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Abstract An improvement for rock engineering system

(RES) coding method is done in this paper by using fuzzy

systems. A fuzzy expert semi-quantitative coding

methodology is designed to assess the cavability of rock

mass within the RES framework. The proposed fuzzy

method has the advantage of allowing consideration of

uncertainties in the RES analysis by using membership

functions in comparison with classic expert semi-quanti-

tative coding method that only unique codes are used to

quantify the interaction matrix. Since the cavability of the

rock mass is one of the fundamental issues for the caving

mining method, the presented improved coding method is

creatively used to assess the influencing parameters on

cavability of rock mass in block caving mines. Fifteen

parameters are considered as the main factors modeling the

cavability of the rock mass, and the interactions between

these parameters are calculated by proposed fuzzy system.

Finally in this paper, the parameters, which are dominant or

subordinant, and also the parameters, which are interactive,

are introduced. The proposed approach could be a simple

but efficient tool in evaluation of the parameters affecting

the cavability of rock mass in block caving mines and

hence be useful in decision making under uncertainties.

Keywords Cavability � FESQ coding � Fuzzy system �
Rock engineering system

1 Introduction

The block caving method is a large-scale and high-intensity

mining method, in which the orebody caves by field stress

and ore moves by gravity. As the special mechanism in

mechanics and technology, an important subject is to

determine the orebody cavability in block caving before

determining whether to use this mining method. Cavability

of a deposit is a function of natural factors such as the

geomechanical properties of the rock mass and mining-in-

duced factors. Although the importance of these factors had

been recognized for some time and several attempts had been

made to codify or quantify their influences [1–3], it was not

until the development of Laubscher’s caving chart approach

in the 1981s [4] that a method of achieving this became

widely available [5]. Although not used in some caving

mines, Laubscher’s caving chart [6–9] is the general industry

standard method of assessing cavability. Numerical model-

ing holds the possibility of providing a more fundamental

and rigorous assessment of cavability than empirical meth-

ods. This approach may have advantages in cases for which

current experience is lacking or not well developed [10].

If the cavability of the orebody is not assessed with a rea-

sonable accuracy, expensive and time-consuming measures

may be required subsequently to initiate or sustain caving [11,

12]. Therefore, it is of great importance to identify the most

significant parameters (and interactions among parameters)

that have an influence on the cavability of rock mass and also

to identify which parameters (or-interactions) are beneficial

for the engineering performance and, conversely, which ones

are detrimental for engineering performance.

Rock engineering system, which was first introduced by

Hudson in 1992 to deal with complex engineering prob-

lems, is one of the most powerful approaches in

rock engineering, as it combines adaptability,
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comprehensiveness, repeatability, efficiency and effective-

ness [13]. The main element in the RES method is the inter-

action. The interaction matrix is the presentational technique

for characterizing the important parameters and the interac-

tion mechanisms in a rock engineering system [13]. In this

matrix, the main factors are arranged along the main diagonal

elements of a matrix and the interrelations between pairs of

factors are identified in off-diagonal elements.

Many researches have attempted to develop the RES

method in various fields in rock mechanic such as [14–17].

They work on the instability potential of natural slopes and

mine slops. Budetta et al. [18] used RES method for

landslide hazard mapping. Zhang et al. [19] used rock

engineering systems methodology in rockfall hazard

assessment. Younessi and Rasouli [20] introduced fracture

sliding potential index for wellbore stability analysis using

RES method. Faramarzi et al. [21] proposed a new model

for prediction of rock fragmentation by blasting based upon

the basic concepts of rock engineering systems. Huang

et al. [22] presented a new method for automated zonation

and classification of rock mass based on rock engineering

system and computer programming. Frough and Torabi

[23] used the rock engineering systems for estimating TBM

downtimes. The main objective of this study is application

of RES for calculating geology and rock mass-related

downtimes index (GRDi) based on predominant rock mass

properties and rock mass-related downtimes.

TheRES approach has also beenwidely applied to various

engineering problems, including environmental studies

regarding the disposal of spent fuel [24], river catchment

pollution [25], forest ecosystems [26], traffic-induced air

pollution [27] and risk of reservoir pollution [28].

Quantification of the interaction matrix is one of the most

important parts of the RES method. There are several

methods to quantify the interactionmatrix. One of themostly

used techniques is the ‘‘expert semi-quantitative’’ (ESQ)

coding method. In the ESQ coding method, one value is

deterministically assigned to each interaction. Therefore, it

is implicitly considered that there are no uncertainties when

the influence of one parameter on the others is expressed in

the matrix. According to this coding technique, the interac-

tion intensity is denoted by integral values from 0 to 4, from

‘‘no interaction’’ to ‘‘critical interaction’’ [29].

The main weakness of this coding method is its great

variability of value which is assigned to the classes. As a

result, it is unable to explain all mechanisms of the

parameters and their relations. Also in this coding method,

the values are not always constant, and in the most cases, it

is not possible to consider an exact digit-code for the

correct particular interaction [30]. This could be due to

uncertainties in the assignments of values or even due to

uncertainties on the physics of the problem. Therefore, in

this study, a novel ‘‘Fuzzy ESQ’’ (FESQ) coding approach

is proposed for use within the RES systems framework. In

this novel method by using the fuzzy system and parame-

ters membership functions, uncertainties in the assignment

of codes are dealt. Finally, the dominant and subordinant

parameters and also the interactive parameters in the

potential of rock mass cavability are introduced using the

proposed fuzzy interaction matrix.

The rest of the paper is organized as follows. The cav-

ability of rock mass is introduced in Sect. 2. In this section,

the parameters influencing the cavability of rock mass will

be assessed. In the Sect. 3, the fuzzy systems is explained.

The Sect. 4 reviews the rock engineering system. After that

in Sect. 5 the proposed methodology is investigated where

a fuzzy system is designed to quantify the interaction

matrix of parameters influencing cavability of rock mass.

Section 6 concludes the paper.

2 Cavability of rock mass

Cavability refers to the capability of an in situ rock mass to

unravel when undercut and considers all three stages of

caving: initiation, propagation and continuous caving [31].

The cavability of an orebody is strongly influenced by the

natural properties of the rock mass and is also enhanced by

induced features that are directly attributable to the mining

process. Predicting the cavability of a rock mass is an area

of primary importance in block cave design [32]. The

reliable prediction of cavability is critical in determining

the undercut dimensions required to initiate and continu-

ously cave an orebody. The cavability of the rock mass will

control mine design and economic issues for a given geo-

logical environment and is a fundamental issue in estab-

lishing successful block caving mines [31].

2.1 Factors influencing rock mass cavability

Cavability of a deposit is a function of natural factors such

as the geomechanical properties of the rock mass and

mining-induced factors. Pre-mining stresses and rock mass

properties fall into the category of natural factors, while

induced stresses and mining-related effects are induced

factors that influence cavability [31]. In Fig. 1, the main
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Fig. 1 Main factors affecting the cavability of a rock mass
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factors affecting the cavability of the rock mass in block

caving mines are shown. These factors are selected based

on the study of various sources [5, 11, 31, 33].

2.1.1 In situ stress regime and direction

The magnitude and orientation of the regional stress play a

significant role in caving [31]. Developing away from the

principal stress is advisable in the case of weak ground.

The orientation of the principal stress on the sides or the

back of the cave opening can be significant [34]. Large

horizontal stress acting on the long face would lead to

failure, whereas the same stress acting on a circular cave

could be stable [10].

Undercutting toward the principal stress will improve

the cavability and fragmentation, but could squeeze dam-

age or rockbursts. Developing away from the principal

stress is advisable in the case of weak ground. Large hor-

izontal stress acting on a long face leads to failure, whereas

the same stress acting on a circular cave could have sta-

bilizing effect [31].

2.1.2 Uniaxial compressive strength (UCS)

Uniaxial compressive strength is one of the most crucial

engineering properties of rocks. Rock material strength is

used as an important parameter in many rock classification

systems. UCS is influenced by many characteristics of

rocks such as weathering or alteration rate, micro-cracks

and internal fractures, density and porosity [35]. It is clear

that cavability of rock mass decreases when the strength of

rock mass increases.

2.1.3 Water

Surface and groundwater management is of little concern

in some caving operations but is vitally important in others.

It is therefore necessary that issues such as the location of

surface water paths and storages, rainwater drainage and

groundwater hydrology are evaluated in the feasibility

study stage. Water in the potential cave zone can assist the

cave by reducing friction on joints or with the effect of

increased pore water pressure. The source of the water can

be the groundwater or the water introduced during the rainy

seasons [36].

2.1.4 Discontinuity properties

The properties of the discontinuities include the number of

discontinuity sets and their spacing, the orientation of

discontinuities with respect to the cave face, the aperture of

discontinuities and the persistence of discontinuities.

Determination of discontinuities orientation is one of the

most important issues in cavability assessment. Orientation

of the in situ stresses with respect to the orientation of the

main discontinuity sets is an important consideration in

determining the effectiveness of arching and locking-in of

rock blocks [11]. Low-angle structures lead to suitable

vertical displacement in the rock mass during the mining

operation. They can accommodate both shear and gravity

failure [5]. Based on the simplistic cave demonstration

model which is presented by Sainsbury [37], the following

conclusions can be made:

• Joints that are orientated perpendicular to the direction

of draw (i.e., in most cases, horizontal joints) are

favorable for cave propagation. The mobilized zone

advances vertically at the most rapid rate. In this case,

the rate at which the mobilized zone progresses far

exceeds the production draw rate.

• Joints that are orientated parallel to the direction of

draw (i.e., in most cases, vertical joints) are not

favorable for cave propagation. Minimal displacement

of the rock mass is achieved above the mining footprint

• Joints that are orientated at an angle to the direction of

draw result in a preferred cave propagation direction

Filling and persistence of discontinuities have a bearing on

the cavability of the rock mass because these properties

have an important role in the strength of rock mass [31].

2.1.5 Caving rate

The rate of upward advance of the yield zone is known as

the ‘‘caving rate.’’ Block caving is a low-selectivity mining

method, and caving rate is the only means of delaying

dilution ingress into the broken ore in the cave. The rate of

caving can be slowed by controlling the draw as the cave

can only propagate if there is space into which the rock can

move. Controlling the caving rate significantly affects the

caving and fragmentation behavior [34]. Caving rate

influences the rock mass quality, induced stresses and the

rate of development joints [36].

While the propagation of the cave can be monitored, it is

necessary to predict the rate of caving and any anticipated

problem [5].

2.1.6 Fragmentation

The overall success and profitability in block caving mines

are significantly dependent on the fragmentation of the

orebody during caving process. The design and operating

parameters influenced by fragmentation include [8]:

• Drawpoint size and spacing

• Equipment selection
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• Draw control procedures

• Production rates and productivity

• Dilution entry into the draw column

• Hangups and the need for secondary breakage or

blasting with associated costs and damage

• Subsequent commination processes and costs.

The prediction of rock fragmentation during caving process

needs to understand the natural fragmentation of the rock

mass and the fragmentation processes that take place in the

draw column [34]. The factors that influence fragmentation

are as follows [36]:

• The in situ network of discontinuities as defined by

their orientation, size, spacing, condition and

termination,

• The in situ stresses and the stresses induced in the cave

face or back (varying with cave height),

• Rock strengths,

• Draw column height and residence times.

2.1.7 Block height

Block height depends on the geometry of ore, fragmenta-

tion and properties of cap rock. The vertical distance

between mining levels will affect the rock mass cavability

[11]. Secondary fragmentation of caving material occurs

through attrition as the ore is drawn down through the

column. Thus, the cavability of ore, cap rock and result of

fragmentation influence the determination of optimal block

height.

2.1.8 Undercut

Mining the undercut to initiate failure in the cave is

extremely important in terms of cavability and ultimate

behavior of the rock mass over the early life of the cave. A

poor undercut excavation can lead to the formation of

pillars, piping or large blocks and could eventually lead to

the cave failing to initiate [11]. The direction of advance of

undercut into the principal stress direction will influence

the magnitude of abutment stresses. Thus, to reduce

clamping stresses in the cave back, the undercuts usually

are extracted in the direction of the maximum principal

stress [5]. In summarizing the nature and importance of

undercutting, Butcher has suggested that it has three aims

[38].

• To extract a void of sufficient dimensions to allow

caving to occur;

• To achieve the required undercut dimension to initiate

caving with minimum damage to the surrounding rock

mass; and

• To advance (in time as rapidly as possible) to caving

hydraulic radius, initiate caving, propagate the cave and

consequently reduce undercut abutment stress.

A concave undercut face provides better control of major

structures and a more secure undercut level. The cavability

of the immediate back will be controlled. If possible, the

cave front should not be the advanced structure that could

initiate massive wedge failures (Fig. 2) [10].

2.1.9 Hydraulic radius (HR)

The hydraulic radius is a term used in hydraulics and is a

number derived by dividing the area by the perimeter. The

hydraulic radius required to ensure propagation of the cave

refers to the unsupported area of the cave back, that is,

space into which caved material can move. No pillars can

be left and caved material must be removed [36].

The maximum area for the minimum perimeter will be

achieved with a circle and then a square. The minimum

span is a critical dimension in promoting caving and the

hydraulic radius caters for it even though the area is the

same. In cases where the hydraulic radius of the orebody is

borderline and the ratio of maximum span to minimum

span to minimum span is high, then a small increase in the

minimum span will have a significant influence on the

hydraulic radius [33].

3 Fuzzy system

To deal with vagueness of human thought, Zadeh intro-

duced the fuzzy set theory [39], which was oriented to the

rationality of uncertainty due to imprecision or vagueness.

A major contribution of fuzzy set theory is its capability of

representing vague data [40].

Fuzzy systems are knowledge-based or rule-based sys-

tems. The heart of a fuzzy system is knowledge based

consisting of the so-called fuzzy IF–THEN rules. The basic

configuration of a fuzzy system consists of four principal

elements: fuzzifier, fuzzy rule base, fuzzy inference engine

and defuzzifier. A fuzzy logic system (FLS) can be seen as

a function f : U � Rn ! V � R, where U is the input space

and V is the output space. The fuzzifier is a mapping from

the observed crisp input space U � Rn to the fuzzy sets

Fig. 2 Favorable and unfavorable undercut directions [10]

2086 Neural Comput & Applic (2016) 27:2083–2094

123



defined in U, where a fuzzy set defined in U is character-

ized by a membership function lf : U ! 0; 1½ � and is

labeled by a linguistic term. The structure of fuzzy system

is shown in Fig. 3.

The fuzzy rule base is a set of linguistic rules in the form

of ‘‘if a set of conditions is satisfied, then a set of conse-

quences is inferred.’’ For an n-input single-output fuzzy

system, the fuzzy rule base may consist of the following M

rules:

Rj : if x1 isA
j
1 and. . . xn isA

j
n THEN y isBj ð1Þ

where j ¼ 1; 2; . . .;M, xi i ¼ 1; 2; . . .; nð Þ are the input

variables of the fuzzy system, y is the output variable of the

fuzzy system and Bj and A
j
i are fuzzy sets. The defuzzifier

performs a mapping from the fuzzy sets in the output space

V to the crisp points in V [41].

The output of a FLS with singleton fuzzifier, product

inference and center average defuzzifier can be written as:

f xð Þ ¼
PM

j¼1 �y
j
Qn

i¼1 lAj
i
xið Þ

� �

PM
j¼1

Qn
i¼1 lAj

i
xið Þ

� � ð2Þ

where lA j
i
is the membership function for the fuzzy set A

j
i

and �y j is center of fuzzy set Bj.

4 Rock engineering system

The rock engineering systems (RES) approach can be used

for the analysis of coupled mechanisms in rock engineering

problems [29]. RES method aims to prepare a useful

checklist for a rock engineering project. More importantly,

it also aims to prepare a framework from which the com-

plete design procedure can be evaluated, leading a rock

engineering project to an optimal result [42].

The interactions between parameters in the RES

approach are represented using an ‘‘interaction matrix’’ in

Fig. 4. In the interaction matrix, all factors influencing the

system are arranged along the leading diagonal of the interaction matrix. The influence of each individual factor

on any other factor is included at the corresponding off-

diagonal position of the matrix, so that the (A, B)-th ele-

ment represents the influence of parameter A on parameter

B.

In principle, there is no limitation to the number of

factors that may be included in an interaction matrix.

A more common illustration of a higher-dimensional

interaction matrix is shown in Fig. 5. To quantify the

importance of the interactions, a coding method is required.

The most common approach is the expert semi-quantitative

(ESQ) method proposed by Hudson [29]. Typically, coding

values between 0 and 4 are employed with ESQ coding

schemes as shown in Table 1.

Fuzzy Rule Base

Fuzzy Inference
Engine

x in U y in V
Fuzzifier Defuzzifier

Fuzzy sets in U Fuzzy sets in V

Fig. 3 Schematic diagram of the fuzzy system [41]

Factor 

A

Influence

A on B

Influence

B on A

Factor

B

Fig. 4 Principle of the interaction matrix [29]

Fig. 5 Summation of coding values in the row and column through

each parameter to establish the cause and effect coordinates [13]
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After coding the matrix, from the matrix construction,

the rows and columns of the interaction matrix are added so

that each classification category represents the cause and

effect of the influence on the entire system. The degree of

influence of each classification category (i) on the entire

system, as a ‘‘cause,’’ is denoted with Cpi, and as an ‘‘ef-

fect’’ with Epi. Cpi is specified on the right of each row and

Epi is specified below each column, as illustrated in Fig. 5.

The two categories can be expressed in following Eqs. (1

and 2):

Cpi ¼
Xn

j¼1

aij ð3Þ

Epj ¼
Xn

i¼1

aij ð4Þ

where aij is the interaction of parameter i on the parameter

j which is located on the row ith and column jth in the

interaction matrix, and ‘‘n’’ is number of effective

parameters.

The effective role of each factor is shown in the cause

versus effect diagram (Fig. 6). In this figure, the diagonal of

the diagram is the locus of points that have the same value.

Along this diagonal and far away from the center of the

coordinate system, the summation of cause and effect

(C ? E) increases. The factors located in the bottom right

portion of the diagram are ‘‘dominant’’ in the system. In a

similar manner, the ‘‘subordinate’’ factors are defined as

those which are highly dominated by the system and are

located in the top left corner of the diagram. The cause–effect

plot is a helpful tool in understanding the behavior of each

factor individually as well as studying the whole system. For

example, the points tend to distribute perpendicularly to the

C = E diagonal show a low level of interactivity between

factors, whereas a high interactivity will result in the points

being distributed along the main diagonal line [29].

5 Fuzzy ESQ coding method for rock mass
cavability assessment

As was mentioned, in the ESQ coding method, one value is

deterministically assigned to each interaction. Therefore, it

is implicitly considered that there are no uncertainties when

the influence of one parameter on the others is expressed in

the matrix. Therefore, in this study, a novel ‘‘Fuzzy ESQ’’

(FESQ) coding approach is proposed to overcome this

problem.

The first step is to form the interaction matrix between

effective parameters on cavability that is shown in Fig. 7.

Then, the questionnaires are prepared and experts are asked

to specify the value of interaction between each pair of

parameters based on Table 1.

To fuzzify the interaction matrix, for each element of

the matrix, the number of each state of interactions based

on the expert’s judgment is considered, which are named as

nA (number of no interaction), nB (number of weak inter-

actions), nC (number of medium interactions), nE (number

of strong interactions) and nF (number of critical interac-

tions). These values are firstly normalized and used as the

inputs of the fuzzy system. For each fuzzy system input,

two fuzzy sets ‘‘Low’’ and ‘‘High’’ are considered which

are shown in Fig. 8. For example, if nA is ‘‘High,’’ it means

that most of the experts mentioned there is no interaction,

and the probability of mode A (no interaction) is higher.

Table 1 ESQ coding of the parameters’ interaction intensity [29]

Coding Description of interactions

0 None

1 Weak

2 Medium

3 Strong

4 Critical

P1 

P2 

P3 

P4

PN 

PN 0

PN 

Cause

Ef
fe

ct

P1 I12 I1i

P1

Ii1 Pi

PN

E1 E1 Ei EN

C1 

C2

Ci

CN

I21 

Fig. 6 (C, E) plot comprising

N influencing factors for the

supposed case [29]
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If the normalized value considered for each element

in the interaction matrix is less than 0.4, the member-

ship function value of ‘‘Low’’ set is greater than the

membership function of ‘‘High’’ set and vice versa.

Selection of ‘‘Low’’ and ‘‘High’’ membership function

for each input of fuzzy system depends on the expert’s

judgment.

Nine fuzzy sets (m1 to m9) are defined for output of the

fuzzy system. To better illustrate the intermediate state of

the output and to increase the accuracy of it, nine fuzzy sets

are considered between 0 and 4. The form of output sets is

shown in Fig. 9.

There are five inputs and each input has two modes;

25 rules could thus be defined. A fuzzy system with five

Interaction matrix of influence parameters on the cavability of rock mass 
P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P1: UCS, P2: In situ stress, P3: Joint spacing, P4: Joint orientation, P5: Joint aperture, P6: Joint 
persistence, P7: Joint roughness, P8: Joint filling, P9: Water, P10: Hydraulic Radius, P11: Caving rate, 

P12: Fragmentation, P13: Block height, P14: Undercut direction, P15: Potential of cavability

Influence P6
on P7

Influence P7
on P6

Fig. 7 Interaction matrix of

influence parameters on the

cavability of rock mass
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Low HighFig. 8 Fuzzy set for each fuzzy
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inputs, one output and 32 rules is shown in Fig. 10. For

example, for the interaction of parameter P1 (UCS) on

P12 (fragmentation), six persons out of 10 experts filled

the questionnaires mentioned ‘‘strong interaction,’’ three

persons said ‘‘critical interaction’’ and one person men-

tioned ‘‘medium interaction.’’ So the normalized value

of fuzzy system input would be nA ¼ 0, nB ¼ 0,

nC ¼ 0:1, nD ¼ 0:6 and nF ¼ 0:3. The rule base is fired

as it is displayed in Fig. 11, and the output is equal to

3.16.

Finally, by applying the judgments of experts to the

fuzzy system and using fuzzy rules on their views, the

fuzzy interaction matrix is formed that is given in Table 2.

The cause–effect diagram can be used to identify the

dominance and interactive parameters. The parameter

interaction intensity (PII) of each parameter can be calcu-

lated with the equation C þ Eð Þ=
ffiffiffi
2

p
and the parameter

dominance (PD) with C � Eð Þ=
ffiffiffi
2

p
[29]. Geometrically, PII

is the distance of the projection point, of each parameter on

the C = E line, to the origin (0, 0), and PD is the distance

of the parameter itself to the C = E line (Fig. 12) [22]. The

diameter of this graph represents the locus of C = E line.

Along this line, the value of (C ? E) increases. If the

parameter has a large value of (C - E), it is located in the

bottom right portion of the diagram and it is ‘‘dominant’’

on the system. Parameters that are affected by the system

are located in the top left corner of the diagram and have

the smaller value of (C - E). The cause–effect plot is a

helpful tool in understanding the behavior of each factor

individually as well as studying the whole system. Fig-

ure 13 shows the cause–effect diagram of 15 parameters

which influence the cavability of rock mass.

It is clear from Fig. 13 that for some parameters position

in the (C, E) plot tends to assume positions further away

from the diagonal line with equation C = E, therefore,

indicating that they have high dominance on the system

NO (2)

weak (2)

medium (2)

strong (2)

critical (2)

Interaction (9)

pfuzzy

(mamdani)

32 rules

Fig. 10 Fuzzy system with five inputs, 32 rules and one output

Fig. 11 Fuzzy rule base for one of the parameters

2090 Neural Comput & Applic (2016) 27:2083–2094

123



(when the location of the parameter is on the lower right

region; see, e.g., P1, P2 and P4 in Fig. 13); that the system

has a dominance on them (when the location of the

parameter is on the upper left region; see, e.g., P11, P12

and P15 in Fig. 13); or that they are ‘‘neutral’’ with respect

to the system (when the location of the parameter is mainly

on the C = E line; see, e.g., P14 and P6 in Fig. 13).

Due to the importance of system interaction, the sum of

cause and effect value is selected as the distinguishing

factor between parameters. Generally, when the value of

interaction of a system is large, the system is potentially

unstable. In other words, there is a greater chance that a

small change in a parameter greatly affects the system’s

behavior [29].

By obtaining the sum and the difference of the causes

and effects (C ? E, C - E) for each parameter, the inter-

action intensity histogram for each parameter can be

plotted (Figs. 14, 15).

It is clear from the histogram of the interactive intensity

versus the parameters (Fig. 14) that the intensity for the

majority of the parameters is slightly above the mean

value. From all the above, it is concluded that the 15

parameters selected to be the principal ones and acting as a

combined set of assessment criteria are all passing the

‘‘importance threshold’’. Also the interaction intensity

histogram shows that in situ stress (P2) and caving rate

(P11) have the largest interaction in the system, and this

means that a little change in these parameters has a sig-

nificant effect on the system’s behavior.

It is also concluded from C–E histogram (Fig. 15) that

the parameter P4 (joint orientation) which has maximum

value of C–E dominates the system. This result is also

confirmed by Sainsbury research. Sainsbury [37] models

the effect of the joint orientation on the cave propagation.

The result of the model is shown in the Fig. 16. As shown

in Fig. 16, the joint orientation completely affects the

cavability system which confirms the results obtained from

the FRES model in our paper.

In addition, based on the cause–effect diagrams of the

15 parameters considered in the presented rock cavability

analysis (Figs. 13, 14, 15), the following remarks can be

made:

Table 2 Fuzzy interaction matrix of influence parameters on cavability in block caving mines

P1 1.85 1.75 1.2 0.89 1.89 2.72 0.14 0.157 1.14 2.44 3.16 0.75 1.75 1.64

1.2 P2 2.65 3.2 3.29 3.08 3.16 0.29 2.13 3.48 3.29 3.07 0.96 3.48 3.84

0.294 1.08 P3 0.29 1.52 1.71 0.74 0.15 1.05 2.83 3.41 3.83 1.83 1.95 3.05

0.16 1.71 0.715 P4 0.715 0.81 0.532 0.294 2.43 2.09 3.16 3.48 0.76 2.52 3.83

0.15 2.71 0.523 0.15 P5 2.37 2.78 3.08 3.48 3.1 3.12 2.07 0.837 0.837 2.12

0.15 1.83 0.927 0.15 0.715 P6 0.923 1.65 2.92 3.21 2.96 3.05 1.2 0.988 2.01

0.15 0.923 0.998 0.15 1.92 1.92 P7 3.04 0.98 3.2 3.2 3.16 1.83 0.65 3.22

0.15 0.15 0.15 0.15 3.18 0.23 3.71 P8 2.6 1.92 3.29 3.6 1.2 0.3 3.3

1.91 2.17 0.15 0.15 0.998 1.08 2.91 3 P9 2.83 2.71 2.29 0.998 0.923 2.27

0.15 1.92 0.837 0.15 1.92 0.927 0.15 0.15 1.08 P10 3.71 3.1 2.09 0.998 3.81

0.15 1.88 0.94 0.15 1.87 1.51 0.15 0.15 1.47 0.715 P11 3.29 2.09 0.715 3.08

0.15 0.523 0.15 0.15 0.23 0.187 0.15 0.15 0.15 0.58 2.13 P12 0.998 0.923 3.82

0.15 3.58 1.23 0.15 2.21 2.14 0.31 0.22 0.64 1.54 3.08 3.71 P13 1.1 2.52

0.15 0.173 0.15 0.16 0.715 0.485 0.396 0.15 0.173 1.71 3.29 3.21 0.837 P14 3.08

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 P15

P1 UCS, P2 in situ stress, P3 joint spacing, P4 joint orientation, P5 joint aperture, P6 joint persistence, P7 joint roughness, P8 joint filling, P9

water, P10 hydraulic radius, P11 caving rate, P12 fragmentation, P13 block height, P14 undercut direction, P15 potential of cavability

Fig. 12 View of (C, E) plot to show lines of equal parameter

interaction intensity and dominance [22]
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• The most interactive parameters are the in situ stress

(P2) and caving rate (P11) which have the maximum

value of C ? E.

• The less interactive is the UCS (P1) which has the

minimum value of C ? E.

• The joint orientation (P4) is the one that dominates the

system since it has the maximum value of C - E.

• The fragmentation (P12) and the potential cavability

(P15) parameters which have the minimum value of

C - E are most dominated by the system.

The results show that all the 14 ‘‘input’’ parameters are

rather interactive and have a significant influence on the

‘‘outcome’’ parameter (i.e., cavability potential) so that,

therefore, they should be taken into account in the engi-

neering decisions.

6 Conclusion

A fuzzy rock engineering system has been designed to

assess parameters influencing cavability of rock mass in

block caving mines. The proposed fuzzy coding method

has the ability to incorporate uncertainties and variabilities

into the analysis of the main factors influencing the cav-

ability and to reduce problems associated with the sub-

jectivity in the coding of interaction matrices for RES

analysis.

To assess the cavability 14 parameters were considered

as effective factors on the cavability of rock mass, and as a

new idea, the rock engineering system was formulated

using fuzzy system. So in the first step the fuzzy interaction

matrix is created, and then, the values of cause and effect
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for parameters are calculated. According to the cause–ef-

fect diagram and histogram of interactive intensity, the

parameters with the highest dominant or subordinant and

also the parameters with the highest interactive are iden-

tified. Such information has important practical use and, for

instance, has implications on site characterization since it

allows the designer to identify parameters that should be

characterized in more detail in any particular case. For

example, results show that the parameter related to in situ

stress (P2) has the highest expected interaction with the

system (in other words, the most important parameter),

therefore, suggesting the importance of performing a site

survey for cavability assessment. This agrees well that

experimental data have been used to illustrate how the

existence of a high confining stress can inhibit failure and

caving of the rock mass. Similarly, ‘‘hydraulic radius’’ and

‘‘caving rate’’ have also been found to be quite significant

parameters. Also joint orientation has more effects on

systems (dominate parameter), while the fragmentation and

the potential cavability parameters are most dominated by

the system (subordinant parameter). From all the results, it

can be concluded that the presented fuzzy ESQ coding

method has good performance in assessment of effective

parameters in cavability and well covered the uncertainties

and experts disagree in the interactions between

parameters.
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