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Abstract This work proposes a discrete-time nonlinear

neural identifier based on a recurrent high-order neural

network trained with an extended Kalman filter-based

algorithm for discrete-time deterministic multiple-input

multiple-output systems with unknown dynamics and time-

delay. To prove the semi-globally uniformly ultimately

boundedness of the proposed neural identifier, the stability

analysis based on the Lyapunov approach is included.

Applicability of the proposed identifier is shown via sim-

ulation and experimental results, all of them performed

under the presence of unknown external and internal dis-

turbances as well as unknown time-delays.

Keywords Recurrent high-order neural networks �
Neural identification � MIMO systems � Unknown time-

delay � Lyapunov � Discrete-time nonlinear systems

1 Introduction

The study of time-delay systems (TDS) has become an

important field of research due to its frequent presence in

engineering applications [4, 7, 14, 33], and some examples

of this kind of systems are: chemical processes, engine

cooling systems, hydraulic systems, irrigation channels,

metallurgical processing systems, network control systems

and supply networks [4, 14, 33].

Delays in systems happen due to the limited capabilities

of their components of processing data and transporting

information and materials [18]. Therefore, the main sour-

ces of time-delay in systems are [19]:

– Nature of the process which arises when the system has

to wait a process in order to continue to the next step,

for example chemical reactors, diesel engines and

recycled processes.

– Transport delay which occurs when systems must

transport materials and the controller takes time to

affect the process, for example rolling mills, cooling

and heating systems.

– Communication delay can occur due to:

– Propagation time-delay of signals among actuators,

controllers, sensors, especially in networking con-

trol and fault-tolerant systems.

– Access time-delay as a result of finite time required

to access to a shared media. The data at the

controller are a delayed version of the current state,

and the control action suffers time-delay when is

sent. It is found in network systems.

Delays can be constant or time-varying, known or

unknown, deterministic or stochastic depending on the

system under consideration [18]. It is well known that

delay in systems is a source of instability and poor

performance. A number of methodologies have been

proposed to handle these problems [7, 14, 20, 21, 33],

some of them based on neural networks where neural

networks are used to deal with unknown dynamics [5, 7,

20, 31, 32] and most of them developed for continuous-

time systems. Besides, loss of packets in network systems

can happen as the result of delays which are introduced

in the system due to the limited capacity of data trans-

mission between devices [15] which can also result in

instability [31, 32].
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In order to control a system, a model is usually required,

which is a mathematical structure knowledge about the

system represented in the form of differential or difference

equations. Some motives for establishing mathematical

descriptions of dynamical systems are: simulation, pre-

diction, fault detection and control system design, among

them [22].

There are two ways to obtain a system model: It can be

derived in a deductive manner using laws of physics, or it

can be inferred from a set of data collected during a

practical experiment of the system through its operating

range [22]. The first method can be simple; however, in

many cases, necessary time for getting the system model

can be excessive; moreover, obtaining an accurate model

this way would be unrealistic because of unknown

dynamics and delays that cannot be modeled. The second

method, which is known as system identification, could be

a helpful shortcut for deriving the model. Despite the fact

that system identification does not always result in an

accurate model, a satisfactory one can be obtained with

reasonable efforts [22].

There are a considerable number of methods to

accomplish system identification, to name a few: based on

neural network, based on fuzzy logic, auxiliary model

identification and hierarchical identification [6]. Neural

networks stand out for their characteristics, such as no need

to establish the model structure of the actual system, any

linear and nonlinear model can be identified, and a neural

network is a model and an actual system. Neural networks

allow us to identify and obtain mathematical models which

are close to the actual system behaviors even in the pres-

ence of variations and disturbances [6, 22].

Recurrent neural networks (RNNs) are a special kind of

neural networks which have feedback connections that

have an impact on the learning capabilities and perfor-

mance of the network; moreover, unit-delay elements on

the feedback loops result in a nonlinear dynamical behavior

[8].

Recurrent high-order neural networks (RHONNs) are an

extension of first-order Hopfield network. A RHONN has

more interaction among its neurons and characteristics

which make them ideal for modeling complex nonlinear

systems, such as: approximation capabilities, easy imple-

mentation, robustness against noise and online training,

which make them ideal for modeling complex nonlinear

systems [28].

Backpropagation through time learning is the most used

training algorithm for RNNs; however, it is a first-order

gradient descent method, that even if it gives great results

in several occasions, it presents some problems such as

slow convergence, high complexity, bifurcations, instabil-

ity and limited applicability due to high computational

costs [10, 28], and it is not able to discover contingencies

spanning long temporal intervals due to the vanishing

gradient [3, 12]. On the other hand, training algorithms that

are based on the extended Kalman filter (EKF) improve

learning convergence, reduce the epoch number and the

number of required neurons. Moreover, EKF training

methods for training feedforward and RNNs have proven to

be reliable and practical [9, 28].

In this work, a RHONN identifier trained with a EKF-

based algorithm for discrete-time nonlinear deterministic

multiple-input multiple-output (MIMO) systems with

unknown time-delay is presented, and simulation results of

the proposed RHONN identifier are compared with the

results presented in [20] for the same system. In order to

prove the semi-globally uniformly ultimately boundedness

(SGUUB) of the RHONN identifier trained with a EKF-

based algorithm, a Lyapunov stability analysis is included.

It is important to note that the proposed discrete-time

RHONN identifier does not require previous knowledge

of the system model nor an estimation of the time-delay

or system perturbation or their bounds. These character-

istics make it ideal for devices which require of a real-

time implementation. Most of the work on the field of

system identification of nonlinear TDS addressed the

continuous-time case [1, 24, 31, 32] and assumed that the

time-delay is known, approximated or at least a bound is

previously known [2]. In [13, 24], the authors present

methodologies for system identification of nonlinear

continuous-time-delayed systems in which an approxi-

mation of the time-delay is needed. In [24], the authors

present an approach where the knowledge of the system

model is necessary at least nominally. Then, all the

above-explained properties allow the proposed discrete-

time identifier, an excellent option for real-time imple-

mentations in digital devices.

Therefore, the main contributions of this paper are:

1. A RHONN identifier trained with an EKF-based

algorithm for discrete-time deterministic MIMO sys-

tems with unknown dynamics and time-delay.

2. Results of simulation and real-time for three time-

delay benchmarks. Systems are presented in order to

show the performance of the identifier.

3. The stability proof based on the Lyapunov approach

for the neural identifier without the need of previous

knowledge for plant dynamics, disturbances, delays

nor its bounds.

This work is organized as follows: In Sect. 2, time-delay

systems are introduced, Sects. 3 and 4 give a brief expla-

nation of RHONNs and EKF-trained algorithm, respec-

tively, in Sect. 5, the RHONN-based neural identifier is

described, in Sect. 6, results are shown, important con-

clusions are presented in Sect. 7, and finally, at the ‘‘Ap-

pendix’’, the Lyapunov analysis is included.
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2 Time-delay nonlinear system

Time-delay is the property of physical systems by which

the response to an applied force is delayed as well as its

effects [36]. Whenever a material, information or energy is

transmitted, there is an associated delay and its value is

determined by distance and speed of the transmission [36].

TDS, also known as systems with after effect or dead-

time, hereditary systems, equations with deviating argu-

ment or differential-difference equations, are systems

which have a significant time-delay between the applica-

tion of the inputs and their effects. TDS inherit time-delay

in its components or from introduction of delays for control

design purposes [25, 30, 34].

In general, TDS can be classified as [18]:

– Systems with lumped delays: where a finite number of

parameters can describe their delay phenomena.

– Systems with distributed delays: where it is not possible

to find a finite number of parameters which described

their time-delay phenomena.

The presence of delays in the systems makes system

analysis and control design complex and also can degrade

the performance or induce instability [34, 36], this is why it

is important to understand delays in systems; otherwise, the

system could become unstable [36].

Let us consider the following discrete-time-delay non-

linear MIMO system described by:

x k þ 1ð Þ ¼ F x k � lð Þ; u kð Þð Þ ð1Þ
y kð Þ ¼ h x kð Þð Þ ð2Þ

where x 2 Rn, u 2 Rm , F 2 Rn �Rm ! Rn is a non-

linear function and l ¼ 1; 2; . . . is the unknown delay.

3 Recurrent high-order neural network

Recurrent neural networks are considered as good candidates

for identification and control of general nonlinear and com-

plex systems, RNNs deal with uncertainties and modeling

error on the systems, and also they are attractive due to their

characteristics as easy implementation, simple structure,

robustness and capacity to adjust their weights online [23, 28].

RNN outputs flow in forward and backward directions,

and they are feedback to the same neurons or neurons in

different layers. This two-way connectivity between units

distinguished RNN from feedforward neural networks,

where the output of one unit is only connected to the units

in the next layer [16, 23].

RNNs are mostly based on the Hopfield model [23], and

their recurrent structure has a profound impact on their

learning capabilities and performance [35].

Recurrent high-order neural networks are the result of

including high-order interactions represented by triplets

ðyiyjykÞ, quadruplets ðyiyjykylÞ, etc. to the first-order Hop-

field model [16, 35]. RHONN model is very flexible, and it

allows to incorporate a priori information about the system

into the neural network model [28]

Consider the following discrete-time recurrent High-

Order neural network:

bxiðk þ 1Þ ¼ w>
i kð Þziðxðk � lÞ; uðkÞÞ; i ¼ 1; . . .; n ð3Þ

where bxi (i ¼ 1; 2; . . .; n) is the state of the i-th neuron, wi is

the respective online adapted weight vector, n is the state

dimension, and ziðxðk � lÞ; uðkÞÞ is given by

ziðxðk � lÞ; .ðkÞÞ ¼

zi1
zi2

..
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with Li as the respective number of high-order connections,

fI1; I2; . . .; ILig is a collection of nonordered subsets of

f1; 2; . . .; nþ mg, m is the number of external inputs, dijðkÞ
being nonnegative integers, and ni defined as follows:
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In (5), u ¼ ½u1; u2; . . .; um�> is the input vector to the

neural network, and Sð�Þ is defined by

S 1ð Þ ¼ 1

1þ exp �b1ð Þ ; b[ 0 ð6Þ

where 1 is any real value variable.

4 Kalman filter learning algorithm

There are a number of training algorithms for neural net-

works; however, most of them have problems such as local

minimal, slow learning and high sensitivity to initial con-

ditions. Kalman filter (KF)-based algorithms show up as an

alternative which overcome these problems [9, 28].

KF estimates the state of a linear system with additive

state and output white noise [28]. KF has a recursive

solution; in each update, the state is estimated from the

previous estimated state and the new input data. The fact

that it is only necessary to store the previous estimated state

in memory makes KF computationally more efficient than
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computing the estimated state directly from the entire past

observed data of previous steps [9, 28].

For KF-based neural network training, the network

weights become the states to be estimated, and for this case,

the error between the neural network output and the mea-

sured plant output is considered as additive noise [9, 28].

Extended Kalman filter is used due to the fact that neural

network mapping is a nonlinear problem [28]. EKF is an

extension of KF obtained through a linearization procedure

[9].

4.1 Extended Kalman filter training algorithm

The EKF-based training algorithm used for training the

RHONN identifier on this work is:

xi k þ 1ð Þ ¼xi kð Þ þ giKi kð Þei kð Þ
Ki kð Þ ¼Pi kð ÞHi kð ÞMi kð Þ

Pi k þ 1ð Þ ¼Pi kð Þ � Ki kð ÞH>
i kð ÞPi kð Þ þ Qi kð Þ

i ¼ 1; . . .; n

ð7Þ

with

Mi kð Þ ¼ Ri kð Þ þ H>
i kð ÞPi kð ÞHi kð Þ

� ��1 ð8Þ

ei kð Þ ¼ xi kð Þ � bxi kð Þ ð9Þ

The dynamics of (9) can be expressed as

ei k þ 1ð Þ ¼ ewi kð Þzi xðk � lÞ; uðkÞð Þ þ �zi ð10Þ

Hij ¼
oviðkÞ
oxijðkÞ

� �T

ð11Þ

where i ¼ 1; . . .; n, ei 2 R is the identification error, Pi 2
RLi�Li is the weight estimation error covariance matrix,

xi 2 RLi is the online adapted weight vector, vi is the i-th

state variable of the neural network, Ki 2 RLi is the Kal-

man gain vector, Qi 2 RLi�Li is the estimation noise

covariance matrix, Ri 2 R is the error noise covariance

matrix, Hi 2 RLi is a vector in which each entry Hij is the

derivative of the neural network state ðviÞ with respect to

one neural network weight ðxijÞ, and it is given by (11),

where i ¼ 1; :::; n and j ¼ 1; :::; Li. Pi and Qi are initialized

as diagonal matrices with entries Pið0Þ and Qið0Þ, respec-
tively. It is important to remark that HiðkÞ, KiðkÞ and PiðkÞ
for the EKF are bounded [29].

5 Neural identification

Neural Identification consists in selecting a neural network

model, adjusting its weights according an adaptation law in

order to approximate the real system response to the same

input [22].

5.1 RHONN identifier

Let us consider the problem to approximate the general

discrete-time nonlinear delayed systems (1), by the follow-

ing discrete-time RHONN series–parallel representation:

xi k þ 1ð Þ ¼ w�>
i zi xðk � lÞ; uðkÞð Þ þ �zi ; i ¼ 1; . . .; n

ð12Þ

�zi is a bounded approximation error, which can be reduced

by increasing the number of the adjustable weights [27].

Assume that there exists a ideal weight vector w�
i such that

�zik k can be minimized on a compact set Xzi � RLi . The

ideal weight vector w�
i is an artificial quantity required for

analytical purpose [27]. In general, it is assumed that this

vector exists and is constant but unknown. Let us define its

estimate as wi and the estimation error as

ewi kð Þ ¼ w�
i � wi kð Þ ð13Þ

then, considering (8), the dynamics of (13) can be defined

as

ewi k þ 1ð Þ ¼ ewi kð Þ � giKi kð Þe kð Þ ð14Þ

Theorem 1 The RHONN model (12) trained with the

modified EKF-based algorithm (8) to identify the delayed

nonlinear plant (12) ensures that the identification error (10)

is SGUUB; moreover, the RHONNweights remain bounded.

Proof Please, see the ‘‘Appendix’’. h

6 Results

6.1 Example 1. Simulation results

Consider the following nonlinear time-delay system:

_x1 tð Þ¼x2 tð Þþ0:001x1 tð Þu tð Þ
_x2 tð Þ¼ 1�x21 tð Þ

� �

x2 tð Þ�x1 tð Þþx3 tð Þu tð Þþ 2cos x1 t�3ð Þð Þ
_x3 tð Þ¼x4 tð Þþ0:01x2 tð Þx3 tð Þexp u tð Þð Þ

_x4 tð Þ¼ 1�x23 tð Þ
� �

x4 tð Þ�x3 tð Þþ u tð Þ
1þx22 tð Þx24 tð Þ
� �

þ 2 x21 t�3ð Þþx22 t�3ð Þ
� �

sinðx2 t�3ð ÞÞ
y1 tð Þ¼x1 tð Þþx2 tð Þ
y2 tð Þ¼x3 tð Þþx4 tð Þ ð15Þ

System (15) is a chaotic oscillator similar to a van der

Pol system [20].

To conduct the simulation tests, the system (15) is

simulated using MATLAB�1\Simulink�2 2013a and its

states are discretized by a zero-order hold with sampling

1 MATLAB is a registered trademark of The MathWorks, Inc.
2 Simulink is a registered trademark of The MathWorks, Inc.
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time equals to 0.2 s and initial conditions

xð0Þ ¼ 1 1 1 1½ �T .

6.1.1 High-order neural network observer

Let us consider the following high-order neural network

(HONN) observer design in [20]:

x̂ k þ 1ð Þ ¼Ax̂ kð Þ þ B ŴT
1 kð ÞU1 x̂ kð Þ; u kð Þð Þ

�

þ h x̂ k � d̂
� �� ��

þ K y kð Þ � ŷ kð Þ½ � þ Du uð Þ
ŷ kð Þ ¼Cx̂ kð Þ

ð16Þ

where x̂ðkÞ is the estimation of x(k), h is a known function

vector with constant time-delay, d̂ is the estimation of d

which is the unknown time-delay, Ŵ1 is the HONN weight

matrix, Uðx̂; uÞ is the basis function vector, and K is the

observer gain matrix [20], with

Ŵ1 k þ 1ð Þ ¼ 1� r1ð ÞŴ1 kð Þ
þ C1U1 x̂ kð Þ; u kð Þð Þ~yT kð ÞFT

ð17Þ

Parameter values are set as in [20]: delay functions (18)

are known with estimation of the unknown time-delay d ¼
3 s and d̂ ¼ 3:2 s. uðtÞ ¼ sinð0:3tÞ.
h1 xð Þ ¼ 0

h2 xð Þ ¼ 2 cos x1ðtÞð Þ
h3 xð Þ ¼ 0

h3 xð Þ ¼ 2 x21 tð Þ þ x22 tð Þ
� �

sin x2 tð Þð Þ

ð18Þ

Matrices A, C, F and K are set as:

A ¼

1 0:2 0 0

0 1 0 0

0 0 1 0:2

0 0 0 1

2

6

6

6

4

3

7

7

7

5

; F ¼

1 1

1 1

1 1

1 1

2

6

6

6

4

3

7

7

7

5

C ¼

1 0

1 0

0 1

0 1

2

6

6

6

4

3

7

7

7

5

; K ¼

0:3 0

1 0

0 0:3

0 1

2

6

6

6

4

3

7

7

7

5

B ¼ I4� 4, D ¼ 0, and as activation function:

r xð Þ ¼ 1� e�0:01xð Þ
1þ e�0:01xð Þ ð19Þ

with C1 ¼ diagð0:2; . . .; 0:2Þ and r1 ¼ 0:6, l1 ¼ 16, and

initial conditions x̂ 0ð Þ ¼ 0 0 0 0½ �T
The HONN observer (16) is used for comparison pur-

poses against the RHONN identifier (12) for the states of

the system (15). It is important to note that an identifier can

be considered as an observer with y kð Þ ¼ x kð Þ. Then, this
comparison is a valid one.

6.1.2 RHONN identifier

The RHONN identifier (12) activation function is (19), and

the values of the matrices Pi 0ð Þ, Qi 0ð Þ and Ri of the EKF-

based algorithm training (20) are:

P1 0ð Þ ¼P2 0ð Þ ¼ P3 0ð Þ ¼ P4 0ð Þ ¼ 1x108 � diagð4Þ
Q1 0ð Þ ¼Q2 0ð Þ ¼ Q3 0ð Þ ¼ Q4 0ð Þ ¼ 5x105 � diagð4Þ

R1 ¼R2 ¼ R3 ¼ R4 ¼ 1 � 104 ð20Þ

6.1.3 Simulation results

Figures 1, 2, 3, 4, 5, 6, 7 and 8 show the states xi versus the

observed and the identified states.

Tables 1 and 2 show the root-mean-square errors

(RMSE) and the absolute deviation of the HONN observer

and RHONN identifier errors for the same states of system

(15) for a test with sampling time equals to 0.2 s. Tables 3

and 4 show the RMSE and the absolute deviation of the

errors of the HONN observer and RHONN identifier errors

for a test with sampling time equals to 0.02 s.

The results show a similar performance between the

identifier (12) and the observer (16) for the same states of

the system (15); however, the errors of the identifier are in

most cases smaller than the ones of the observer. Both
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−2

−1

0

1

2

3
X1 Real (Black) − Observed (Gray)

Time (s)

Fig. 1 Real x1ðkÞ versus observed x̂1ðkÞ
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−2

−1

0

1

2

3
X1 Real (Black) − Identified (Gray)

Time (s)

Fig. 2 Real x1ðkÞ versus identified x̂1ðkÞ
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Fig. 3 Real x2ðkÞ versus observed x̂2ðkÞ
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Fig. 4 Real x2ðkÞ versus identified x̂2ðkÞ
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Fig. 5 Real x3ðkÞ versus observed x̂3ðkÞ
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Fig. 6 Real x3ðkÞ versus identified x̂3ðkÞ
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Fig. 7 Real x4ðkÞ versus observed x̂4ðkÞ
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Fig. 8 Real x4ðkÞ versus identified x̂4ðkÞ

Table 1 RMSE of simulation results with a sampling time equals to

0.2 s

RMSE

x1 x2 x3 x4

Observer 0.12869 0.53040 0.18226 1.52967

Identifier 0.32413 0.32221 0.32818 0.36338

Table 2 Absolute deviation of simulation results with a sampling

time equals to 0.2 s

Absolute deviation

x1 x2 x3 x4

Observer 0.06331 0.32323 0.09719 0.71550

Identifier 0.19940 0.19558 0.20089 0.36338

Table 3 RMSE of simulation results with a sampling time equals to

0.02 s

RMSE

x1 x2 x3 x4

Observer 0.88019 0.06228 1.37058 0.14963

Identifier 0.09345 0.07953 0.08431 0.08856
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identifier and observer improved their performance using a

smaller sampling time.

6.2 Example 2. Simulation results for a differential

robot

In second test for the RHONN identifier (12), a delay is

added to each of the seven states of the model of a dif-

ferential robot presented in [17], and such delays consist in

simulating that for 0.1 s, information is not updated.

Simulation is made using MATLAB�/Simulink� 2013a,

the sampling time for the test is 0.01 s and a total time

equals to 15 s and u1ðtÞ ¼ sinðcðtÞÞ and u2ðtÞ ¼ cosðcðtÞÞ
where c(t) is a chirp signal generated by MATLAB�.

The delays start in this test at 13, 9, 5, 8, 6, 1, 4 s,

respectively, for each state.

Table 5 shows the absolute deviation of the error and

RMSE of the results of the simulation test.

Figures 9, 10, 11, 12, 13, 14 and 15 show the behavior

of the neural identifier before and after the delay where

information cannot be updated.

6.3 Example 3. Linear induction motor

As third test for the neural identifier (12), simulation results

and real-time result are shown in this section using a linear

induction motor (LIM) model and a laboratory prototype

for real-time experimental results.

6.3.1 Simulation results for a linear induction motor

A delay has been added to the position state of the model of

the LIM in [11]. Such delay consists in simulating that for

13 13.05 13.1 13.15 13.2 13.313.25
−0.9

−0.85

−0.8

−0.75
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Position X
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m

Fig. 9 Identification of the position X of a differential robot. Real

signal (black solid line) versus identified signal (gray dotted line)

Table 4 Absolute deviation of simulation results with a sampling

time equals to 0.02 s

Absolute deviation

x1 x2 x3 x4

Observer 0.54382 0.03168 0.77253 0.07352

Identifier 0.04952 0.03965 0.03586 0.03708

Table 5 Absolute deviation of the error and RMSE of simulation test

of a differential robot

Absolute deviation RMSE

Position X 1.72779 9 10-3 2.31102 9 10-2

Position Y 7.16522 9 10-4 7.59874 9 10-3

Theta 1.63137 9 10-3 6.93572 9 10-3

Angular velocity 1 2.62689 9 10-3 1.19412 9 10-2

Angular velocity 2 1.02881 9 10-2 1.63750 9 10-2

Current 1 3.60196 9 10-3 2.26067 9 10-2

Current 2 6.64885 9 10-3 2.03897 9 10-2
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Fig. 10 Identification of the position Y of a differential robot. Real

signal (black solid line) versus identified signal (gray dotted line)
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Fig. 11 Identification of theta of a differential robot. Real signal

(black solid line) versus identified signal (gray dotted line)
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Fig. 12 Identification of the angular velocity 1 of a differential robot.

Real signal (black solid line) versus identified signal (gray dotted

line)
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1 s, it is not possible to update the information of the LIM

states starting at 2.1 s, sampling time equals to 0.0001 s

and ua is and ub are defined as (21) and (22), respectively,

where t is time.

uaðtÞ¼
0 if t\2s

255 170cos 0:3t
98:6

6
t�98:6

3

� 	� 	� 	

if t�2s

8

<

:

ð21Þ

ubðtÞ¼
0 if t\2s

255 170sin 0:3t
98:6

6
t�98:6

3

� 	� 	� 	

if t�2s

8

<

:

ð22Þ

Figure 16 shows LIM position and identified LIM

position, and Fig. 17 shows LIM velocity and identified

LIM velocity. Table 6 shows the RMSE and absolute

deviation of the identification errors.

6.3.2 Experimental Results for a LIM

Using the prototype shown in Fig. 18 for real-time test with

a LIM presented in [26], the test of the previous section is

made at real time.

The prototype consists mainly of a dSPACE�3 DS1104

controller board and its connector panel, a Linear Induction

Motor Lab-Volt�4 8228, a linear encoder SENC 50�5, a
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Fig. 13 Identification of the angular velocity 2 of a differential robot.

Real signal (black solid line) versus identified signal (gray dotted

line)
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Fig. 14 Identification of the current 1 of a differential robot. Real

signal (black solid line) versus identified signal (gray dotted line)
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Fig. 15 Identification of the current 2 of a differential robot. Real

signal (black solid line) versus identified signal (gray dotted line)

Fig. 16 Identification of LIM position. Position (black solid line)

versus identified position (gray dotted line)

Fig. 17 Identification of LIM velocity. Velocity (black solid line)

versus identified velocity (gray dotted line)

Table 6 Absolute deviation of the error and RMSE of LIM position

and velocity at simulation test

Absolute deviation RMSE

Position 8.7961 9 10-6 6.8560 9 10-5

Velocity 4.4238 9 10-5 1.5947 9 10-4

3 dSPACE is a registered trademark of DSPACE GmbH.
4 LAB-Volt is a registered trademark of Lab-Volt Systems, Inc.
5 SENC 50 is a registered trademark of ACU-RITE.
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POWERSTAT�6 variable transformer type 126U-3 and a

power module. The prototype is operated using

MATLAB�/Simulink� and dSPACE� software

ControlDesk�7.

The real-time test has a delay similar to that starts at

1.1 s. Figure 19 shows real LIM position and the identified

LIM position, and Fig. 20 shows real LIM velocity and the

identified LIM velocity, a sampling time equals to 0.0003 s

and ua is and ub are defined as (21) and (22), respectively.

It is important to note that the high-frequency signals

presented in Figures [SubEquationDirect] (18a) and (19)

are due to encoder limitations. However, from Table 7, it is

possible to conclude that the RHONN can identify such

signals besides limitations.

7 Conclusion

In this work, the performance of a RHONN identifier (12)

trained with a EKF-based training algorithm (8) is shown.

Its results for the states of a discrete nonlinear time-delay

system (15) are compared with the results of a HONN

observer (16) design in [20], and a similar behavior is

observed; however, for states x2 and x4 the RHONN

identifier has a better performance. In order to support the

simulation graphs, Table 1 and Table 2 contain the RMSE

and absolute deviation of the errors of the simulation test

with a sampling time equals to 0.2s. RHONN identifier

performance is improved with a smaller sampling time as

can be seen in Tables 3 and 4 which contain the RMSE and

absolute deviation of the errors of a simulation test with a

sampling time equals to 0.02s. Additionally, the identifier

(12) is easier to implement in real time due to the fact that

it has less parameters to be tuned.

Results of the second test for the RHONN identifier are

performed by adding a delay to a LIM model showing an

excellent performance.

As future work, it is a plan to extend this work to

stochastic systems and loss of packets.

Variable
transformer
      126U-3

Linear Encoder SENC 50

LIM LabVolt 8228
Connector Panel

Power Module

Fig. 18 LIM laboratory prototype

Table 7 Absolute deviation of the error and RMSE of LIM position

and velocity at real-time test

Absolute deviation RMSE

Position 7.5676 9 10-6 6.8973 9 10-5

Velocity 1.3028 9 10-4 6.1873 9 10-4

Fig. 19 Real-time identification of LIM position. Position (black

solid line) versus identified position (gray dotted line)

Fig. 20 Real-time identification of LIM velocity. Velocity (black

solid line) versus identified velocity (gray dotted line)

6 POWERSTAT is a registered trademark of Superior Electric

Holding Group LLC.
7 ControlDesk is a registered trademark of DSPACE GmbH.
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Appendix

Proof of Theorem 1 Step 1, for V kð Þ. First consider, the
equation for each i-th neuron ði ¼ 1; :::; nÞ
Vi kð Þ ¼ cie

2
i kð Þ þ ewT

i kð ÞPi kð Þewi kð Þ
DVi kð Þ ¼V k þ 1ð Þ � V kð Þ

¼ cie
2
i k þ 1ð Þ

þ ewT
i k þ 1ð ÞPi k þ 1ð Þewi k þ 1ð Þ

� ewT
i kð ÞPi kð Þewi kð Þ � cie

2
i kð Þ ð23Þ

Using (10) and (14) in (23)

DVi kð Þ ¼ ewi kð Þ � giKi kð Þei kð Þ½ �T ½Pi kð Þ � Ai kð Þ�
� ewi kð Þ � giKi kð Þei kð Þ½ �
þ ci ewi kð Þzi xðk � lÞ; uðkÞð Þ þ �zi½ �2

� ewi kð ÞPi kð Þewi kð Þ � cie
2
i kð Þ ð24Þ

with

Ai kð Þ ¼ Ki kð ÞH>
i kð ÞPi kð Þ þ Qi kð Þ ð25Þ

then, (24) can be expressed as

DVi kð Þ ¼ ewT
i kð ÞPi kð Þewi kð Þ

� giei kð ÞKT
i kð ÞPi kð Þewi kð Þ

� ewT
i kð ÞAi kð Þewi kð Þ

þ giei kð ÞKT
i kð ÞAi kð Þewi kð Þ

� giei kð ÞewT
i kð ÞPi kð ÞKi kð Þ

þ g2i e
2
i kð ÞKT

i kð ÞPi kð ÞKi kð Þ
þ giei kð ÞewT

i kð ÞAi kð ÞKi kð Þ
� g2i e

2
i kð ÞKT

i kð ÞAi kð ÞKi kð Þ
þ ci ewi kð Þzi xðk � lÞ; uðkÞð Þð Þ2

þ ci2�zi ewi kð Þzi xðkÞ; uðkÞð Þ
þ ci�

2
zi
� ewT

i kð ÞPi kð Þewi kð Þ � cie
2
i kð Þ ð26Þ

Using the inequalities

XTX þ YTY � 2XTY

XTX þ YTY � � 2XTY

�kmin Pð ÞX2 � � XTPX� � kmax Pð ÞX2 ð27Þ

which are valid 8X;Y 2 Rn, 8P 2 Rn�n;P ¼ PT [ ; then

(26) can be rewritten as

DVi kð Þ	 � ewT
i kð ÞAi kð Þewi kð Þ

� g2i e
2
i kð ÞKT

i kð ÞAi kð ÞKi kð Þ
þ ewT

i kð Þewi kð Þ þ e2i kð Þ
þ g2i e

2
i kð ÞKT

i kð ÞPi kð ÞPT
i kð ÞKi kð Þ

þ g2i ew
T
i Ai kð ÞKi kð ÞKT

i kð ÞAT
i kð Þewi kð Þ

þ g2i e
2
i kð ÞKT

i kð ÞPi kð ÞKi kð Þ
þ 2ci ewi kð Þzi xðk � lÞ; uðkÞð Þð Þ2

þ 2ci�
2
zi
� cie

2
i kð Þ ð28Þ

Then,

DVi kð Þ	 � ewi kð Þk k2kmin Ai kð Þð Þ
� g2i ei kð Þj j2 Ki kð Þk k2kmin Ai kð Þð Þ
þ g2i ei kð Þj j2 Ki kð Þk k2k2max Pi kð Þð Þ
þ 2g2i ei kð Þj j2 Ki kð Þk k2

þ ewi kð Þk k2kmax Pi kð Þð Þ
þ ewi kð Þk k2k2max Ai kð Þð Þ
þ 2ci ewi kð Þk k2 zi xðk � lÞ; uðkÞð Þk k2

þ 2ci�
2
zi
� ci ei kð Þj j2 ð29Þ

Defining

Ei kð Þ ¼ kmin Ai kð Þð Þ � k2max Ai kð Þð Þ
� 2ci zi xðk � lÞ; uðkÞð Þk k2þkmax Pi kð Þð Þ

Fi kð Þ ¼ ci þ g2i Ki kð Þk k2kmin Ai kð Þð Þ
� g2i Ki kð Þk k2k2max Pi kð Þð Þ � 2g2i Ki kð Þk k2

and selecting gi, ci, Qi and Ri, such that Ei [ 0 and Fi [ 0,

8k, then, (29) can be expressed as

DVi kð Þ	� ~xi kð Þk k2Ei kð Þ � ei kð Þj j2Fi kð Þ
þ 2cide

2
zi

ð30Þ

Hence, DVi kð Þ\0 when

ewi kð Þk k[

ffiffiffiffiffiffiffiffiffiffiffi

2ci�2zi
Ei kð Þ

s


 j1 ð31Þ

or

ei kð Þj j[

ffiffiffiffiffiffiffiffiffiffiffi

2ci�2zi
Fi kð Þ

s


 j2 ð32Þ

Step 2. Now for V kð Þ, consider the Lyapunov function

candidate.
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V kð Þ ¼
X
n

i¼1

ewT
i kð ÞPi kð Þewi kð Þ þ cie

2
i kð Þ

DV kð Þ ¼
X
n

i¼1

ewT
i k þ 1ð ÞPi k þ 1ð Þewi k þ 1ð Þ

�

þ cie
2
i k þ 1ð Þ � ewT

i kð ÞPi kð Þewi kð Þ
� cie

2
i kð Þ

�

ð33Þ

Using (10) and (14) in (23)

DV kð Þ ¼
X
n

i¼1

ewi kð Þ � giKi kð Þei kð Þ½ �T
�

� ½Pi kð Þ � Ai kð Þ� ewi kð Þ � giKi kð Þei kð Þ½ �
þ ci ewi kð Þzi xðk � lÞ; uðkÞð Þ þ �zi½ �2

� ewi kð ÞPi kð Þewi kð Þ � cie
2
i kð Þ

�

ð34Þ

Defining

Ai kð Þ ¼Ki kð ÞH>
i kð ÞPi kð Þ þ Qi kð Þ

Ei kð Þ ¼ kmin Ai kð Þð Þ � k2max Ai kð Þð Þ
� 2ci zi xðk � lÞ; uðkÞð Þk k2þkmax Pi kð Þð Þ

Fi kð Þ ¼ ci þ g2i Ki kð Þk k2kmin Ai kð Þð Þ
� g2i Ki kð Þk k2k2max Pi kð Þð Þ � 2g2i Ki kð Þk k2

and selecting gi, ci;Qi and Ri, such that Ei [ 0 and Fi [ 0,

8k, then, (24) can be expressed as

DV kð Þ	
X
n

i¼1

ð� ewi kð Þk k2Ei kð Þ

� ei kð Þj j2 kð ÞFi kð Þ þ 2ci�
2
zi
Þ

Hence, DV kð Þ\0 when (31) or (32) is fulfilled

Therefore, considering Step 1 and Step 2 for (23), the

solution of (10) and (14) is SGUUB. h

Remark 1 Considering Theorem 1 and its proof, it can be

easily shown that the result can be extended to a system

(12) with multiple delays like x k � lið Þ with i ¼ 1; 2; . . .,

can be used instead of x k � lð Þ in (3) and/or for time-

varying delays x k � li kð Þð Þ with li kð Þ bounded by li kð Þ	 l.
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