPF,

air permeability and MVTR, are largely influenced by the

fabric cover. Besides, proportion of polyester is also an

important parameter for UPF and MVTR. Therefore, log-

ically fabric cover should be more or less the same, in

different runs, to attain the targeted UPF, air permeability

and MVTR for a constant proportion of polyester in fabric.

In the optimization results, it is observed that for 50 %

proportion of polyester, ten different combinations of yarn

counts and thread densities can actually meet the targeted

fabric parameters. Warp, weft and fabric fractional covers

were calculated from respective yarn counts and thread

densities for all ten runs partially shown in Table 5. It is

observed that warp and weft fractional covers are varying,

albeit within a small range, following a pattern of mutual

compensation. When warp fractional cover decreases, weft

fractional cover increases and vice versa. It is paramount to

note here that the fabric fractional cover is almost same

(0.70) in all the runs. It bolsters that the optimization

system is working rationally although it produces different

sets of input parameters in different runs for obtaining the

same set of fabric properties. From the results and ongoing

discussions, it seems that the optimization system cannot

distinguish between the two principle directions of fabrics.

It is expected as the fabric properties considered in this

research are not direction specific.

Even if all the solutions of different runs are assumed to

be correct, it would be very difficult to validate these

results by manufacturing fabrics using the different solu-

tion sets as yarns are available in market only in some

standard counts. To make the situation pragmatic, search-

ing of end and pick densities were attempted considering

that the availability of yarns (count and proportion of

polyester) in the warehouse is known. Thus, the search

domain was narrowed down further by specifying the

counts of warp and weft yarns along with the proportion of

polyester in fabric. This approach was followed to find out

the set of remaining input parameters (end and pick den-

sities) for four validation samples. The solution set of input

parameters and targeted fabric properties are shown in

Table 6.

4.5 Validation of fabric parameter optimization

system

To validate the developed ANN–GA-based fabric param-

eter optimization system, four fabric samples were woven

using the optimized sets of input parameters as shown in

Table 6. Then, the samples were tested for actual end

density, pick density, UPF, air permeability and MVTR

according to the respective standards. The results are pre-

sented in Table 7. It is noted that actually obtained end and

pick densities in fabrics are quite close to the respective

optimized values. The average deviations for these two

parameters are only 2.2 and 3.1 %, respectively. It is also

observed that the achieved values of fabric functional

properties are in good agreement with the respective tar-

geted values. For UPF, maximum, minimum and mean

deviations are 19.3 % (for V1), 2 % (for V3) and 8.3 %,

respectively. The deviation between targeted and achieved

air permeability ranges from 10.4 to 20 % with a mean of

14.9 %. The percent variations are very low (0.8–4.8 %)

for MVTR.

5 Conclusions

A fabric parameter optimization system based on hybrid

ANN–GA has been developed to meet the targeted fabric

functional properties like UPF, air permeability and

Table 5 Results for validation

sample V1 in different runs
Type of parameters Name of parameter Optimization run number

1 2 3 4 5

Input parameters Proportion of polyester in fabric (%) 50 50 50 50 50

Warp count (Ne) 22 22 24 30 36

Weft count (Ne) 28 35 23 32 37

End density (in.-1) 58 60 61 69 78

Pick density (in.-1) 70 75 63 74 76

Output parameters UPF 15 15 15 15 15

Air permeability (cm3/cm2/s) 48 48 48 48 48

MVTR (g/m2 24 h) 2359 2385 2402 2359 2361
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MVTR. ANN was used as the modeling platform and to

define the fitness function for GA. Pareto charts were

developed using the ANN models to find out the feasible

combinations of fabric functional properties. GA was used

to search the optimum combination of fabric construction

parameters to meet the targeted fabric functional

properties. When GA was used to find four fabric param-

eters (warp count, weft count, end density and pick den-

sity), the optimization system yielded accurate fabric

functional properties, but the combinations of input

parameters were not repetitive. However, the combinations

of input parameters elicited by the optimization system

Table 6 Optimized input and

output parameters for all

validation samples

Type of parameter Name of parameter Sample no.

V1 V2 V3 V4

Input parameters Proportion of polyester in fabric (%) 50a 50a 50a 65a

Warp count (Ne) 20a 20a 20a 30a

Weft count (Ne) 40a 30a 30a 30a

End density (in.-1) 61 60 57 77

Pick density (in.-1) 75 63 58 79

Output parameters UPF

Targeted 15 18 15 30

Optimized 15 18.1 14.9 30

Air permeability (cm3/cm2/s)

Targeted 48 52.5 68 23

Optimized 48 52.5 67.7 23.1

MVTR (g/m2 24 h)

Targeted 2374 2449 2376 2358

Optimized 2419 2389 2463 2416

a Fixed parameter

Table 7 Optimized and achieved values of input and output parameters

Sample no. Values Input parameters Output parameters

End

density (in.-1)

Pick

density (in.-1)

UPF Air permeability

(cm3/cm2/s)

MVTR

(g/m2 24 h)

V1 Targeted – – 15 48 2374

Optimized 61 75 15 48 2419

Achieved 60 73 17.9 43 2351

Error (%) 1.6 2.7 19.3 10.4 1.0

V2 Targeted – – 18 53 2449

Optimized 60 63 18.1 52.5 2389

Achieved 58 62 18.9 42.4 2332

Error (%) 3.3 1.6 5.0 20.0 4.8

V3 Targeted – – 15 68 2376

Optimized 57 58 14.9 67.7 2463

Achieved 57 54 15.3 58.9 2356

Error (%) 0.0 6.9 2.0 13.4 0.8

V4 Targeted – – 30 23 2358

Optimized 77 79 30 23.1 2416

Achieved 80 78 32.1 19.4 2319

Error (%) 3.9 1.3 7.0 15.7 1.7

Mean error (%) 2.2 3.1 8.3 14.9 2.1
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were found to be rational as they resulted in the same fabric

cover which is the governing parameter for UPF, air per-

meability and MVTR. To tackle the problem of validation,

optimization was also done considering known yarn

parameters (warp count, weft count and proportion of

polyester fibre). In this case, end density and pick density

combinations were searched by GA to attain the targeted

fabric functional properties. Four validation samples were

woven using the solutions sets of end and pick densities.

The targeted and achieved functional properties of the

validation samples were found to be in reasonably good

agreement.
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