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Abstract Shrinkage is an important parameter affecting

crack development of mortars and concrete. With the

occurrence of shrinkage cracks, the concrete starts to be

exposed to the corrosion which significantly decreases the

durability of concrete or mortars. In this study, the results

of free shrinkage tests determining the length changes and

ring test determination of the restrained drying shrinkage

cracks are used for predicting the crack widths of granu-

lated blast furnace slag fine aggregate mortars using

adaptive-network-based fuzzy inference system (ANFIS).

Subsequently, replacement ratios, drying time and free

shrinkage length changes are used as inputs and crack

width as output in order to predict the shrinkage cracking

of these mortar types. The experimental test and the pre-

diction results from the ANFIS model are compared with

each other. It is clear that ANFIS can be employed directly

in the prediction or discussion of the drying shrinkage

cracks.

Keywords ANFIS � Composite � Modeling � Mortar �
Prediction � Restrained shrinkage cracking

1 Introduction

1.1 Drying shrinkage and cracking

Cracks occur on concrete surfaces due to the restrained

shrinkage that leads to increment in permeability and

porosity in cement-based products like mortar and concrete

because of tensile stresses. Also, mechanical and durability

properties of them decrease with the ingress of external

materials through these cracks. The shrinkage is affected

by the joint properties of cement paste, aggregate and

admixtures. Cement paste properties affecting the shrink-

age are porosity, age and degree of hydration. Besides, w/c

ratio, curing conditions (temperature, humidity, etc.),

cement, aggregate and water contents are the concrete

properties affecting shrinkage in addition to the admixture

type. Furthermore, among the aggregate properties are the

stiffness, volume to surface ratio and size. When poz-

zolanic mineral admixture properties are considered, the

pozzolanic reactivity, fineness and water absorption ratio

are the common ones affecting the shrinkage and shrinkage

cracking. On the other hand, the chemical admixtures

affect shrinkage by water or porosity reduction and

strength increment capabilities. Additionally, environ-

mental conditions such as relative humidity, drying rate

and time have also considerable significant effects on

shrinkage cracking [1, 2].

Shrinkage generally increases with higher strength and

lower porosity with elapsed time due to the use of poz-

zolanic mineral admixtures in concrete. They may also

cause reduction in shrinkage related to the other properties

of mineral admixture. For instance, the usage of fly ash

provided from Afşin-Elbistan Thermal Power Plant, Tur-

key, decreases shrinkage of concrete [3]. However, it can

be said that this occurs for only replacements below 30 %
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ratio during early ages. Fly ash (FA) increases drying

shrinkage cracking at later ages due to the higher water

absorption [4–6].

The mineral admixtures such as fly ash decrease early-

age shrinkage and cracking by reducing the cement paste

content [7]. It is reported that FA as fine aggregate

decreases shrinkage cracking regarding the properties like

water absorption and w/c ratios [8]. It is also clear that the

cement paste content and w/c ratio are the most important

parameters affecting shrinkage because of their effects on

hydration, water content, compressive strength and elastic

properties [9, 10].

Besides, rubber aggregate effect on shrinkage cracking

can be given as an example in order to underline the sig-

nificant effect of elastic properties on shrinkage. Rubber

aggregate delays and decreases shrinkage cracking due to

the decrease in the concrete elasticity moduli [11]. In

addition to these properties, it is also seen that drying

media and rate are other important parameters [12]. When

the shrinkage of concrete is restrained during drying pro-

cess, internal tensile stresses occur. If these tensile stresses

exceed the tensile strength of mortar or concrete, drying

shrinkage crack formation can be seen [4]. The best solu-

tion to reduce drying shrinkage cracking is believed to be

the higher tensile strength and lower modulus of elasticity

[4]. Some techniques such as the use of optical or scanning

electron microscopes (SEM) are developed to measure and

investigate these crack formations [13]. Moreover, the

cheapest method to form and measure these cracks can be

said as ‘‘the ring test’’ [14].

The industrial by-products or the solid wastes such as

FA, bottom ash, slag, silica fume and waste glass can also

be used as mineral admixture or as fine aggregate in con-

crete in order to improve some properties of concrete or

mortars, while other properties can be affected negatively

[15–21]. For instance, GBFS usage as fine aggregate can

make it possible to produce durable concrete due to its

mechanical, physical and chemical properties even if this

reduces the compressive or flexural strengths due to its

physical properties [15–17]. The reason for the decrease in

mechanical properties due to the GBFS usage is deter-

mined as the porosity and permeability increase by evalu-

ating the SEM images of such concrete types incorporating

GBFS fine aggregates at different amounts [17, 21].

However, conducted tests have also presented that chemi-

cal and other physical properties can improve durability

properties [15, 17, 21]. Furthermore, GBFS may also

decrease free and restrained shrinkage due to the porous

microstructure occurrences.

Some effects such as curing aggregate type, incorpora-

tion of shrinkage-reducing admixture on cracking of alkali-

activated slag concretes are also investigated [22]. Blast

furnace slag aggregate has caused to the lower drying

shrinkage, higher tensile strength and lower modulus of

elasticity in alkali-activated slag concretes and, thus,

reduced drying shrinkage cracking [22]. Among all these

studies, it is reported that the shrinkage cracking depends

on shrinkage potential and rate, tensile creep, tensile

strength and the degree of restraint [23, 24]. Besides, the

shrinkage-reducing admixtures significantly decrease dry-

ing shrinkage cracking [23, 24]. Additionally, it is observed

that the increase in the size of fine aggregate decreases the

long-term drying shrinkage of mortars [25]. Furthermore,

the specimen size and shape have also significant effects on

drying shrinkage of concrete [26]. In other words, the test

specimen type is very important for determining the drying

shrinkage or the drying shrinkage cracking. The use of

fibers also decreases the drying shrinkage crack widths of

mortars produced with recycled aggregates even if the

recycled aggregates increase the drying shrinkage of mor-

tars [27]. The increase in fiber content increases the strain

capacity and decreases the drying shrinkage cracking

potential [28]. However, the type of the fiber can decrease

the drying shrinkage cracking [29]. On the other hand, the

fiber content may not resist higher shrinkage-induced ten-

sile stresses in lightweight aggregate concrete [30]. There

are also some studies conducted about the shrinkage

cracking of high-strength concrete [31]. High-strength

concrete is more sensitive to the drying shrinkage cracking

[32]. In addition to these statements, the simple solution to

reduce drying shrinkage can be said as long curing periods

[32]. Finally, high-performance or high-strength concrete

types are evaluated in terms of drying shrinkage and it is

reported that the drying shrinkage of high-performance

lightweight concrete can change based on the curing period

[33, 34]. However, the studies about drying shrinkage and

restrained drying shrinkage cracking of lightweight

aggregate concretes or mortars are rather limited than the

normal ones.

1.2 Shrinkage modeling

In one of the previous studies about predicting the

shrinkage behavior of concrete, shrinkage strains are esti-

mated by using some statistical methods such as CEB-FIP

1990, EHE, ACI 209R, B3 and GL200 (empirical shrink-

age prediction methods) for both self-consolidating con-

crete and conventional concrete [35]. In this way, ACI

209R-92 model includes the effects of the moist curing,

steam curing, ambient relative humidity, member size,

concrete composition, slump, fine aggregate, cement and

air contents on ultimate drying shrinkage [35]. CEB-FIP

1990 predicts the drying shrinkage strain using compres-

sive strength, cement type, member cross-sectional area,

relative humidity and concrete age [35]. EHE model is

based on the CEB-FIP 1990 model, and it does not include
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cement type [35]. B3 and GL2000 models are also similar

to CEB-FIP 1990 model, and they predict the drying

shrinkage strain using similar parameters with some addi-

tional or different coefficients and parameters [35]. In the

conclusions of this study, it is reported that all types of

empirical estimation methods are effective for both self-

consolidating concrete and conventional concrete [35]. On

the other hand, ACI 209R model is the best model for

estimating drying shrinkage strain in terms of statistical

analysis [35]. In another study, a nonlinear diffusion

equation is used to obtain a statistical model applicable for

all kinds of geometry and concrete under variable ambient

conditions by the prediction of the concrete beam structure

shrinkage strains in terms of moisture content and the

weight loss [36]. Collins and Sanjayan [37] have developed

a numerical model for alkali-activated slag concrete beams

subjected to restrained shrinkage, which is a stress-based

model including shrinkage, elastic modulus, creep, tensile

strength and time.

The long-term ultimate shrinkage strain can also be

developed by using ACI shrinkage prediction models and

parameters that can be obtained from short-term shrinkage

strain tests [38]. Besides, shrinkage stresses of mortar

specimens are determined using rubber models to predict

the shrinkage cracking in concrete building walls indicat-

ing the restraint type [39]. AS 1481, AS 3600, Bazant,

CEB90 and NAASRA shrinkage prediction methods are

also comparable with each other and ACI 209 by using data

obtained from 46 Australian concretes with over 1500

points using the method of residual plotting [40], which are

based on empirical and statistical methods. Besides, some

other models are available to predict the shrinkage strains

of different types of concretes. These concrete types have

different types of geometries, compositions or ambient

conditions, etc. In other words, these previous models are

using different parameters as input and output. Addition-

ally, the statistical or other modern methods are used for

constructing such shrinkage strain predicting models. For

instance, a drying shrinkage strain prediction model is

developed with respect to constant relative humidity and

temperature conditions for various periods of curing time

[41]. A creep and drying shrinkage prediction model con-

sidering compressive strength and modulus of elasticity is

also developed [42]. Besides, coefficients of ACI 209 R92

model indicating creep, shrinkage and modulus of elasticity

are also modified for high-performance concretes to predict

the drying shrinkage strain [43]. However, it is reported

that two common models as ACI and CEB-FIP are avail-

able for a wide range of different concrete mixtures but not

for cement pastes, mortars or any fiber-reinforced materials

[44]. These models can also be modified for cementitious

composites using modulus of elasticity of concrete at the

initial load, age of concrete after mixing, age concrete at

loading, ultimate specific creep in predicting creep strains

or using coefficients related to shrinkage and the age of

concrete at the beginning of shrinkage and the age of

concrete in predicting the drying shrinkage strain [44].

All of these models attempt to predict or estimate the

creep or drying shrinkage strains using different properties

such as mechanical, elastic, curing properties and exposure

periods and times. The most common properties used for

developing drying shrinkage strain prediction models can

be said as moisture content, relative humidity, modulus of

elasticity, the age of the specimen, the shape and the size of

the specimen, compressive strength, restraint conditions,

curing conditions, exposure time, etc. [35–44]. There are

limited numbers of studies investigating the development

of models predicting or estimating the drying shrinkage

cracking. Most of them focus on the cracking of concrete

members by predicting the crack widths of these members

[45, 46]. Only one of the available studies in the literature

was about the drying shrinkage cracks and the ring speci-

mens [47]. The theoretical model in this study depends on

the nonlinear fracture mechanics related to fracture energy

rather than the tensile strength. This model includes the

fracture resistance curve, strain energy, maximum allow-

able tensile strain and the prediction of the age for trans-

verse cracking of the ring [47].

1.3 The aim and scope of this study

In this study, ANFIS is used in order to predict the drying

shrinkage crack widths of mortars containing nonground

GBFS as fine aggregate. ANFIS is a common modern

scientific prediction method. It has the capability to reflect

the effects of linguistic parameters like fuzzy logic (FL)

and the learning capacity of neural networks. ANFIS has

many application areas including the prediction of some

concrete properties [48–52]. ANFIS is one of the modern

scientific methods which became common because of its

combined properties of artificial neural networks (ANN)

and fuzzy logic. It has the ability of employing linguistic

parameters like fuzzy logic, and it has the property of

learning like artificial neural networks. Statistical methods

require enough amount of numerical input for model to

represent all parameters. However, ANN and fuzzy logic

do not require too many data or input. Besides, ANN can

learn and weight the parameters in order to simulate the

effects of the parameters on output. Thus, every new data

(experimental or observation data) make the model to

represent all actual effects and their weights on output.

Therefore, each of the data makes model prediction more

precise. On the other hand, fuzzy logic can represent the

linguistic parameters which cannot be expressed by num-

bers as data. Therefore, some linguistic data from experi-

ence can also be reflected to the model. This cannot be seen
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in statistical methods. Finally, ANFIS has these two abil-

ities in order to obtain a more precise model. Besides, this

study is a significant example for ANFIS model usage in

predicting the restrained drying shrinkage crack widths of

GBFS mortars related to the ring test. The replacement

ratios of GBFS as fine aggregate in mortars (RR), the

drying time of ring specimens (DT), the free shrinkage

length changes of GBFS mortars (FS) are used as inputs,

and the crack widths of GBFS mortars (CW) exposed to

ring test are used as output. Besides, models indicated in

the previous literature are empirical and statistical meth-

ods. There are not any neuro-fuzzy inference models pre-

dicting the drying shrinkage or the shrinkage cracking

given in the literature even if there are some studies

developing prediction models for other properties of con-

crete by using neural networks and fuzzy logic models.

Thus, this study provides an innovative application of

ANFIS method on developing a prediction model for

drying shrinkage crack widths of GBFS fine aggregate

mortars using replacement ratio, drying period and length

changes.

2 ANFIS: adaptive-network-based fuzzy inference
system

Before constructing the model, the properties of ANFIS

should generally be discussed. First of all, ANFIS is cap-

able for approximating any real continuous function on a

compact set to any degree of accuracy [48, 49]. In other

words, there are almost no restraints on the node functions

of an adaptive network except piecewise differentiability.

The only limitation of network configuration is of feed-

forward type. Thus, the adaptive network applications are

commonly used in various areas. The proposed architecture

is referred to as ANFIS, standing for adaptive-network-

based fuzzy inference system [50]. When the data are the

measurable system variables with an internal system

parameter, a functional mapping may be constructed by

ANFIS that approximates the process of estimation of the

internal system parameter. ANFIS is a soft computing

technique which incorporates the concept of fuzzy logic

into the neural networks. ANFIS can simulate and analyze

the mapping relation between the input and output data

through a hybrid learning to determine the optimal distri-

bution of membership function [49]. It is mainly based on

the fuzzy ‘‘if–then’’ rules from the Takagi and Sugeno

fuzzy model [48]. It involves a premise part and a conse-

quent part. The typical architecture of ANFIS can be seen

in Fig. 1. It has five layers in this inference system, and

each layer involves several nodes, called as the node

function [49].

2.1 ANFIS architecture

The common use of ANFIS type can be said as Takagi and

Sugeno’s type [51, 52]. For this type of fuzzy inference

system (FIS), as mentioned above, there are five layers and

nodes in each layer. These layers are discussed below. First

of all, if there are two inputs x and y and one output z. Two

fuzzy if–then rules can be given as follows [50].

Rule 1: If x is A1 and y is B1, then f1 = plx ? q1y ? rl.

Rule 2: If x is A2 and y is B2, then f2 = p2x ? q2y ? r2.

In rules 1 and 2, x and y are the inputs, Ai and Bi are the

fuzzy sets, fi are the outputs within the fuzzy region

specified by the fuzzy rule. pi, qi and ri are the design

parameters that are determined during the training process.

The input variables x and y affecting the output variable of

the model f have different values, f also has different val-

ues, and thus, the design parameters of p, q and r are also

have different values. For instance, x varies from A1 to A2

and y varies from B1 to B2 and the output f also varies from

f1 to f2; then, the p1, q1 and r1 become p2, q2 and r2. In this

case, the model adapts itself and determines the design

parameters for each input variable. In other words, the

model weights the effects of the factors (variables) and

calculates the design parameters pi, qi and ri related to the

effect level of inputs x and y. This means that the model

learns the effects of all input variables and determines the

design parameters related to the contributions of inputs on

the output. Therefore, the effect of an input on output can

be weighted and the actual effect can be reflected to the

output. Finally, it can be said that after training process, the

more effective input variable or the effect percent of each

input variable can be seen from the values of design

parameters pi, qi and ri.

The node functions in the same layer are of the same

function family as described below:

Layer 1 Every node i in this layer is a square node with a

node function.

Fig. 1 The architecture of ANFIS [48, 49]
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Q1
i ¼ lAi

ðxÞ ð1Þ

where x is the input to node i and A is the linguistic label

(‘‘small’’, ‘‘large’’, etc.) associated with this node function.

x is usually be chosen to be bell-shaped with maximum

membership degree (MD) equal to 1 and minimum equal to

0, such as

lAi
ðxÞ ¼ 1

1þ x�ci
ai

� �h ibi or lAi
¼ exp � x� ci

ai

� �2
( )

ð2Þ

where {ai, b, ci} is the parameter set. As the parameter

values change, the bell-shaped functions vary accordingly,

thus exhibiting various forms of membership functions

(MFs) on linguistic label Ai. In fact, any continuous and

piecewise differentiable functions, such as commonly used

trapezoidal- or triangular-shaped MFs, are also qualified

candidates for node functions in this layer. Parameters in

this layer are referred to as premise parameters [51].

Layer 2 Every node in this layer is a circle node labeled

Tz which multiplies the incoming signals and sends the

product out. For instance, each node output represents the

firing strength of a rule.

wi ¼ lAi
ðxÞ � lBi

ðyÞ; i ¼ 1; 2: ð3Þ

Layer 3 Every node in this layer is a circle node labeled

N. The ith node calculates the ratio of the ith rule’s firing

strength to the sum of all rules firing strengths:

wi ¼
wi

w1 þ w2

; i ¼ 1; 2: ð4Þ

For convenience, outputs of this layer will be called nor-

malized firing strengths.

Layer 4 Every node i in this layer is a square node with a

node function:

Q4
i ¼ wifi ¼ wiðpixþ qiyþ riÞ ð5Þ

where Wi is the output of layer 3 and {pi, qi, ri} is the

parameter set.

Layer 5 The single node in this layer is a circle node

labeled C that computes the overall output as the summa-

tion of all incoming signals, i.e.,

Q5
1 ¼ overall output ¼

X
wifi ¼

P
wifiP
wi

ð6Þ

Thus, an adaptive network, which is functionally

equivalent to a type-3 FIS, has been constructed. For type-1

fuzzy inference systems, the extension is quite straight-

forward. For type-2 fuzzy inference systems, if the centroid

defuzzification operator with a discrete version which

calculates the approximate centroid of area is replaced,

then type-3 ANFIS can still be constructed accordingly.

However, it will be more complicated than its type-3 and

type-1 versions and thus not worth the efforts to do so [50].

The learning mechanisms should not be applied to the

determination of MFs since they convey linguistic and

subjective description of ill-defined concepts. This is a

case-by-case situation, and the decision should be left to

the users. In principle, if the size of available input–output

data set is large enough, then the fine-tuning of the MFs is

applicable since the human-determined MFs are subject to

the differences from person to person and from time to

time; therefore, they are rarely optimal in terms of repro-

ducing desired outputs. However, if the data set is too

small, then it probably does not contain enough informa-

tion of the system under consideration. In this situation, the

human-based MFs represent important knowledge obtained

through human experts’ experiences and it might not be

reflected in the data set; therefore, the MFs should be kept

fixed throughout the learning process [50].

Interestingly enough, if the MFs are fixed and only the

consequent part is adjusted, the ANFIS can be viewed as a

functional-link network where the ‘‘enhanced representa-

tion’’ of the input variables is achieved by the MFs [50].

2.2 Fuzzy inference systems (FIS) with simplified

fuzzy if–then rules

For type-1 reasoning, the MFs on the consequence part are

restricted to monotonic functions which are not compatible

with linguistic terms such as ‘‘medium’’ having bell-shaped

MF. For type-2 reasoning, the defuzzification process is

time-consuming and systematic fine-tuning of the param-

eters is not easy. For type-3 reasoning, it is just hard to

assign any appropriate linguistic terms to the consequence

part which is a nonfuzzy function of the input variables. To

cope with these disadvantages, simplified fuzzy if–then

rules of the following form are introduced:

If x is big and y is small, then z is d.

z is described by a crisp value (or equivalently, a singular

MF). This class of simplified fuzzy if–then rules can

employ all three types of reasoning mechanisms. More

specifically, the consequent part of this simplified fuzzy if–

then rule is represented by a step function (centered at

z = d) in type 1, a singular MF (at z = d) in type 2 and a

constant output function in type 3, respectively. Thus, the

three reasoning mechanisms are unified under these sim-

plified fuzzy if–then rules [50].

2.3 The basic of Takagi–Sugeno fuzzy logic

Takagi–Sugeno fuzzy logic or Sugeno fuzzy logic has first

been introduced in 1985 [43–45]. It is the modification of
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Mamdani model. Fuzzifying the inputs and applying the

fuzzy operation are exactly the same to Mamdani model.

The different place between them is the output MF.

Sugeno-type output MFs are either linear functions or

constants.

When the output functions are constant, it can be called

as zero-order Sugeno fuzzy model. For example, a zero-

order Sugeno fuzzy logic can be defined as:

If x is A and y is B, then z = k.

where A and B are fuzzy set defined for the MFs for x and

y. k is a constant crisp value defined in the consequent.

Therefore, the output of each rule is like a spike. The

operator of implication and aggregation methods is simply

multiplication and addition. A first-order Sugeno fuzzy

logic model has the rules like that:

If x is A and y is B, then z = px ? qy ? r.

where A and B are fuzzy sets in the antecedent, while p,

q and r are all the constants. The location is defined by the

input data. This makes the system efficiently and com-

pactly respond the change of input. Higher-order models

are possible, but they become more complex and just have

little more advantage [50–52].

3 ANFIS method application

In this study, the restrained shrinkage crack widths of

nonground GBFS fine aggregate mortars are attempted to

be predicted by using ANFIS method. The required data

are obtained from an experimental study conducted by

Eskişehir Osmangazi University Materials of Construction

Division. The related experimental procedure is only given,

and the model construction is explained according to the

study objective. In this manner, the experimental free

shrinkage test and ring test results are given as the com-

parison of the predicted and the experimental results.

In the related experimental study, GBFS is used in

nonground form as fine aggregate and CEM II/B-M 32.5-

type cement as hydraulic binder. CEN reference natural

sand (CEN standard sand) corresponding TS EN 196-1 [53]

and super-plasticizer as chemical admixture are the other

mixing materials in mortar production. Eskişehir tap water

is used as mixing water, and mortar specimens are pro-

duced for shrinkage cracking observations and experi-

mental measurements. A reference mixture is designed

using only CEN reference sand. The other specimens are

produced by replacing sand with GBFS by weight at the

ratios of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 %.

Length changes due to free shrinkage and width changes of

restrained shrinkage cracks are determined by conducting

required tests on these specimens.

Produced mortar specimens for free shrinkage test are

kept under 20 �C temperatures and 90 % relative humidity

during 24 h. After then, the cast was demolded and the

length changes are measured, while the specimens are kept

under 23 ± 2 �C temperature and 50 ± 4 % relative

humidity during 60 days according to ASTM C 157 [54].

Ring-type specimens are prepared for restrained shrinkage

cracking test, and kept under same conditions like free

shrinkage specimens as 23 ± 2 �C temperature and

50 ± 5 % relative humidity during 60 days. The reason of

exposing free or shrinkage specimens to these drying

conditions is to obtain the maximum shrinkage effect

related to the previous knowledge, and that is why ASTM

C 157 [54] suggests these conditions. These drying con-

ditions are provided by using the drying conditions in the

room checked by using an electronic device capable for

measuring temperature and humidity four times before the

evening with the time interval of 3 h during the free

shrinkage and ring tests. The upper surface of the specimen

is sealed with silicon material to avoid exposure of the

drying effect of the conditions to this upper surface. Thus,

the circular surface could only be exposed to drying or

curing conditions. Henceforth, the crack formation and

development are observed during 60 days, and crack

widths are measured everyday by using optical crack

microscope on the ring test specimens. The dimensions of

the ring mold for determining restrained shrinkage crack-

ing are presented in Fig. 2. Ring test setup is presented in

Fig. 3.

In the construction of ANFIS model, RR of GBFS, DT

of ring specimens and the experimental FS results of

specimens are considered as input and the shrinkage CW is

used as output to train and test the model, and hence,

totally 456 data are obtained. The experimental results

leading no cracks are not used in the models. The RR, DT

and FS inputs are composed of only the data having crack

formation in order to improve the precision of the model.

Among all the data, only 238 of them are used for training

the model and 120 of them are reserved for testing. The

testing data are approximately 33 %. The reason is that

ANFIS model suggests 33 % of the data to be used as

testing data [50]. The training data are given in Table 1,

and the testing data are presented in Table 2. Three inputs

and one output are used to construct the ANFIS model.

Besides, Takagi–Sugeno-type ANFIS model and grid par-

tition method are used to generate FIS. In the next process,

hybrid method and ten epochs are applied. However, two

epochs were enough to train the model. Five constant

Gaussian MFs are chosen for inputs during the training

process. The reason for these choices is to obtain the best

solution by using them. Some of the methods such as sub-

clustering and grid partition and some types of MFs such as

Gaussian, sigmoid, triangular and trapezoidal are tried, and

2528 Neural Comput & Applic (2016) 27:2523–2536

123



the best choice is the model including the Gaussian MF and

the grid partition method with the parameters chosen as

mentioned above. In other words, different models with

different parameters are tried and this model was chosen

because of the best performance obtained compared with

the other models. The performance comparison of the

models constructed to obtain the best performance is rep-

resented in Table 3. For some models in which sub-clus-

tering method used, better root-mean-square error (RMSE)

and the absolute fraction of variance (R2) are obtained.

However, the MFs of other models are not available for use

because of the irregular distribution of FS MF. The MFs of

the chosen model are preferable in the point of the view of

the fuzzy philosophy. The chosen ANFIS model with five

constant Gaussian MFs and grid partition method is coded

as grid1. The schematic demonstration of the ANFIS model

coded as grid1 is shown in Fig. 4. Totally, 125 rules are

obtained and the structure of the model is presented in

Fig. 5. The RR as input1 and the DT as input2 have regular

MFs as Gaussian behavior. On the other hand, the FS as

input 3 has irregular MF distribution. This may be due to

the nature of mortars incorporating GBFS fine aggregate

having more granular physical structure and coarser gra-

dation than the reference sand.

4 Results and discussion

Figure 6 presents the experimental and prediction results

after training the model, and Fig. 7 shows the comparison

between these results after testing. It is seen that the pre-

diction and experimental results for the data are rather

close to each other. On the other hand, the differences

between these results can be relatively higher for some of

the data in both training and testing phases. Besides, the

prediction result can have negative values for one or two

data. However, these data are limited for both processes,

especially in the training process due to the mechanism of

ANFIS modeling. The numbers of predicted and experi-

mental results have relatively higher differences in testing

than the training phase. Additionally, the maximum dif-

ference between the prediction and experimental results is

0.0565 mm and the maximum difference for testing is

about 0.0849 mm. These differences for a few data can be

unacceptable and may occur because of the irregular

experimental free shrinkage length distribution, which is

obtained due to the porous structure with increase in GBFS

Fig. 2 Dimensions (mm) of the

ring test setup

Fig. 3 The ring test setup for restrained shrinkage cracking
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Table 1 Training data

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

0 19 0.002095 0.110 10 21 0.002705 0.173 20 21 0.002752 0.271

0 21 0.002182 0.630 10 22 0.002733 0.520 20 22 0.002795 0.465

0 22 0.002295 0.990 10 24 0.002789 0.941 20 24 0.002950 0.766

0 24 0.002361 1.197 10 25 0.002835 0.987 20 25 0.003150 0.862

0 25 0.002408 1.210 10 27 0.002860 1.004 20 27 0.003172 0.908

0 27 0.002446 1.221 10 28 0.002884 1.008 20 28 0.003171 0.913

0 28 0.002533 1.227 10 30 0.002944 1.026 20 30 0.003185 0.921

0 30 0.002551 1.248 10 31 0.002954 1.030 20 31 0.003254 0.934

0 31 0.002600 1.252 10 33 0.002961 1.038 20 33 0.003459 0.940

0 33 0.002628 1.262 10 34 0.002968 1.041 20 34 0.003880 0.945

0 34 0.002691 1.263 10 36 0.003021 1.047 20 36 0.003754 0.949

0 36 0.002660 1.269 10 37 0.003053 1.049 20 37 0.003654 0.953

0 37 0.002649 1.270 10 39 0.003056 1.056 20 39 0.003701 0.957

0 39 0.002698 1.282 10 40 0.003095 1.063 20 40 0.003715 0.961

0 40 0.002733 1.287 10 42 0.003130 1.063 20 42 0.003796 0.966

0 42 0.002754 1.289 10 43 0.003126 1.065 20 43 0.003769 0.968

0 43 0.002754 1.290 10 45 0.003154 1.066 20 45 0.003775 0.970

0 45 0.002779 1.292 10 46 0.003179 1.068 20 46 0.00378 0.970

0 46 0.002811 1.292 10 48 0.003196 1.069 20 48 0.003775 0.972

0 48 0.002842 1.294 10 49 0.003239 1.069 20 49 0.003752 0.973

0 49 0.002842 1.294 10 51 0.003249 1.071 20 51 0.003793 0.974

0 51 0.002881 1.298 10 52 0.003295 1.073 20 52 0.003765 0.974

0 52 0.002860 1.299 10 54 0.003435 1.074 20 54 0.003789 0.977

0 54 0.002898 1.300 10 55 0.003418 1.074 20 55 0.003798 0.977

0 55 0.002881 1.300 10 57 0.003544 1.074 20 57 0.003752 0.978

0 57 0.002905 1.300 10 58 0.003579 1.074 20 58 0.003742 0.978

0 58 0.002863 1.300 10 60 0.003502 1.074 20 60 0.003798 0.978

0 60 0.002926 1.300 10 21 0.002705 0.173

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

30 24 0.001589 0.342 40 25 0.001809 0.044 50 30 0.000911 0.083

30 25 0.001601 0.401 40 27 0.001869 0.462 50 31 0.000919 0.250

30 27 0.001615 0.635 40 28 0.001894 0.485 50 33 0.000921 0.471

30 28 0.001618 0.660 40 30 0.001983 0.500 50 34 0.000935 0.474

30 30 0.001652 0.671 40 31 0.002053 0.502 50 36 0.000941 0.482

30 31 0.001682 0.674 40 33 0.002235 0.501 50 37 0.000943 0.484

30 33 0.001792 0.686 40 34 0.002321 0.501 50 39 0.000964 0.493

30 34 0.001865 0.689 40 36 0.002445 0.501 50 40 0.000936 0.495

30 36 0.001924 0.695 40 37 0.002432 0.501 50 42 0.000985 0.499

30 37 0.001952 0.697 40 39 0.002436 0.501 50 43 0.000999 0.500

30 39 0.002026 0.700 40 40 0.002456 0.501 50 45 0.001000 0.502

30 40 0.002030 0.702 40 42 0.002465 0.501 50 46 0.001002 0.503

30 42 0.002038 0.706 40 43 0.002402 0.501 50 48 0.001022 0.505

30 43 0.002042 0.711 40 45 0.002439 0.501 50 49 0.001020 0.508

30 45 0.002050 0.711 40 46 0.002456 0.501 50 51 0.001017 0.511

30 46 0.002062 0.712 40 48 0.002482 0.501 50 52 0.001015 0.511

30 48 0.002083 0.713 40 49 0.002467 0.501 50 54 0.001025 0.512

30 49 0.002098 0.714 40 51 0.002485 0.501 50 55 0.001025 0.512

30 51 0.002234 0.715 40 52 0.002498 0.501 50 57 0.001025 0.513
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Table 1 continued

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

30 52 0.002258 0.715 40 54 0.002501 0.501 50 58 0.001025 0.513

30 54 0.002288 0.716 40 55 0.002488 0.501 50 60 0.001029 0.513

30 55 0.002292 0.717 40 57 0.002496 0.501 50 30 0.000911 0.083

30 57 0.002302 0.718 40 58 0.002513 0.501

30 58 0.002315 0.719 40 60 0.002475 0.501

30 60 0.002302 0.719

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

60 33 0.001953 0.035 70 34 0.002482 0.012 80 34 0.002458 0.008

60 34 0.001982 0.185 70 36 0.002492 0.067 80 36 0.002467 0.045

60 36 0.002119 0.335 70 37 0.002496 0.166 80 37 0.002471 0.111

60 37 0.002139 0.352 70 39 0.002504 0.201 80 39 0.002479 0.134

60 39 0.002253 0.358 70 40 0.002503 0.203 80 40 0.002478 0.136

60 40 0.002260 0.359 70 42 0.002504 0.205 80 42 0.002479 0.137

60 42 0.002264 0.366 70 43 0.002504 0.206 80 43 0.002479 0.137

60 43 0.002264 0.367 70 45 0.002505 0.210 80 45 0.002480 0.140

60 45 0.002285 0.370 70 46 0.002506 0.210 80 46 0.002481 0.140

60 46 0.002352 0.371 70 48 0.002506 0.212 80 48 0.002481 0.141

60 48 0.002432 0.372 70 49 0.002506 0.212 80 49 0.002481 0.141

60 49 0.002446 0.373 70 51 0.002508 0.213 80 51 0.002483 0.142

60 51 0.002437 0.375 70 52 0.002509 0.213 80 52 0.002484 0.142

60 52 0.002468 0.377 70 54 0.002512 0.215 80 54 0.002487 0.144

60 54 0.002489 0.379 70 55 0.002515 0.216 80 55 0.002490 0.144

60 55 0.002490 0.379 70 57 0.002519 0.217 80 57 0.002493 0.144

60 57 0.002503 0.380 70 58 0.002519 0.217 80 58 0.002494 0.144

60 58 0.002512 0.380 70 60 0.002520 0.217 80 60 0.002496 0.145

60 60 0.002526 0.380

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

90 39 0.002726 0.009 100 40 0.002808 0.003

90 40 0.002726 0.030 100 42 0.002808 0.019

90 42 0.002726 0.084 100 43 0.002808 0.029

90 43 0.002727 0.089 100 45 0.002810 0.056

90 45 0.002728 0.090 100 46 0.002811 0.057

90 46 0.002729 0.090 100 48 0.002811 0.057

90 48 0.002729 0.092 100 49 0.002811 0.058

90 49 0.002729 0.092 100 51 0.002814 0.059

90 51 0.002732 0.093 100 52 0.002815 0.059

90 52 0.002733 0.093 100 54 0.002818 0.059

90 54 0.002736 0.094 100 55 0.002821 0.059

90 55 0.002739 0.094 100 57 0.002825 0.060

90 57 0.002743 0.094 100 58 0.002825 0.060

90 58 0.002743 0.095 100 60 0.002828 0.060

90 60 0.002746 0.095
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Table 2 Testing data

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

0 20 0.002140 0.210 10 20 0.002653 0.091 20 23 0.002765 0.545

0 23 0.002340 1.140 10 23 0.002796 0.817 20 26 0.003160 0.898

0 26 0.002411 1.217 10 26 0.002909 0.998 20 29 0.003180 0.917

0 29 0.002554 1.243 10 29 0.002912 1.012 20 32 0.003421 0.937

0 32 0.002568 1.258 10 32 0.002961 1.033 20 35 0.003877 0.948

0 35 0.002663 1.267 10 35 0.003004 1.043 20 38 0.003685 0.955

0 38 0.002719 1.275 10 38 0.003049 1.051 20 41 0.003734 0.968

0 41 0.002730 1.288 10 41 0.003112 1.062 20 44 0.003770 0.969

0 44 0.002796 1.291 10 44 0.003126 1.066 20 47 0.003780 0.972

0 47 0.002832 1.293 10 47 0.003189 1.068 20 50 0.003812 0.973

0 50 0.002860 1.295 10 50 0.003246 1.070 20 53 0.003772 0.976

0 53 0.002860 1.299 10 53 0.003330 1.074 20 56 0.003774 0.978

0 56 0.002888 1.300 10 56 0.003530 1.074 20 59 0.003798 0.978

0 59 0.002916 1.300 10 59 0.003558 1.074

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

30 23 0.001532 0.199 40 26 0.001865 0.401 50 29 0.000910 0.044

30 26 0.001545 0.563 40 29 0.001901 0.49 50 32 0.000919 0.392

30 29 0.001628 0.668 40 32 0.002147 0.504 50 35 0.000938 0.480

30 32 0.001752 0.677 40 35 0.002335 0.501 50 38 0.000949 0.486

30 35 0.001932 0.691 40 38 0.002440 0.501 50 41 0.000976 0.496

30 38 0.002025 0.698 40 41 0.002456 0.501 50 44 0.001002 0.501

30 41 0.002035 0.703 40 44 0.002426 0.501 50 47 0.001025 0.503

30 44 0.002047 0.710 40 47 0.002465 0.501 50 50 0.001020 0.510

30 47 0.002072 0.713 40 50 0.002473 0.501 50 53 0.001022 0.511

30 50 0.002115 0.714 40 53 0.002500 0.501 50 56 0.001025 0.512

30 53 0.002256 0.716 40 56 0.002496 0.501 50 59 0.001028 0.513

30 56 0.002282 0.718 40 59 0.002500 0.501

30 59 0.002300 0.719

RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm) RR (%) DT (day) FSH (mstr.) CW (mm)

60 32 0.001899 0.021 70 35 0.002482 0.020 80 35 0.002458 0.013

60 35 0.002014 0.291 70 38 0.002501 0.192 80 38 0.002476 0.128

60 38 0.002145 0.356 70 41 0.002504 0.204 80 41 0.002479 0.136

60 41 0.002265 0.361 70 44 0.002504 0.209 80 44 0.002479 0.139

60 44 0.002290 0.368 70 47 0.002506 0.211 80 47 0.002481 0.141

60 47 0.002437 0.371 70 50 0.002508 0.213 80 50 0.002483 0.142

60 50 0.002443 0.373 70 53 0.002510 0.214 80 53 0.002485 0.143

60 53 0.002485 0.378 70 56 0.002516 0.216 80 56 0.002491 0.144

60 56 0.002501 0.379 70 59 0.002520 0.217 80 59 0.002495 0.145

60 59 0.002519 0.380

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

90 38 0.002724 0.005 100 41 0.002808 0.006

90 41 0.002727 0.073 100 44 0.002809 0.054

90 44 0.002727 0.090 100 47 0.002811 0.057

90 47 0.002729 0.091 100 50 0.002813 0.058

90 50 0.002731 0.093 100 53 0.002815 0.059
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replacement. The porosity of the mortars increases with the

increase in GBFS aggregate content. The reason of this

statement is the coarser gradation of GBFS than the one of

CEN reference natural sand. The gradations of GBFS and

reference sand are given in Table 4.

Root-mean-square error (RMSE), the absolute fraction

of variance (R2) and mean absolute percentage error

(MAPE) are used to evaluate the performance of the model

as their extensions with their comparisons are given in

Table 5. Similar conclusions and explanations as above can

be given for this case also. It can be pointed out that the

model parameters are chosen after trying different param-

eters such as sub-clustering, other kinds of MFs, different

numbers of MFs and iterations. The performance values are

checked, and it is decided that the best solutions and pre-

dictions can be obtained by using grid partition method,

with five Gaussian MFs and hybrid method. However, due

to the irregular distribution of input FS, such RMSE, R2

and MAPE values are obtained by using Eqs. 7, 8 and 9.

On the other hand, it should still be indicated that the

prediction results are acceptable and close to the experi-

mental crack width results obtained from ring test.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi�ŷiÞ
2

vuut ð7Þ

R2 ¼ n
P

tioi �
P

ti
P

oið Þ2

n
P

t2i �
P

tið Þ2
� �

n
P

o2i �
P

oið Þ2
� � ð8Þ

MAPE ¼ 1

n

Pn
i¼1 ti � oij jPn

i¼1 ti
� 100

� �
ð9Þ

Finally, it can be said that the predicted and experimental

results are close to each other for most of the testing data

and ANFIS can be employed to predict the drying shrinkage

crack widths without attempting ring test (heavy molds and

long time as at least 60 days) by determining only the free

shrinkage length changes. Furthermore, the prediction

results give an opinion about the cracking performance of

such mortars and ANFIS could be adapted for predicting the

crack widths of different types of concretes and mortars.

Besides, the model depends on RR of GBFS, DT of speci-

men and FS of mortar rather than mixture properties such as

aggregate, water and cement contents, w/c ratio and

admixture type. which may differ from mortar to mortar or

concrete to concrete. This means that the model proposed

can be generalized for all kinds of mortars. However, new

crack width prediction models should be developed for

concrete considering properties wisely that may be used as

input data. On the other hand, it is possible to construct

generalized ANFIS models to predict shrinkage cracking of

Table 2 continued

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

RR

(%)

DT

(day)

FSH

(mstr.)

CW

(mm)

90 53 0.002733 0.093 100 56 0.002823 0.060

90 56 0.002740 0.094 100 59 0.002826 0.060

90 59 0.002744 0.095

Table 3 The comparison of performances of the trial models

Model Method Membership

function

Function

type

Range of

influence

Squash

factor

Accept

ratio

Reject

ratio

RMSE

(test)

R2 (test)

Grid1 Grid partition Gaussian1 Constant – – – – 0.050131 0.984891

Grid2 Grid partition Gaussian1 Linear – – – – 0.059401 0.980169

Grid3 Grid partition Gaussian2 Constant – – – – 0.059376 0.978733

Grid4 Grid partition Gaussian2 Linear – – – – 0.056697 0.981113

Grid5 Grid partition Sigmoid Constant – – – – 0.065139 0.974344

Grid6 Grid partition Sigmoid Linear – – – – 0.078523 0.965809

Sub1 Sub-clustering Gaussian1 Constant 0.5 1.25 0.5 0.15 0.075926 0.965028

Sub2 Sub-clustering Gaussian1 Constant 0.4 1.25 0.5 0.15 0.046508 0.986872

Sub3 Sub-clustering Gaussian1 Constant 0.3 1.25 0.5 0.15 0.039273 0.990649

Sub4 Sub-clustering Gaussian1 Constant 0.2 1.25 0.5 0.15 0.037730 0.991889

Sub5 Sub-clustering Gaussian1 Constant 0.2 1.25 0.5 0.15 0.038503 0.991251

Sub6 Sub-clustering Gaussian1 Constant 0.6 1.25 0.5 0.15 0.075832 0.965202

Sub7 Sub-clustering Gaussian1 Constant 0.7 1.25 0.5 0.15 0.096375 0.943681
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Fig. 4 Schematic

demonstration of the model

Fig. 5 Structure of the ANFIS

model
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Fig. 6 Comparison of the predicted and experimental results after
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mortars and concretes due to the nature of ANFIS. Addi-

tionally, the model proposed can be used to estimate the

shrinkage cracking of GBFS fine aggregate mortars which

may possibly be used for producing plasters and make it

available to take precautions before producing these types

of plasters. This situation would gain economical and time-

savings. Consequently, it would be available and possible to

prevent required precautions in order to improve the

shrinkage cracking performance and thus, the durability of

mortar or concrete.

5 Conclusions

It is extremely difficult to take into account of all either

controllable or uncontrollable parameters for the prediction

of drying shrinkage cracking. Some empirical models have

been widely used for drying shrinkage prediction and

rarely used for drying shrinkage cracking. In this study, the

drying shrinkage crack widths obtained from the ring test

could easily and accurately be predicted.

Consequently, the ANFIS ring test restrained drying

shrinkage crack width prediction model developed for

GBFS mortars can be a useful tool for engineers as a

preliminary guide for evaluating the effects of drying

shrinkage cracking on mortars considering the GBFS

replacement, drying time and the possible length changes.

Moreover, improvements and modifications for the model

may be achieved by constructing a wider database and

including additional input variables such as environmental

conditions and mixture compositions even if they were

expressed linguistically. Besides, this developed model or

the improved one can be adapted for different kinds of

mortars and concretes exposed to different environment

conditions and incorporating different types of materials

such as cements, aggregates, mineral and chemical

admixtures, bottom ash, fly ash, rubber and crushed tile, as

mineral admixture or aggregate, having different water to

cement ratios, different sizes of aggregates, water content,

cement content. Briefly, it is possible to construct different

types of models predicting different properties of mortars

or concretes having different properties under different

circumstances. In this study, this advantage has been used

for predicting the drying shrinkage crack widths of GBFS

mortars.

Besides, these types of drying shrinkage crack width

prediction models would help the mortar–concrete

designers and the producers to consider precautions before

production without losing time and money. In addition,

they would contribute to the durability of the material by

preventing or reducing the shrinkage cracking before pro-

ducing the mortar and concrete. Therefore, they can also

contribute to the sustainable development by making it

possible to gain economical, environmental and technical

advantages in production.
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17. Yüksel İ, Bilir T, Özkan Ö (2007) Durability of concrete incor-

porating non-ground blast furnace slag and bottom ash as fine

aggregate. Build Environ 42(7):2651–2659
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