
ORIGINAL ARTICLE

A novel discrete bat algorithm for solving the travelling salesman
problem

Yassine Saji1 • Mohammed Essaid Riffi1

Received: 25 November 2014 / Accepted: 10 June 2015 / Published online: 26 June 2015

� The Natural Computing Applications Forum 2015

Abstract The travelling salesman problem (TSP) is one

of the well-known NP-hard combinatorial optimization and

extensively studied problems in discrete optimization. The

bat algorithm is a new nature-inspired metaheuristic opti-

mization algorithm introduced by Yang in 2010, especially

based on echolocation behavior of microbats when

searching their prey. Firstly, this algorithm is used to solve

various continuous optimization problems. In this paper we

extend a discrete bat-inspired algorithm to solve the

famous TSP. Although many algorithms have been used to

solve TSP, the main objective of this research is to

investigate this discrete version to achieve significant

improvements, not only compared to traditional algorithms

but also to another metaheuristics. Moreover, this study is

based on a benchmark dataset of symmetric TSP from

TSPLIB library.

Keywords Travelling salesman problem � NP-hard
combinatorial optimization problem � Nature-inspired
metaheuristic � Discrete bat-inspired algorithm

1 Introduction

Metaheuristics and especially nature-inspired ones have

been the most applicable algorithms in combinatorial

optimization problems over the last three decades; this is

due to the importance of combinatorial optimization in the

scientific world as well as the industrial world; to that end,

several scientific studies are conducted about the most

successful processes in nature, including biological sys-

tems, physical, and chemical processes such as natural

evolution, swarm intelligence, annealing process, in a

numerical algorithm [1–5]. Most combinatorial optimiza-

tion problems are NP-hard [6–8], and the optimal or even

suboptimal solution is typically difficult to be found. The

metaheuristic method provides many advantages over an

exact method. In some practical applications, the search of

an optimal solution can be completely inappropriate due to

many factors: the size of problem, the dynamic of work

environment, the lack of precision in data collection, the

difficulty in formulating some constraints or the presence

of conflicting objectives, and sometimes a large number of

real problems are not optimizable effectively by purely

mathematical approaches. In this case, using an exact

method has been often much slower than metaheuristic,

which can cause additional costs in computation time.

Nevertheless, nature-inspired algorithms still pose a real

challenge in the sense to solve realistically large problem

instances in reasonable computation time, such as ant

colony optimization (ACO) [9], particle swarm optimiza-

tion (PSO) [10, 11], bee colony optimization [12], firefly

algorithm (FA) [13], cuckoo search (CS) [14], and very

recently, bat algorithm (BA) [15]; it is, mainly, applied in

continuous optimization problems [16], that is inspired by

echolocation behavior of bats in searching for the optimum.

The travelling salesman problem (TSP) is one of the

well-known and extensively studied problems in discrete or

classical combinatorial optimization. The goal of this

problem is to find the shortest tour that visits each city in a

given list exactly once and then returns to the starting city.

TSP is known to be a NP-hard problem [17], it is easy to

describe but very difficult to solve. For a symmetric TSP

& Yassine Saji

yassine.saji@gmail.com

1 LAROSERI Laboratory, Department of Computer Science,

Faculty of Science, Chouaı̈b Doukkali University, Route Ben

Maachou, 24000 El Jadida, Morocco

123

Neural Comput & Applic (2016) 27:1853–1866

DOI 10.1007/s00521-015-1978-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1978-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1978-9&domain=pdf

with n cities, there are (n - 1)!/2 possible tours, the easiest

way to find a solution is to seek the possibility of all

existing paths then choose the shortest one, as a result the

computational time complexity of this algorithm will be

exponential to the size of n given cities in factorial time

O(n!). Table 1 shows the time required to calculate tours if

one tour evaluated in 1 ns (10-9 s).

The TSP has wide applicability in many industrial

applications [18–21] such as analysis of the structure of

crystals in X-ray crystallography, computer wiring and

connecting components on a computer board, overhauling

gas turbine engines, the order-picking problem in ware-

houses, the vehicle routing problem and scheduling prob-

lems, and many others. In real life, the process of finding a

solution for this kind of problems is already in progress and

attracts many researchers to investigate great efforts in

developing novel methods.

Many studies have been devoted to solve TSP such as

Tabu search (TS) [22], simulated annealing (SA) [23],

genetic algorithms (GA) [24, 25], and greedy randomized

adaptive search procedure (GRASP) [26]. Recently, in the

last 15 years, several studies based on nature-inspired

algorithms or swarm intelligence methods have been pro-

posed for the solution of the TSP, such as ACO [27–30],

PSO [31–33], CS [34], and many more metaheuristic

algorithms. BA is a new metaheuristic developed by Yang

in 2010: It is inspired from bats echolocation system used

to find their prey. This novel algorithm was originally

developed for solving continuous optimization problems,

and typically, BA has proven to be effective in solving this

field of optimization. The main aim of this paper is to

introduce a new discrete variant of bat algorithm (DBA) to

solve symmetric travelling salesman problem (STSP) and

to test its efficiency compared to other nature-inspired and

classic metaheuristic algorithms.

The remaining part of this paper is organized as follows:

Sect. 2 provides a brief literature review of swarm intelli-

gence algorithms and especially of BA. Section 3 intro-

duces the standard BA. Section 4 describes briefly the TSP.

Section 5 proposes a discrete bat algorithm (DBA) to solve

STSP. Section 6 presents a set of experimental results of

symmetric TSP benchmarks from TSPLIB library [35].

Finally, Sect. 7 concludes and gives some perspectives of

research.

2 Literature review

In the last decade, the swarm intelligence algorithms have

been emerged as a powerful method to solve various

engineering optimization problems [6]. The vast majority

of algorithms have been suggested depending on different

intelligent behaviors of swarms or by mimicking the

behaviors of biological systems in nature. Day after day,

the number of researchers interested in swarm intelligence

algorithms increases rapidly. This is a subject on which

there is an ample literature. Dorigo et al. [27] proposed

ACO by inspiration from the natural behavior of ant spe-

cies. Karaboga and Basturk [36] developed artificial bee

colony (ABC) by simulating the intelligent foraging

behavior of honeybee swarm. Kennedy and Eberhart [37]

proposed PSO by inspiration from the social behavior of

bird flocking when searching for food. Yang proposed FA

based on the flashing patterns of tropical fireflies. Passino

[38] introduced bacterial foraging optimization algorithm

(BFO) by observing the social foraging behaviors of E. coli

bacterial swarm. Krishnan and Ghose [39] proposed

glowworm swarm optimization algorithm (GSO) inspired

by the luminescence capability of glowworms. Chu et al.

[40] developed cat swarm optimization algorithm (CSO)

by observing the seeking and tracing mode of cats. Gan-

domi and Alavi [41] proposed Krill Herd (KH) based on

the simulation of the herding behavior of krill individuals.

Gheraibia and Moussaoui [42] proposed penguins search

optimization algorithm (PeSOA) based on collaborative

hunting strategy of penguins. Meng et al. [43] inspired by

the hierarchal order in the chicken swarm and the behaviors

of the chicken swarm, introduced Chicken swarm opti-

mization algorithm (CSOa). Bansal et al. [44] proposed a

new swarm approach named spider monkey optimization

algorithm (SMO) by modeling the foraging behavior of

spider monkeys.

The BA is one of the newest swarm-intelligence-based

algorithms proposed by Yang in 2010 [15], based on the

intelligent echolocation behavior of bats when catching

their prey. In recent years, the BA has become a popular

bio-inspired algorithm and one can easily understand that

the BA is applied to solve a large variety of optimization

problems, while many researchers have provide a wide

range of contributions to the literature. Gandomi et al. [45]

focused on solving constrained optimization tasks by using

BA. Khan et al. [46] proposed a fuzzy modification of BA

for clustering of company workplaces. Tamiru and Hashim

[47] used fuzzy systems for modeling energy destructions

in the components of an industrial gas turbine. Yılmaz and

Table 1 The computation time estimated if one tour requires 1 ns

Number of cities Number of tours Time in years

20 6.08E?16 2

25 3.1E?23 9.84E?6

30 4.4E?30 1.4E?14

35 1.48E?38 4.68E?21

40 1.02E?46 3.23E?29

1854 Neural Comput & Applic (2016) 27:1853–1866

123

küçüksille [48] suggested three different methods to

enhance the local and global search of BA, and they

employed both standard test functions and constrained real-

world problems to validate the performance of their

approaches. Nguyen et al. [49] hybridized BA with ABC

algorithm and four benchmark functions are used to test the

convergence of the proposed method. Pan et al. [50]

applied the concepts of parallel processing and communi-

cation strategy to hybrid PSO with BA and six benchmark

functions are tested to validate the approached method.

Wang et al. [51] employed a Gaussian walk with BA to

improve the local search capability, and they modified the

velocity equation to assure a good exploitation. Gandomi

and Yang [52] introduced chaos mechanism into BA to

improve the global search mobility of BA and optimized a

set of benchmark problems with different chaotic maps.

Mirjalili el al. [53] proposed a binary BA for unimodal,

multimodal, and composite functions. Besides that, BA

was applied to solve many other optimization problems

which more detailed in [54]. However, the application of

the standard BA algorithm to solve discrete problems

remains limited until 2012, when Nakamura et al. [55]

introduced the first binary version of BA to solve feature

selection problems. A few years ago, some recent research

focused on BA in combinatorial optimization problems,

such as Xie et al. [56] introduced a differential Lévy-flights

BA to minimize the permutation flow shop problem. Sabba

and Chikhi [57] used the sigmoid function to propose a

discrete binary BA for solving the multidimensional

knapsack problem. Büyüksaatçı [58] used BA to solve the

single-row facility layout problem. Fister et al. [59] pro-

posed a modified BA for planning the sports training ses-

sions, etc.

3 Bat-inspired algorithm

Recently, a new metaheuristic search algorithm is pre-

sented by Yang in 2010 [15], called the bat-inspired

algorithm or BA [60]. The bat-inspired search is based on

the echolocation behavior of bats to find the prey and

discriminate different types of insects even in complete

darkness with varying pulse rates of emission and loud-

ness. They achieve this by emitting calls out to the

environment and listening to the echoes that bounce back

from them. They are able to identify location of other

objects and to measure the distance from the targets by

following delay of the returning sound. These emitting

calls are very loud sound pulses that vary in properties

according to their hunting strategies and depend on the

species. The echolocation pulses are characterized by

three features: pulse frequency, pulse emission rate, and

loudness or intensity. The bats emit echolocation pulses

with varying frequencies between 25 and 150 kHz

depending on proximity of the target [15]. The pulse rate

corresponds to the number of pulses emitted per second,

and it can also be adapted by bats according to how far

they are away from the target object and this pulse rate

can be sped up to 200 pulses per second when

approaching a target. Finally, bats decrease the intensity

(loudness) of pulse from 120 (loudest) to 50 dB (quietest)

as they come closer to their prey. Yang in [15] idealized

echolocation behavior of bats and its associated parame-

ters in a numerical optimization algorithm. The BA

algorithm has been empirically tested and compared with

other existing algorithms using some single and multi-

objective standard functions of unconstrained optimiza-

tion in [15, 60]. Furthermore, Yang and Gandomi [16, 45]

validated the performance of BA in benchmark problems

of constrained engineering optimization. These studies

have clearly demonstrated a better efficiency of the bat-

inspired algorithm over other methods.

The basic BA developed by Xin-She Yang [15] is

described in following steps:

1. All bats use echolocation to sense distance, and they

also ‘‘know’’ the difference between food/prey and

background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a

fixed frequency fmin, varying wavelength k and loud-

ness A0 to search for prey. They can automatically

adjust the wavelength (or frequency) of their emitted

pulses and adjust the rate of pulse emission r in the

range of [0, 1], depending on the proximity of their

target

3. Although the loudness can vary in many ways, we

assume that the loudness varies from a large (positive)

A0 to a minimum constant value Amin.

Neural Comput & Applic (2016) 27:1853–1866 1855

123

Algorithm 1: Pseudo-code of bat algorithm (BA)

1. Objective function f (x), x = (x1, ...,xd)T

2. Initialize the bat population xi (i = 1,2, ...,n) and vi
3. Define pulse frequency fi at xi
4. Initialize pulse rates ri and the loudness Ai
5. while (t <Max number of iterations)
6. Generate new solutions by adjusting frequency,
7. and updating velocities and locations/solutions [equations (1) to (3)]
8. if (rand > ri)
9. Select a solution among the best solutions
10. Generate a local solution around the selectedbest solution
11. end if
12. Generate a new solution by flying randomly
13. if (rand < Ai & f (xi) < f (x))
14. Accept the new solutions
15. Increase ri and reduce Ai
16. end if
17. Rank the bats and find the current best x
18. end while
19. Post process results and visualization

First, initializing bat population: position xi, velocity vi
and frequency fi. The movement of the virtual bats is given

by updating their velocities vi
t and positions xi

t at time step t

using Eqs. 1–3, as follows:

fi ¼ fmin þ fmax�fminð Þb; ð1Þ

vti ¼ vt�1
i þ xt�1

i � x�
� �

fi; ð2Þ

xti ¼ xt�1
i þ vti; ð3Þ

where b [[0, 1] denotes a randomly generated vector from

uniform distribution.

The variable x* denotes the current global best location

(solution), which is located after comparing all the solu-

tions provided by the m bats.

Second, a random number is applied; if this random

number verifies the condition in Line 8 of Algorithm 1 and

after selection of one solution among the current best

solutions of bat, a new solution will be accepted around the

current best solutions; it can be represented by:

xnew ¼ xold þ eAt; ð4Þ

where e [[-1, 1] is a random number, while At =\Ai
t[is

the average loudness of all the bats at current generation.

Third, the loudness Ai and the pulse emission rate ri will

be updated, and a solution will be accepted if a random

number is less than loudness Ai and f xið Þ\f ðx�Þ. Ai and ri
are updated by:

Atþ1
i ¼ aAt

i; ð5Þ

rtþ1
i ¼ r0i 1� exp �ctð Þ½ �; ð6Þ

where a, c are constants and f(�) is fitness function. The

algorithm repeats until maximal number of cycles is

reached.

4 The travelling salesman problem

The travelling salesman problem was introduced in 1800s

by the Irish mathematician W.R. Hamilton and the British

mathematician Thomas Kirkman; it can be stated as a

permutation problem with the objective of finding a

shortest closed tour which visits all the cities in a given set;

TSP can be modeled as completely connected graph in a D-

dimensional Euclidean space (D is size of the problem),

which cities are the graph’s vertices, paths are the graph’s

edges, and a path’s distance is the edge’s length. Mathe-

matically, it can be defined as given a set of n cities, named

{c1, c2,…, cn}, and permutations p1,…, pn, the goal is to

find a number of permutation pi = {c1, c2, …, cn}, such

that minimizes f(p) the sum of all Euclidean distances d

between each city from the same path p and it is given as

follows:

f pð Þ ¼
Xn�1

i¼1

dpðiÞpðiþ1Þ þ dpðnÞpð1Þ ð7Þ

The Euclidean distance d, between any two cities with

coordinate (x1, y1) and (x2, y2) is calculated by:

d ¼
ffi
x1 � x2ð Þ2þ y1 � y2ð Þ2

q
ð8Þ

Broadly, the TSP is classified as STSP. In this sym-

metric TSP variation, all of the edge costs are symmetric.

This means that, for all vertices in the graph, the cost

incurred, when moving from vertex i to vertex j, is the

same as the cost incurred when moving from vertex j to

vertex i, i.e., dij = dji.

5 Discrete bat algorithm for STSP

Generally, the optimization problems can be divided into

two main classes, continuous and discrete [61, 62]. An

optimization problem with real decision variables is known

as a continuous optimization problem, whereas it is called

discrete optimization problem if decision variables take

discrete (usually integer) values. Moreover, in discrete

problems, the set of feasible solutions is discrete or can be

reduced to a discrete one by the discretization of the con-

tinuous space. Basically, the BA has been developed to

optimize continuous nonlinear functions [15, 16] in which,

each bat moves in search space toward continuous valued

position, but many problems are, however, defined for

discrete valued spaces where the domain of the variables is

finite. Typically, many bio-inspired population-based

1856 Neural Comput & Applic (2016) 27:1853–1866

123

algorithms have been shown a good efficiency in solving

continuous problems as well as to solve discrete problem

like BA [15], CS [14], and PSO [37]. In the original ver-

sions of these algorithms, it is impossible to exploit them

directly to solve discrete problems; So many researchers

have modified these last algorithms to deal with discrete

problems and we can cite some of them: binary bat algo-

rithm (BBA) [55], discrete cuckoo search (DCS) [34], and

discrete binary particle swarm optimization (DBPSO) [63].

In this paper, we propose a novel DBA to solve espe-

cially the symmetric TSP problem. The DBA saves the

original concept and the same steps of the basic BA

algorithm, but modifies some equations to shift to discrete

space. So the following subsections describe briefly the

various steps of extending version of BA to solve TSP.

5.1 Position and velocity representation

In the literature, there are many representations to define a

TSP position (solution) in search space, i.e., path repre-

sentation, adjacency representation, ordinal representation,

matrix representation, and binary representation [64]. In

basic BA, the position xi of each virtual bat defines a

potential solution to problem; to find the best solution, each

bat adjusts its velocity by randomly selecting frequency fi
of sonic wave. On the other hand, each bat uses the pulse

emission rate ri and loudness Ai to control the intensive

local search that is processed to generate a new individual

around the current global best solution. So, in this study,

the solution of n cities found by the ith bat is represented

by a n-dimensional vector xi = (xi1, xi2,…, xin). The

velocity vi is viewed as a set of permutation pi = {c1,

c2, …, cn}, which allows being close to the global best

solution x* = (x*1, x*2,…, x*n).

5.2 Position updating equation

In continuous BA, the bats’ movement is calculated by the

three previous Eqs. 1–3. By using Eqs. 1 and 2, each bat

updates its velocity. The resulting value is applied in Eq. 3

to calculate the next position of each individual. However,

in order to apply BA to solve TSP, these equations cannot

be used directly and must be adapted to the problem.

In the same way as the standard BA, each bat selects a

frequency fi in the range of frequency [fmin, fmax], where

fmin and fmax are two integers in the range [1, n], n denotes

the number of cities. The frequency fi denotes the number

of cities of sub-tour saved from the current solution xi
t

when this last one crosses with the current global best

solution x*
t . The velocity vi

t consists of a set of permuta-

tions that allow crossing two solutions xi
t and x*

t , while

respecting 2-exchange crossover heuristic algorithm as

described in [65].

The 2-exchange crossover mechanism can be illustrated

by an example in Fig. 1. In this example, we take the

frequency f = 2 and the distance matrix D defined as

below. For this example, we consider two solutions x1, x2
and we want to cross them together to get a new solution.

In the beginning, we start by saving the f first cities from x1
and mark it as already assigned in x2. Next, the new

solution is initialized by the cities saving in x1. After this,

we continue to concatenate the last city of the new solution

by the closest city either from x1 or x2. During the con-

struction process of the new solution, it is necessary to

ensure that the two candidate cities chosen from x1 and x2
not be already marked in the new solution.

D ¼

0

5

:
9
:
4

:
0
3
12

:
:

11

:
0:
1

2

:
:
11
0

:
5

4

12

:
7

0

:

:
1

::
8

0

0

BBBBB@

1

CCCCCA

f =2

x1 6 2 1 3 4 5 x2 6 5 2 1 3 4

x1 6 2 1 3 4 5 x2 6 5 2 1 3 4

if d(2,1) <d(2,5) then choose 1 else choose 5.
v= null

xnew 6 2 1

x1 6 2 1 3 4 5 x2 6 5 2 1 3 4

if d(1,3) <d(1,5) then choose 3 else choose 5 .
v1= {5,3}

xnew 6 2 1 5

x1 6 2 1 3 4 5 x2 6 5 2 1 3 4

if d(5,3) <d(5,3) then choose 3 else choose 3.
v2={ 3,4}

xnew 6 2 1 5 3

x1 6 2 1 3 4 5 x2 6 5 2 1 3 4

xnew 6 2 1 5 3 4

xnew 6 2 1 5 3 4

So v= {v1, v2 }= {(5,3), (3,4)}
xnew= x1 v.⊕

Fig. 1 An example of 2-exchange crossover heuristic for TSP

Neural Comput & Applic (2016) 27:1853–1866 1857

123

5.3 The neighborhood search

The definition of a neighborhood is important for combi-

natorial problems as well as continuous problems. Typi-

cally, neighborhood search or local search procedure is

frequently used for iteratively improving a solution. In the

context of the TSP, that means to search the better solution

in the neighborhood of the existing solution by making the

minimum changes on the last one. The most popularly

local search procedure is 2-opt, where two edges are

exchanged iteratively until no further improvement is

possible as showing in Fig. 2, in which (A) represents

initial tour and (B) new tour. The tour (B) is created by

taking two pairs of consecutive nodes, pairs (c, d) and (a,

b) from the tour (A) and checking if the distance (cd ? ab)

is higher than (cb ? ad), if that is the case, then exchange

nodes a and c in pairs (c, d) and (a, b).

5.4 Discrete bat algorithm

This subsection describes briefly the various steps of

extending version of BA to solve TSP and recalls the basic

terminology used in the previous subsections. Steps of the

proposed algorithm DBA are presented below, and the

DBA algorithm is summarized in Algorithm 2.

Step 1: Initialize the size of bat population. Generate a

random starting position xi for each bat. Initialize the

emission rates ri [[0.0, 1.0] and the loudness

Ai [[0.0, 1.0]. Define pulse frequency fmin and fmax in

range [1, n].

Step 2: Calculate the global best solution.

Step 3: For each bat, generate new solutions by

adjusting frequency Eq. 1, and updating velocities and

locations/solutions, by using the following equations:

vti ¼ v xt�1
i ; x�; fi

� �
; ð9Þ

xti ¼ / xt�1
i ; vti

� �
; ð10Þ

where the function v(cross) takes three input arguments

(two solutions and one integer) and returns a set of per-

mutations reached by applying 2-exchange crossover

mechanism described in Sect. 5.2. The function /(sort)
returns a new solution obtained by sorting the elements of

xi
t-1 according to the permutations vi

t.

Step 4: A random number is applied; if it is upper to ri,

then select a solution among the best solutions. Generate a

local solution by exchanging two arcs from the selected

best solution.

Step 5: Evaluate the new solution according to the

Eqs. 7, 8.

Step 6: Generate a new solution by flying randomly.

Step 7: Generate a random number, if this number is

less than loudness Ai and the last evaluated solution is

better than the best solution so accept the new solutions.

Step 8: Stop the algorithm if the maximal number of

iterations is reached. Return to Step 3 otherwise.

1. Objective function f (x), x = (x1, ...,xd)T

2. Initialize the size of bat population.
3. Generate a random starting position ix for each bat.
4. Initialize the emission rates ir and the loudness iA
5. Define Pulse frequency minf and maxf max min()f f as integers in

range 1, n .
6. while (t <Max number of iterations)
7. Generate new solutions by adjusting frequency,
8. and updating velocities and locations/solutions [Eqs (1) , (9) and (10)]
9. if (rand > ri)
10. Select a solution among the best solutions
11. Generate a local solution by exchanging 2 arcs from the selected best

solution.
12. end if
13. Evaluate the new solution (()i ifitness f x=) according to the Eqs. (7, 8).
14. Generate a new solution by flying randomly.
15. if (rand < Ai & fitnessi < f (x))
16. Accept the new solutions
17. Increase ri and reduce Ai
18. end if
19. Rank the bats and find the current best x
20. end while
21. Post process results and visualization

Algorithm 2: Pseudo-code of discrete bat algorithm (DBA)

Fig. 2 2-Opt move: a original tour and b resulting tour

Table 2 The parameters of the problem

Parameter Value

Population size: m 15

Emission rates ri 0.5, ri [[0.0, 1.0]

Loudness Ai 0.5, Ai [[0.0, 1.0]

Minimal frequency fmin 1; ðfmin 2 N=1� fmin � nÞ
Maximal frequency fmax 5; ðfmax 2 N=fmin\fmax � nÞ
Maximal number of iterations tmax 200

1858 Neural Comput & Applic (2016) 27:1853–1866

123

Table 3 Results of the DBA algorithm for symmetric instances from TSPLIB

Instance Optimal Best Worst Average Std PDav(%) PDbest (%) C1%/Copt Time(s)

eil51 426 426 426 426 0.00 0.00 0.00 30/30 0.20

berlin52 7542 7542 7542 7542 0.00 0.00 0.00 30/30 0.03

st70 675 675 675 675 0.00 0.00 0.00 30/30 0.43

pr76 108,159 108,159 108,159 108,159 0.00 0.00 0.00 30/30 0.57

eil76 538 538 542 538.76 1.16 0.14 0.00 30/19 1.54

kroA100 21,282 21,282 21,282 21,282 0.00 0.00 0.00 30/30 1.36

kroB100 22,141 22,141 22,141 22,141 0.00 0.00 0.00 30/30 3.35

kroC100 20,749 20,749 20,880 20,753.36 23.51 0.02 0.00 30/29 2.51

kroD100 21,294 21,294 21,374 21,303.50 23.92 0.04 0.00 30/24 7.55

kroE100 22,068 22,068 22,140 22,080.76 21.98 0.05 0.00 30/22 11.12

eil101 629 629 637 632.43 2.77 0.54 0.00 24/5 17.09

lin105 14,379 14,379 14,379 14,379 0.00 0.00 0.00 30/30 2.27

pr107 44,303 44,303 44,482 44,360.8 56.57 0.13 0.00 30/11 18.01

pr124 59,030 59,030 59,076 59,037.66 17.14 0.012 0.00 30/25 2.57

bier127 118,282 118,282 118,693 118,385.66 155.66 0.08 0.00 30/20 19.14

ch130 6110 6110 6155 6124.1 8.51 0.23 0.00 30/4 13.68

pr136 96,772 96,772 97,468 96,995 202.54 0.23 0.00 30/4 22.10

pr144 58,537 58,537 58,537 58,537 0.00 0.00 0.00 30/30 2.12

ch150 6528 6528 6584 6550.3 13.94 0.34 0.00 30/5 25.70

kroA150 26,524 26,524 26,649 26,560.2 40.55 0.13 0.00 30/3 21.75

kroB150 26,130 26,130 26,266 26,146.63 33.49 0.06 0.00 30/4 22.17

pr152 73,682 73,682 73,818 73,759.06 67.39 0.10 0.00 30/13 15.24

rat195 2323 2324 2360 2340.7 8.04 0.76 0.04 22/0 42.30

d198 15,780 15,780 15,870 15,802.83 21.31 0.14 0.00 30/3 38.75

kroA200 29,368 29,368 29,740 29,449.23 85.68 0.27 0.00 28/2 46.97

kroB200 29,437 29,439 29,703 29,527.4 74.26 0.30 0.00 30/0 53.10

ts225 126,643 126,643 126,643 126,643 0.00 0.00 0.00 30/30 18.24

tsp225 3916 3916 3990 3944.8 19.80 0.73 0.00 20/1 80.61

pr226 80,369 80,369 80,770 80,409.1 93.49 0.04 0.00 30/17 44.89

gil262 2378 2380 2410 2390.7 9.20 0.53 0.08 25/0 81.25

pr264 49,135 49,135 49,378 49,167.9 73.78 0.06 0.00 30/23 64.51

a280 2579 2579 2611 2, 586.83 8.94 0.30 0.00 28/6 98.09

pr299 48,191 48,191 48,552 48,311.7 82.73 0.25 0.00 30/1 102.64

lin318 42,029 42,154 42,713 42,462.16 137.66 1.03 0.29 12/0 120.14

rd400 15,281 15,336 15,574 15,465.3 51.78 1.20 0.35 7/0 194.11

fl417 11,861 11,865 11,921 11,884.1 10.41 0.19 0.03 30/0 112.36

pr439 107,217 107,291 108,775 107,683.33 351.44 0.43 0.06 27/0 223.09

rat575 6773 6862 6952 6903.83 22.73 1.93 1.31 0/0 423.56

rat783 8806 8948 9056 9010.4 27.72 2.32 1.61 0/0 758.49

pr1002 259,045 266,146 266,505 266,412.8 82.58 0.03 0.02 30/0 1195.20

nrw1379 56,638 58,188 58,404 58,299 76.97 2.93 2.73 0/0 1863.12

Neural Comput & Applic (2016) 27:1853–1866 1859

123

6 Numerical results and performance
comparisons

To validate its performances, the proposed algorithm has

been tested on 41 symmetric benchmarks of TSP taken from

TSPLIB library [35], ranging from 51 to 1379 cities and

each instance is run independently for 30 times. The DBA is

coded in MATLAB R2010a, and the experiment has been

made on a PC with processor Intel(R) Core(TM) 2 Duo CPU

T4300@ 2.1 GHZ 800 MHz and 2.00 GB of RAM. Table 2

summarizes the simulation parameter values used for the

experiments of DBA algorithm. Table 3 shows the numer-

ical results of DBA algorithm (A number shown in bold in

Table 3 indicates that DBA reaches the optimal solution of

the tested instance). These results are obtained by calcu-

lating the Euclidean distances between all edges. The first

column indicates the instance name ended by the number of

cities, the second column stands for the best known from

TSPLIB, the third column indicates the best results obtained

by DBA, the fourth one represents the worst results

obtained, the fifth column indicates the average solutions

length found, the sixth column denotes the standard devia-

tion of solutions obtained by the DBA algorithm over 30

independent runs, and the seventh and the eighth columns

show, respectively, the percentage deviation of the average

solution length over the optimal length of 30 runs

‘‘PDav(%),’’ and the percentage deviation of the best solu-

tion length found over the optimal solution length of 30 runs

‘‘PDbest(%)’’. In the ninth column, C1% is the number of

solutions (over 30 runs) for which the deviation from the

optimal solution is less than or equal to 1 and ‘‘Copt’’ is the

number of the optimal solutions. The last column gives the

average elapsed time in second during 30 runs.

The percentage deviation of a solution to the optimal

solution is calculated by the following formula:

PDsolutionð%Þ

¼ ðsolution length� optimal solution lengthÞ
optimal solution length

� 100

Furthermore, the pulse emission rate and loudness are

used to control the intensive local search, which allows

generating new solutions around the current global best

solution. The choice of these parameters values has a critical

role in the performance of the algorithm, and the quality of

solutions found. The preliminary experiments in Fig. 3

show that a larger emission rate value as well as small

loudness value can provide a premature convergence toward

undesirable solutions. Therefore, as shown from Fig. 4, it is

preferred to use a small value of emission rate and loudness,

typically equal to 0.5, to provide a trade-off between

emission rate and loudness and give good solutions.

Additionally, in order to evaluate the performance and

to give more credibility of our results, Tables 4, 5 and 6

make respectively a fair comparison of the DBA results

with those of the both algorithms discrete particle swarm

optimization (DPSO) [33], genetic simulated annealing ant

colony system with particle swarm optimization techniques

(GSA-ACS-PSOT) [66] and improved DCS [34] as pre-

sented in their original papers.

According to the values displayed in Table 3, we can

see that the DBA can reach the optimal solutions of

73.17 % from all tested instances and 92.68 % of the

values of PDbest(%) are less than 0.4 %, which means

that the solutions found by the proposed DBA algorithm

over 30 runs, are very close to the optimal solutions

known. Furthermore, the average error rate PDav(%) of

0.00 % value indicates that all the solutions found over 30

runs are the same as the optimal solutions known. Indeed,

the experimental results presented in Table 3 have shown

that the DBA is very efficient for solving small-size as

well as large-size instances of TSP problem in a reason-

able time.

Tables 4, 5 and 6 present the test results for 41 instances

over 30 runs of DBA compared, respectively, to DPSO

[33], GSA-ACS-PSOT [66], and improved DCS [34] (the

optimal solutions found by these algorithms are presented

as bold). For the five compared instances in Table 4, the

DBA algorithm can find the best solutions of all instances

with a success rate of 100 % and it is clearly seen that DBA

outperforms DPSO. Moreover, the Table 5 reports the best

and the average solutions found by the DBA algorithm and

the GSA-ACS-PSOT algorithms, respectively. For 18 tes-

ted instances, the DBA finds 16 optimal solutions in front

of 11 optimal solutions found by GSA-ACS-PSOT and the

average of all standard deviations of DBA/GSA-ACS-

PSOT is equal to 34.61/161.55. Also, the DBA reaches the

optimal solution over 30 trails for five times; however,

GSA-ACS-PSOT does not exceed one instance. Figure 5

shows evidently that the curve associated with DBA is

better in terms of solutions quality compared to GSA-ACS-

PSOT. Furthermore, Table 6 indicates experimental results

found by DBA and improved DCS for 21 instances of the

TSPLIB ranging from 107 to 1379 cities. For these

instances, the DBA algorithm finds the best solutions for 12

instances over the 21 tested instances, while improved DCS

finds the best solutions only for nine instances and the

average of all standard deviations of DBA/improved DCS

is equal to 61.16/121.20. The displayed results in Fig. 6

show that the solutions of the DBA and the improved DCS

are very close in the eleventh first instances; however,

DBA outperforms clearly improved DCS for the rest large-

size instances.

1860 Neural Comput & Applic (2016) 27:1853–1866

123

Fig. 3 The best lengths found of eil51, st70 eil76, eil101, kroA100, kroB100, kroC100, kroD100, kroE100 and d198 when ri and Ai varying

between 0 and 1

Neural Comput & Applic (2016) 27:1853–1866 1861

123

7 Conclusion

This paper has proposed a DBA to solve the STSP. In this

discrete version, we were based on basic bat algorithm as it

is defined in inspiration sources, where we have extended

some conventional BA operators to deal with a discrete

optimization problem. The proposed discrete algorithm has

been evaluated through its application to solve different

instances of the STSP and its performance has been com-

pared with DPSO [33], GSA-ACS-PSOT [66], and

improved DCS [34]. The computational results revealed

that our proposed DBA performs all compared algorithms

to solve STSP. There are a number of directions that can be

taken in our future research. The first one is to extend the

DBA to solve other NP-hard combinatorial optimization

problems, such as vehicle routing problem, scheduling

problems, quadratic assignment problem, and many others.

Another direction is to examine some discretization

methods and encoding strategies used to switch between

the continuous and the discrete search space, such as the

Fig. 4 The best lengths found of eil51, st70 eil76, eil101, kroA100, kroB100, kroC100, kroD100, kroE100 and d198 when ri = 0.5 and Ai = 0.5

Table 4 Comparison of

computational results of DBA

algorithm and DPSO [33]

Instance Optimal DBA DPSO

Best Worst PDav(%) Best Worst PDav(%)

eil51 426 426 426 0.00 427 452 2.57

berlin52 7542 7542 7542 0.00 7542 8362 3.84

st70 675 675 675 0.00 675 742 3.34

pr76 108,159 108,159 108,159 0.00 108,280 124,365 3.81

eil76 538 538 542 0.14 546 579 4.16

1862 Neural Comput & Applic (2016) 27:1853–1866

123

Table 5 Comparison of computational results of DBA algorithm and GSA-ACS-PSOT [66]

Instance Optimal DBA GSA-ACS-PSOT

Best Average PDav(%) Std Best Average PDav(%) Std

eil51 426 426 426 0.00 0.00 427 427.27 0.29 0.45

berlin52 7542 7542 7542 0.00 0.00 7542 7542 0.00 0.00

eil76 538 538 538.76 0.14 1.16 538 540.20 0.40 2.94

kroA100 21,282 21,282 21,282 0.00 0.00 21,282 21,370.47 0.41 123.36

kroB100 22,141 22,141 22,141 0.00 0.00 22,141 22,282.87 0.64 183.99

kroC100 20,749 20,749 20,753.36 0.02 23.51 20,749 20,878.97 0.62 158.64

kroD100 21,294 21,294 21,303.50 0.04 23.92 21,309 21,620.47 1.53 226.60

kroE100 22,068 22,068 22,080.76 0.05 21.98 22,068 22,183.47 0.52 103.32

eil101 629 629 632.43 0.54 2.77 630 635.23 0.99 3.59

lin105 14,379 14,379 14,379 0.00 0.00 14,379 14,406.37 0.19 37.28

bier127 118,282 118,282 118,385.66 0.08 155.66 118,282 119,442.83 0.98 580.83

ch130 6110 6110 6124.1 0.23 8.51 6141 6205.63 1.56 43.70

ch150 6528 6528 6550.3 0.34 13.94 6528 6563.70 0.54 22.45

kroA150 26,524 26,524 26,560.2 0.13 40.55 26,524 26,899.20 1.41 133.02

kroB150 26,130 26,130 26,146.63 0.06 33.49 26,130 26,448.33 1.21 266.76

kroA200 29,368 29,368 29,449.23 0.27 85.68 29,383 29,738.73 1.26 356.07

kroB200 29,437 29,439 29,527.4 0.30 74.26 29,541 30,035.23 2.03 357.48

lin318 42,029 42,154 42,462.16 1.03 137.66 42,487 43,002.09 2.31 307.51

Table 6 Comparison of

computational results of DBA

algorithm and improved DCS

[34]

Instance Optimal DBA Improved DCS

Best Worst PDav(%) Std Best Worst PDav(%) Std

pr107 44,303 44,303 44,482 0.13 56.57 44,303 44,358 0.00 12.90

pr124 59,030 59,030 59,076 0.012 17.14 59,030 59,030 0.00 0.00

pr136 96,772 96,772 97,468 0.23 202.54 96,790 97,318 0.24 134.43

pr144 58,537 58,537 58,537 0.00 0.00 58,537 58,537 0.00 0.00

pr152 73,682 73,682 73,818 0.10 67.39 73,682 73,682 0.00 0.00

rat195 2323 2324 2360 0.76 8.04 2324 2357 0.81 8.49

d198 15,780 15,780 15,870 0.14 21.31 15,781 15,852 0.17 17.02

ts225 126,643 126,643 126,643 0.00 0.00 126,643 126,810 0.01 44.59

tsp225 3916 3916 3990 0.73 19.80 3916 3997 1.09 20.73

pr226 80,369 80,369 80,770 0.04 93.49 80,369 80,620 0.02 60.31

gil262 2378 2380 2410 0.53 9.20 2382 2418 0.68 9.56

pr264 49,135 49,135 49,378 0.06 73.78 49,135 49,692 0.24 159.98

a280 2579 2579 2611 0.30 8.94 2579 2623 0.51 11.86

pr299 48,191 48,191 48,552 0.25 82.73 48,207 48,753 0.58 131.79

rd400 15,281 15,336 15,574 1.20 51.78 15,447 15,704 1.65 60.56

fl417 11,861 11,865 11,921 0.19 10.41 11,873 11,975 0.41 20.45

pr439 107,217 107,291 108,775 0.43 351.44 107,447 109,013 0.69 438.15

rat575 6773 6862 6952 1.93 22.73 6896 7039 2.71 35.74

rat783 8806 8948 9056 2.32 27.72 9043 9171 3.44 38.09

pr1002 259,045 266,146 266,505 0.03 82.58 266,508 271,660 3.70 1126.86

nrw1379 56,638 58,188 58,404 2.93 76.97 58,951 59,837 4.78 213.89

Neural Comput & Applic (2016) 27:1853–1866 1863

123

smallest position value method, the random-key encoding

scheme, the great value priority method, and the sigmoid

function. Finally, it may also be interesting to hybrid the

DBA with other heuristics or metaheuristics and to analyze

the performance of each algorithm in solving TSP problem.

References

1. Holland JH (1975) Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence. University of Michigan Press, Ann Arbor

2. Schwefel H-P (1981) Numerical optimization of computer

models. Wiley, London

3. Kirkpatrick S (1984) Optimization by simulated annealing:

quantitative studies. J Stat Phys 34(5–6):975–986

4. Kennedy J (2010) Particle swarm optimization. Encyclopedia of

machine learning. Springer, Berlin, pp 760–766

5. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimiza-

tion by ant colonies. In: Proceedings of the first European con-

ference on artificial life. Paris, France, pp 134–142

6. Wolsey LA, Nemhauser GL (2014) Integer and combinatorial

optimization. Wiley, London

7. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimiza-

tion: algorithms and complexity. Courier Dover Publications,

Mineola

8. Wong W (1995) Matrix representation and gradient flows for NP-

hard problems. J Optim Theory Appl 87(1):197–220

9. Dorigo M, Birattari M (2010) Ant colony optimization. Ency-

clopedia of machine learning. Springer, Berlin, pp 36–39

10. Poli R, Kennedy J, Blackwell T (2007) Particle swarm opti-

mization. Swarm Intell 1(1):33–57

11. Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-

enhanced accelerated particle swarm optimization. Commun

Nonlinear Sci Numer Simul 18(2):327–340

12. Lučić P, Teodorović D (2003) Computing with bees: attacking

complex transportation engineering problems. Int J Artif Intell

Tools 12(03):375–394

13. Yang X-S (2009) Firefly algorithms for multimodal optimization.

Stochastic algorithms: foundations and applications. Springer,

Berlin, pp 169–178

14. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo

search. Int J Math Model Numer Optim 1(4):330–343

15. Yang X-S (2010) A new metaheuristic bat-inspired algorithm.

Nature inspired cooperative strategies for optimization (NICSO

2010). Springer, Berlin, pp 65–74

16. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach

for global engineering optimization. Eng Comput 29(5):464–483

17. Arora S (1998) Polynomial time approximation schemes for

Euclidean traveling salesman and other geometric problems.

J ACM (JACM) 45(5):753–782

18. Bland RG, Shallcross DF (1989) Large travelling salesman

problems arising from experiments in X-ray crystallography: a

preliminary report on computation. Oper Res Lett 8(3):125–128

PD
av

 (%
)

DBA GSA-ACS-PSOT

0

0.5

1

1.5

2

2.5Fig. 5 PDav(%) (over 30 run)

for 18 instances from TSPLIB

0

1

2

3

4

5

6

PD
av

 (%
)

DBA Improved DCS

Fig. 6 PDav(%) (over 30 run)

for 21 instances from TSPLIB

1864 Neural Comput & Applic (2016) 27:1853–1866

123

19. Lenstra JK, Kan AR (1975) Some simple applications of the

travelling salesman problem. Oper Res Q 717–733

20. Grötschel M, Jünger M, Reinelt G (1991) Optimal control of

plotting and drilling machines: a case study. Math Methods Oper

Res 35(1):61–84

21. Ratliff HD, Rosenthal AS (1983) Order-picking in a rectangular

warehouse: a solvable case of the traveling salesman problem.

Oper Res 31(3):507–521

22. Zachariasen M, Dam M (1996) Tabu search on the geometric

traveling salesman problem. Meta-heuristics. Springer, Berlin,

pp 571–587

23. Chen Y, Zhang P (2006) Optimized annealing of traveling

salesman problem from the nth-nearest-neighbor distribution.

Phys A 371(2):627–632

24. Potvin J-Y (1996) Genetic algorithms for the traveling salesman

problem. Ann Oper Res 63(3):337–370

25. Qu L, Sun R (1999) A synergetic approach to genetic algorithms

for solving traveling salesman problem. Inf Sci 117(3):267–283

26. Marinakis Y, Migdalas A, Pardalos PM (2005) Expanding

neighborhood GRASP for the traveling salesman problem.

Comput Optim Appl 32(3):231–257

27. Dorigo M, Gambardella LM (1997) Ant colony system: a coop-

erative learning approach to the traveling salesman problem. Evol

Comput IEEE Trans 1(1):53–66

28. Dorigo M, Gambardella LM (1997) Ant colonies for the travel-

ling salesman problem. BioSystems 43(2):73–81

29. Liu A, Deng G, Shan S (2006) Mean-contribution ant system: an

improved version of ant colony optimization for traveling sales-

man problem. Simulated evolution and learning. Springer, Berlin,

pp 489–496

30. Manfrin M, Birattari M, Stützle T, Dorigo M (2006) Parallel ant

colony optimization for the traveling salesman problem. Ant

colony optimization and swarm intelligence. Springer, Berlin,

pp 224–234

31. Clerc M (2004) Discrete particle swarm optimization, illustrated

by the traveling salesman problem. New optimization techniques

in engineering. Springer, Berlin, pp 219–239

32. Li X, Tian P, Hua J, Zhong N (2006) A hybrid discrete particle

swarm optimization for the traveling salesman problem. Simu-

lated evolution and learning. Springer, Berlin, pp 181–188

33. Shi XH, Liang YC, Lee HP, Lu C, Wang Q (2007) Particle swarm

optimization-based algorithms for TSP and generalized TSP. Inf

Process Lett 103(5):169–176

34. Ouaarab A, Ahiod B, Yang X-S (2014) Discrete cuckoo search

algorithm for the travelling salesman problem. Neural Comput

Appl 24(7–8):1659–1669

35. Reinelt G (1991) TSPLIB—a traveling salesman problem library.

ORSA J Comput 3(4):376–384

36. Karaboga D, Basturk B (2007) A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm. J Global Optim 39(3):459–471

37. Kenndy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of IEEE International Conference on Neural Net-

works. pp 1942–1948

38. Passino KM (2002) Biomimicry of bacterial foraging for dis-

tributed optimization and control. Control Syst IEEE

22(3):52–67. doi:10.1109/MCS.2002.1004010

39. Krishnanand K, Ghose D (2009) Glowworm swarm optimization

for simultaneous capture of multiple local optima of multimodal

functions. Swarm Intell 3(2):87–124

40. Chu S-C, Tsai P-W, Pan J-S (2006) Cat swarm optimization.

PRICAI 2006: trends in artificial intelligence. Springer, Berlin,

pp 854–858

41. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired

optimization algorithm. Commun Nonlinear Sci Numer Simul

17(12):4831–4845

42. Gheraibia Y, Moussaoui A (2013) Penguins search optimization

algorithm (PeSOA). Recent trends in applied artificial intelli-

gence. Springer, Berlin, pp 222–231

43. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired

algorithm: chicken swarm optimization. Advances in swarm

intelligence. Springer, Berlin, pp 86–94

44. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey

optimization algorithm for numerical optimization. Memetic

Comput 6(1):31–47

45. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat

algorithm for constrained optimization tasks. Neural Comput

Appl 22(6):1239–1255

46. Khan K, Nikov A, Sahai A (2011) A fuzzy bat clustering method

for ergonomic screening of office workplaces. In: Dicheva D,

Markov Z, Stefanova E (eds) Third international conference on

software, services and semantic technologies S3T 2011, vol 101.,

Advances in intelligent and soft computingSpringer, Berlin Hei-

delberg, pp 59–66. doi:10.1007/978-3-642-23163-6_9

47. Tamiru AL, Hashim FM (2013) Application of bat algorithm and

fuzzy systems to model energy changes in a gas turbine. In: Yang

X-S (ed) Artificial intelligence, evolutionary computing and

metaheuristics, vol 427., Studies in computational intelli-

genceSpringer, Berlin Heidelberg, pp 685–719. doi:10.1007/978-

3-642-29694-9_26

48. Yılmaz S, Küçüksille EU (2015) A new modification approach on

bat algorithm for solving optimization problems. Appl Soft

Comput 28:259–275

49. Nguyen T-T, Pan J-S, Dao T-K, Kuo M-Y, Horng M-F (2014)

Hybrid bat algorithm with artificial bee colony. In: Pan J-S,

Snasel V, Corchado ES, Abraham A, Wang S-L (eds) Intelligent

data analysis and its applications, vol II-298., Advances in

intelligent systems and computingSpringer, Berlin, pp 45–55.

doi:10.1007/978-3-319-07773-4_5

50. Pan T-S, Dao T-K, Nguyen T-T, Chu S-C (2015) Hybrid particle

swarm optimization with bat algorithm. In: Sun H, Yang C-Y,

Lin C-W, Pan J-S, Snasel V, Abraham A (eds) Genetic and

evolutionary computing, vol 329., Advances in intelligent sys-

tems and computingSpringer, Berlin, pp 37–47. doi:10.1007/978-

3-319-12286-1_5

51. Cai X, Wang L, Kang Q, Wu Q (2014) Bat algorithm with

Gaussian walk. Int J Bio-Inspired Comput 6(3):166–174

52. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput

Sci 5(2):224–232

53. Mirjalili S, Mirjalili S, Yang X-S (2014) Binary bat algorithm.

Neural Comput Appl 25(3–4):663–681. doi:10.1007/s00521-013-

1525-5

54. Yang X-S, He X (2013) Bat algorithm: literature review and

applications. Int J Bio-Inspired Comput 5(3):141–149

55. Nakamura RY, Pereira LA, Costa K, Rodrigues D, Papa JP, Yang

X-S (2012) BBA: A binary bat algorithm for feature selection. In:

Graphics, patterns and images (SIBGRAPI), 2012 25th SIB-

GRAPI Conference on IEEE, pp 291–297

56. Xie J, Zhou Y, Tang Z (2013) Differential Lévy-Flights bat

algorithm for minimization makespan in permutation flow shops.

In: Huang D-S, Jo K-H, Zhou Y-Q, Han K (eds) Intelligent

computing theories and technology, vol 7996., Lecture Notes in

Computer ScienceSpringer, Berlin Heidelberg, pp 179–188.

doi:10.1007/978-3-642-39482-9_21

57. Sabba S, Chikhi S (2014) A discrete binary version of bat algo-

rithm for multidimensional knapsack problem. Int J Bio-Inspired

Comput 6(2):140–152

58. Büyüksaatçı S (2015) Bat algorithm application for the single row

facility layout problem. In: Yang X-S (ed) Recent advances in

swarm intelligence and evolutionary computation, vol 585.,

Studies in computational intelligenceSpringer, Berlin,

pp 101–120. doi:10.1007/978-3-319-13826-8_6

Neural Comput & Applic (2016) 27:1853–1866 1865

123

http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1007/978-3-642-23163-6_9
http://dx.doi.org/10.1007/978-3-642-29694-9_26
http://dx.doi.org/10.1007/978-3-642-29694-9_26
http://dx.doi.org/10.1007/978-3-319-07773-4_5
http://dx.doi.org/10.1007/978-3-319-12286-1_5
http://dx.doi.org/10.1007/978-3-319-12286-1_5
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1007/s00521-013-1525-5
http://dx.doi.org/10.1007/978-3-642-39482-9_21
http://dx.doi.org/10.1007/978-3-319-13826-8_6

59. Fister I, Rauter S, Yang X-S, Ljubič K (2015) Planning the sports

training sessions with the bat algorithm. Neurocomputing

149:993–1002

60. Yang X-S (2011) Bat algorithm for multi-objective optimisation.

Int J Bio-Inspired Comput 3(5):267–274

61. Pappalardo E, Pardalos P, Stracquadanio G (2013) Mathematical

optimization. Optimization approaches for solving string selec-

tion problems., Springer Briefs in OptimizationSpringer, New

York, pp 13–25

62. Du D-Z, Pardalos PM (1999) Handbook of combinatorial opti-

mization: supplement, vol 1. Springer, Berlin

63. Kennedy J, Eberhart RC (1997) A discrete binary version of the

particle swarm algorithm. In: Systems, Man, and Cybernetics,

1997. Computational Cybernetics and Simulation. 1997 IEEE

International Conference on, IEEE, pp 4104–4108

64. Larrañaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S

(1999) Genetic algorithms for the travelling salesman problem: a

review of representations and operators. Artif Intell Rev

13(2):129–170. doi:10.1023/A:1006529012972

65. Li L, Zhang Y (2007) An improved genetic algorithm for the

traveling salesman problem. Advanced intelligent computing

theories and applications. With aspects of contemporary intelli-

gent computing techniques. Springer, Berlin, pp 208–216

66. Chen S-M, Chien C-Y (2011) Solving the traveling salesman

problem based on the genetic simulated annealing ant colony

system with particle swarm optimization techniques. Expert Syst

Appl 38(12):14439–14450

1866 Neural Comput & Applic (2016) 27:1853–1866

123

http://dx.doi.org/10.1023/A:1006529012972

	A novel discrete bat algorithm for solving the travelling salesman problem
	Abstract
	Introduction
	Literature review
	Bat-inspired algorithm
	The travelling salesman problem
	Discrete bat algorithm for STSP
	Position and velocity representation
	Position updating equation
	The neighborhood search
	Discrete bat algorithm

	Numerical results and performance comparisons
	Conclusion
	References

