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Abstract Machine learning approaches for medical

decision-making processes are valuable when both high

classification accuracy and less feature requirements are

satisfied. Artificial neural networks (ANNs) successfully

meet the first goal with its adaptive engine, while nature-

inspired algorithms are focusing on the feature selection

(FS) process in order to eliminate less informative and less

discriminant features. Besides engineering applications of

ANN and FS algorithms, medical informatics is another

emerging field using similar methods for medical data

processing. Classification of psychiatric disorders is one of

the major focus of medical informatics using artificial

intelligence approaches. Being one of the most debilitating

psychiatric diseases, bipolar disorder (BD) is frequently

misdiagnosed as unipolar disorder (UD), leading to sub-

optimal treatment and poor outcomes. Thus, discriminating

UD and BD at earlier stages of illness could therefore help

to facilitate efficient and specific treatment. The use of

quantitative electroencephalography (EEG) cordance as a

biomarker has greatly enhanced the clinical utility of EEG

in psychiatric and neurological subjects. In this context, the

paper puts forward a study using two-step hybridized

methodology: particle swarm optimization (PSO) algorithm

for FS process and ANN for training process. The note-

worthy performance of ANN–PSO approach stated that it is

possible to discriminate 31 bipolar and 58 unipolar subjects

using selected features from alpha and theta frequency

bands with 89.89 % overall classification accuracy.

Keywords Artificial intelligence � Artificial neural
network � Particle swarm optimization � Unipolar and
bipolar disorders

1 Introduction

With its a lifelong prevalence of up to 4–5 %, bipolar

disorders (BD) are one of the most prevalent psychiatric

diseases [1]. Regrettably, BDs are still a diagnostic chal-

lenge, and criteria for bipolarity are still controversial [2]

which causes misdiagnosed bipolar subjects as having

unipolar depression and therefore leading to insufficient

treatment and poor outcomes [3–5]. BD and unipolar dis-

order (UD) have specific pathophysiologies, but similar

depressive appearances and current diagnoses are deter-

mined mainly according to structured clinical assessment

based on Diagnostic and Statistical Manual (DSM) of

Mental Disorders-IV, with a symptom-based rather than an

etiology-based approach [6]. Patient’s self-report of past

history or depressive appearance in bipolar patients may

also cause misdiagnosis inadvertently [7]. So, an effective

classification method is required to dichotomize unipolar

and bipolar subjects in order to apply the right treatment to

the right patient [8]. Recent studies used neuroimaging

methods for bipolar and unipolar disorders to reveal dis-

crete patterns of functional and structural abnormalities in

neural systems critical for emotion regulation [9–11], while

some other studies were employing traditional statistical
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techniques that rely on the basic assumption of linear

combinations but which may not be appropriate for such

tasks [12].

Classification is considered as a useful tool for medical

problems which has a common application area focusing

on medical diagnosis [13, 14]. Fundamentally, classifica-

tion policy could be established by medical experts to

enable better understanding of the problem. Recent engi-

neering studies contributed to the classification of the dis-

eases using the techniques such as expert systems, artificial

neural networks, linear programming, database systems,

evolutionary algorithms, and swarm intelligence [14–19].

Over the past decade, machine learning (ML) methods

have been used increasingly in the field of affective dis-

orders and in the comparison of these patients to those with

other psychiatric disorders [20]. With its extensive use and

promising results, ML approaches avoid oversimplification

by incorporating high-order interactions between predictive

variables and underline the superiority of ANNs over linear

methods in a number of areas of medical research [21–24].

In most ANNs applications, gradient-based algorithms are

used for training which may lead to a local minimum traps.

Although training process may be repeated a number of

times starting from different initial conditions, this rarely

certifies to reaching the global optimum of a multimodal

high-dimensional problem.

It is possible to overcome the emerging problem for

training process that is the application of optimization

algorithms, which has become more popular in recent years

[25]. Increasing number of features in medical domain

requires FS process, and recent studies enunciate swarm

intelligence algorithms as a crucial step to evaluate and

process the data in an efficient way [14]. An appropriate

and relevant feature set selection process also reduces the

risk of overfitting, thus improving model generalization by

decreasing the model’s complexity [26]. This is particu-

larly important in small-sized high-dimensional datasets,

where the curse of dimensionality is present and a signif-

icant gain in terms of performance can be achieved with a

small subset of features [27, 28].

In a recent study, a hybrid particle swarm optimization–

back-propagation algorithm was used for feed-forward

neural network training. The combined method could

overcome the problem of slow searching process of PSO

around the global optimum. In another study, two methods

of neural network training using PSO and back-propagation

learning for medical decision-making have been proposed,

and the experimental results proposed that using back

propagation is generally preferable over PSO for imbal-

anced training data, especially with small datasets and

large number of features [29]. In this context, the motiva-

tion for the present research was an interest in developing a

robust classification tool to address the diagnosing problem

of unipolar and bipolar disorders. With its multidisciplinary

nature, this study combined ML and metaheuristic

approaches to discriminate the subjects of unipolar and

bipolar disorders with decreased number of features using

PSO algorithm and employing QEEG cordance as

biomarker.

2 Materials and methods

2.1 Subjects

We conducted a retrospective investigation involving a

study group of 89 patients selected among a larger popu-

lation of 1200 patients, all of whom were consecutively

admitted for a BD or UD at the Neuropsychiatry Istanbul

Hospital Department of Psychiatric Outpatient Clinics

between January 2010 and December 2013. We matched

31 bipolar disorder depressive episode patients and 58

unipolar depressive episode patients from various age

groups and genders. Eligible subjects were outpatients

suffering from a depressive episode associated with BD or

UD. All participants were given a primary diagnosis of

either BD or UD according to DSM-IV criteria and

specifically the Structured Clinical Interview for Axis I

Disorders (SCID-I). We included subjects with a diagnosis

of UD who received at least the scores of 8 on the Hamilton

Depression Rating Scale 17-item version (HDRS) or sub-

jects with a diagnosis of BD episode and scoring higher

than 13 points in Young Mania Rating Scale (YMRS) [30].

We excluded the subjects experiencing their first depres-

sive episode or episode with current psychotic features as

well as those with a history of rapid cycling (C4 cycles

during a year), history of mixed episodes, current psychi-

atric comorbidity on axis I, serious unstable medical illness

or neurologic disorder (e.g., epilepsy, head trauma with

loss of consciousness), alcohol or substance abuse within

6 months preceding the study, and patients treated by

electroconvulsive therapy within 3 months before their

participation to the study. All patients were medication-

free for at least 48 h. Participants met the routine labora-

tory studies (complete blood count, chemistry, thyroid

stimulating hormone); urine toxicology screen and elec-

trocardiogram were performed at study screening, and

subjects were required to be medically stable before

enrollment to the study.

2.2 EEG recordings and cordance calculations

For all the patients, EEG was recorded for 12 h in drug-free

condition. In order to observe and reveal the efficacy of

cordance, QEEG data were collected from 89 subjects who

were seated in a sound-attenuated, electrically shielded
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room in a reclining chair with eyes closed (wakeful resting

condition). The technicians monitored the QEEG data

during the recording and re-alerted the subjects every

minute as needed to avoid drowsiness. Electrodes were

placed with an electrode using 19 recording electrodes

distributed across the head according to the international

10–20 system arrangement. Three minutes of eye-closed

EEG at rest were acquired using Scan LT EEG amplifier

and electrode cap (Compumedics/Neuroscan, USA) with

the sampling rate of 250 Hz. Sintered Ag/AgCl electrodes

positioned according to the 10–20 international system

with binaural reference. For each individual, the cordance

values were calculated using the EEG data gathered from

recording electrodes and ten regions (prefrontal, fronto-

central, central, left temporal, right temporal, left parietal,

occipital, midline, left frontal and right frontal) in delta,

theta and alpha frequency bands.

The cordance combines complementary information

from absolute and relative power of EEG spectra to yield

values having stronger correlation with regional cerebral

perfusion compared with stand-alone measures [31].

Absolute power, coherence, and cordance have been shown

to be an index of cerebral local perfusion in previous

studies [32, 33]. Increased slow-wave and decreased fast-

wave activity on the electroencephalogram is common in

brain dysfunction and may be caused by partial cortical

deafferentation. Cordance is measured along a continuum

of values: Positive values denote concordance, an indicator

associated with normally functioning brain tissue, and

negative values denote discordance, indicator associated

with undercutting lesions, low perfusion, and low meta-

bolism [34].

Raw EEG signals were filtered through a band-pass filter

(0.15–30 Hz) before artifact elimination. Artifact detection

was visually performed to remove the EEG segments with

obvious eye and head movements, muscle artifacts, or a

decrease in alertness. Manually selected (minimum 2 min)

artifact-free EEG data which have minimum split-half

reliability ratio of 0.95 and test–retest reliability ratio of

0.90 were used for cordance calculations. The EEG

reviewer was blind to the subject’s treatment condition and

clinical status. Fast fourier transformation (FFT) was used

to calculate absolute and relative power in each of four

non-overlapping frequency bands [35], delta (1–4 Hz),

theta (4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz) by

using NeuroGuide Deluxe 2.5.1 software (Applied Neuro-

science; St. Petersburg, FL, USA). Cordance values were

calculated using custom algorithm in MATLAB�

7.10.0.499 available for research purposes.

This algorithm normalizes power across both electrode

sites and frequency bands in three consecutive steps: first,

absolute power values are reattributed to each individual

electrode by averaging the power from all bipolar electrode

pairs sharing that electrode. This electrode-referencing

method is similar to the Hjorth transformation [36] except

that the current method averages the power from neighbor-

ing electrode pairs and thus enabling stronger correlation

between surface-measured EEG and perfusion of underlying

brain tissue than either the linked ears reference or the

conventional Hjorth transformation [37]. In the following

phase, the relative power values are calculated on the basis

of dividing absolute power values by total power values for

each electrode site and frequency band. In the second step,

the maximum absolute and relative power values (AMAXf,

RMAXf) in each frequency band (f) are determined to obtain

normalized absolute (ANORM(s,f)) and normalized relative

(RNORM(s,f)) power values [absolute and relative power

values at each electrode site(s) and for each frequency band

(f) are divided by (AMAXf, RMAXf), respectively]. Finally,

the cordance values at each electrode site for each frequency

band (f) are calculated by summing the ANORM and RNORM

values, after a half-maximal values (0.5 on the normalized

scale) is subtracted: CORDANCE(s,f) = ANORM(s-f) - 0.5)

? (RNORM(s-f) - 0.5) [38].

2.3 Feature selection

For feature selection process, feature interaction could be a

step to overcome. The best features are usually a group of

features with the presence of feature complementarity, and

there could be two-way or multi-way interactions among

features [39, 40]. Thus, an individually relevant and

important feature may become redundant while considered

with other features, but eliminating some features may also

reduce the complexity. On the other hand, an individually

redundant or weakly relevant feature may become highly

relevant when considered with others. In order to overcome

the dilemma, optimal feature subset should be a group of

complementary features that is significant for large search

space. The size of the search space increases exponentially

with respect to the number of available features in the

dataset [41] which makes an exhaustive search practically

impossible in most situations. Although there are various

searching algorithms applied to feature selection process,

many of them still suffer from the problems of stagnation

in local optima or being computationally expensive [42,

43]. In order to better address the feature selection prob-

lems, an efficient global search technique is required.

Evolutionary computation (EC) techniques are well known

for their global searching abilities. PSO [44, 45], a rela-

tively recent and promising EC method, is computationally

less expensive compared with other EC algorithms and has

been employed as an effective feature selection method in

many studies [43, 46].
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2.4 Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary-based

algorithm inspired by animals’ social behaviors such as fish

schooling, bird flocking, and insect swarming [44]. PSO

searches for the optimum solution/solutions by updating a

population of possibilities and directing the search toward

the regions of interest in the search space [47]. The search in

PSO is performed using a population of s particles given as

xi(i [ [1…s]) that update their location in the search space

through a modified velocity, given as Viji [ [1…s] and

j [ [1…n], where n is the dimension of the search space,

over some period of time. The velocity (V) and particle

update equations are given in Eqs. (1) and (2) respectively,

Vij tð Þ ¼ W � xVij t � 1ð Þ þ Cij þ Sij ð1Þ

xi;j tð Þ ¼ xi;j t � 1ð Þ þ Vi;j tð Þ ð2Þ

Cij ¼ c1r1;j � Pbesti;j t � 1ð Þ � xi;j t � 1ð Þ
� �

ð3Þ

Sij ¼ c2r2;j � Gbesti;j t � 1ð Þ � xi;j t � 1ð Þ
� �

ð4Þ

In the given equations, w is the inertia weight, t is the

current iteration, i is the particle index in the population,

and j is the dimension. Here, r1,j and r2,j are distinct random

values in the range between 0 and 1, c1 and c2 are accel-

eration coefficients which control the effectiveness of

social (S) and cognitive (C) components. Several methods

have been suggested to adjust the parameters in Eq. (1),

including linearly decreasing inertia weight (LDIW), time

varying inertia weight (TVIW), linearly decreasing accel-

eration coefficient (LDAC), time varying acceleration

coefficient (TVAC), random inertia weight (RANDIW), fix

inertia weight (FIW), random acceleration coefficients

(RANDAC), and fix acceleration coefficients (FAC).

LDIW and FixAC are the common approaches among the

proposed methods in several studies [48–50]. Equation (5)

represents the LDIW formulation as

W ¼ w1 � w2ð Þ � maxiter �tð Þ
maxiter

þ w2 ð5Þ

where w1 and w2 are the initial and final inertia weight, t is

the current iteration, and maxiter is the number of maximum

iteration used to terminate the loop. Pbesti,j and Gbesti,j are

the local and the global best solutions that represent the best

solution found by an individual particle and the best overall

solution found by the swarm and is updated using the

Eqs. (6) and (7). In the equations, f represents the fitness

function used to assess the feasibility of the particle (x),

local best solution (Pbest) or global best solution (Gbest).

Pbesti tð Þ¼
Pbesti t�1ð Þ;
xi tð Þ;

����
iff ðxi tð ÞÞ�f Pbesti t�1ð Þð Þ
otherwise

� �

ð6Þ

Gbest tð Þ ¼ argmin f Pbest1ðtÞð Þ; f Pbest2ðtÞð Þ; . . .f PbestsðtÞð Þf g
ð7Þ

The update mechanism of global best solution can be

affected from the subset of particles that share their local

best solutions. That is called as neighborhood topology.

The common choices for neighborhood topology are local

and global methods in which the local neighborhood allows

the existence of sub-swarms of particles that update their

global best solutions based on a set of personal best solu-

tions found by the members of the sub-swarm, whereas the

global neighborhood topology generates a single global

best solution for the entire swarm [51–53]. The pseudocode

of the PSO approach is given in the following algorithm

and the hybrid structure of PSO with ANN is given in

Fig. 1.

Initialization: Randomly initialize a population.

Initial Evaluation: Evaluate all members of the popu-

lation using their fitness function f.

repeat

1. Updating the population: Update the velocity for

each particle using Eq. (1) and then update the

particle by applying the new velocity to Eq. (4)

2. Evaluation: Evaluate all members of the population

using the fitness function f

3. Updating the best findings: Update PBest and GBest

using Eqs. (6) and (7)

until termination condition is satisfied: The maximum

iteration is reached or the best member of the population

(GBest) is performing above the highest expected

performance [54].

2.5 Artificial neural network

Artificial neural network (ANN) is an artificial intelligence

method used to create a computational model inspired by the

structural and functional features of biological neural net-

works. One of the main outstanding properties of ANN is its

ability to model complex nonlinear relationships, potentially

incorporating high-order interactions between predictive

variables. The use of ANNs in the fields of research

requiring classification or prediction processes such as

psychiatry, robotics and biology is stimulating for the

researchers [55, 56] due to their ability to adapt, learn,

generalize, organize, and classify data. The superiority of

the ANN method over linear data mining methods is well

addressed in a number of areas of medical research as well

[21–23]. The ANNmodel is formed of neurons in layers and

weighted connections transmitting signals between the

neurons in a forward or looped way in order to transmit the

information gathered from the input or former neurons to the
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output [57]. Thus, generated model represents a distributed

adaptive system built by means of multiple interconnecting

processing elements, just as real neural networks do.

In feed-forward neural networks (FNN), the processing

elements, the neurons, are distributed in several layers. The

intermediate layers are known as the hidden layers, while

the first layer is called as input and the last one is known as

output layer. In general terms, each neuron receives signals

processed and transmitted by neurons in the preceding layer

and transmits them to the next layer. The number of layers

and the way in which the neurons are connected forms the

architecture of the network. The signals in each layer are

scaled in each connection according to an adjustable

parameter associated with each connection between neu-

rons called weight which is set randomly before the mod-

eling process is initiated. Each neuron in the hidden layer

collects the signals from the former layer/s and then adds

them up to generate the output for the following layer using

an activation function. Depending on the structure of the

system, linear or nonlinear transfer function is preferred in

the junction points of the neurons. The output of each layer

is transmitted to the following layer, and finally the output

layer generates the output to be compared with the reference

to calculate the error value. The weights of neuron con-

nections are then modified according to the selected training

algorithm, in order to minimize the error. This process is

repeated until a previously established criterion is reached,

for example, when the error value gets to a threshold or

stops decreasing [58].

One of the ways to minimize the error value is using

back-propagation (BP) algorithm, a gradient-descent pro-

cedure which, ideally, requires infinitesimal changes in the

connection weights. In BP, the network error for the given

inputs is calculated, and the weights of the connections

between the neurons in the last hidden layer and the output

layer are modified according to the extent to which these

connections have contributed to form the current error [59].

In this study, the ANN model used back-propagation

learning algorithm with one hidden layer with 20 neurons.

Because of its nonlinear structure, logsig transfer function

was employed in the hidden layer and purelin transfer

function in the output layer as given in Fig. 2.

Input data are collected from 19 electrodes in three

frequency bands, trainlm training function was used to

train the model, and sixfold cross-validation was used to

test the classifier. In order to evaluate the classification

algorithm receiver operating characteristic (ROC) curve, a

plot of the sensitivity [true-positive rate (TPR)] as the

function of false-positive rate (FPR) (1-specificity) was

used.

3 Results

In this study, the combination of a swarm intelligence

method, PSO, for feature selection and an ML approach,

ANN, was used to appreciate the value of artificial intel-

ligence methods for the diagnosis, treatment planning, and

Fig. 1 Flow chart of hybrid

PSO–ANN feature selection

process
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monitoring of psychiatric and neurological diseases. Ini-

tially, the classification performance of ANN model was

expressed in terms of accuracy, then in order to improve

the outcome of the model, it was transformed to a hybrid

model incorporating a feature selection process. Twenty-

eight inputs were used from Fp1, Fp2, F3, F4, F7, F8, T3,

T4, T5, T6,C3, C4, P3, and P4 electrodes in alpha and theta

frequency bands. A significant upgrade was observed with

the contribution of PSO, and the classification accuracy

increased despite the decreasing number of features. The

classification results before and after feature selection

process are given in terms of overall accuracy, sensitivity,

and area under ROC curve parameters in Table 1. The

ROC curve for the compared approaches is plotted in

Fig. 3 as well.

Throughout the classification process, the intersection

point of TPR and FPR at each threshold is plotted to form

the ROC curve. Each point on the ROC curve represents a

sensitivity/(1-specificity) pair corresponding to a particular

decision threshold. Depending on the classification per-

formance, the relative changes of TPR and FPR may dif-

ferentiate causing sharp transitions between cutoff points in

ROC curve. After the frequency band and channel selection

phase, PSO algorithm was used to reduce the feature set by

considering the classification error as cost function. The

contribution of feature selection process to the accuracy is

quite satisfactory. The hybrid model classified unipolar

subjects with 89.89 % overall accuracy, percentage of

examples been classified correctly. Sensitivities also

expanded to 83.87 % from 64.52 % for bipolar disorder

subjects and 93.1 % from 77.59 % for unipolar disorder

subjects.

Area under ROC curve (AUC) parameter was also used

to underline the performance of PSO algorithm. The fea-

ture selection increased AUC value for bipolar disorder

subjects from 0.757 to 0.905, and comparative plots are

given in Fig. 3. Following the feature selection and clas-

sification process, 14 electrodes, namely C3, C4, Fp1, Fp2,

F3, F7, T4, T5 from alpha frequency band and Fp1, F4, C4,

P4, T4, T6 from theta frequency bands were considered as

prominent features, thus eliminated 14 other remaining

features due to their limited informative contributions.

4 Discussions and conclusions

In this paper, we generated a hybrid artificial intelligence

approach combining particle swarm optimization and

artificial neural network to discriminate unipolar and

bipolar depressive disorders employing more informative

features. The literature on feature selection techniques is

very vast encompassing the applications of ML and clas-

sification. The proposed approach first eliminated the less

informative features regarding their contribution to the

output. Using the selected features a back-propagation

neural network was then generated in order to classify the

subjects into two classes as unipolar or bipolar.

Fig. 2 Structure of used back-

propagation neural network

Table 1 Classification performance of PSO–ANN and standalone

ANN models

Feature

selection

Number of

features

Overall

accuracy

(%)

Bipolar disorder

sensitivity (%)

Area

under

curve

None 28 73.03 64.52 0.757

PSO 14 89.89 83.87 0.905
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The outcomes of the combined model are promising for the

clinicians and could be evaluated as a tool useful for the

diagnosis process.

The clinical interpretation of the outcomes is noteworthy

for the following interdisciplinary studies. Numerous

clinical and neuroimaging studies were conducted with the

aim of validating unipolar and BD differentiation. Results

of the previous neuroimaging studies suggest that abnormal

activation in prefrontal and subcortical regions underlie

impaired cognitive control and impulsivity that are com-

monly reported in BD and MDD [60, 61]. A few number of

neuroimaging studies compared the brain functioning of

bipolar and unipolar depressive subjects [62–64].

There is evidence that unipolar depression is associated

with increased functional connectivity of three networks;

the default mode network, the cognitive control network,

and the affective network converging on the dorsal medial

prefrontal cortex [65]. In another study, 14 individuals with

bipolar II depression and 26 patients with recurrent

unipolar depression, aged between 21 and 45 years [66].

All participants underwent functional magnetic resonance

imaging (fMRI) and functional connectivity analyses while

performing two repetitions of a motor activation task. The

two groups did not significantly differ in their task per-

formance. However, bipolar patients had significantly

stronger functional connectivity between the posterior

cingulate cortex and one cluster in the right parietal/insular

region, compared with unipolar patients. This cluster

included portions of the right inferior parietal lobule, the

precentral gyrus and insula, and surrounding regions.

The functional neuroimaging studies suggest that in BD

dysregulation of mood is caused by the disturbed prefrontal

modulation of subcortical and medial temporal structures

within the anterior limbic network. Elevated activity and

volume loss of hippocampus, orbital frontal and ventral

prefrontal cortex and hypometabolism of dorsal prefrontal

cortex as well as bidirectional metabolic changes of ante-

rior cingulate were described in BD [67–69]. Results of

other researchers also suggested similar dysfunctions in

brain connectivity in unipolar depression [70, 71].

Effort of trying to develop a reliable biomarker to pre-

dict treatment response resulted in ‘‘cordance’’ studies [34].

In unipolar depression, one of the best-documented brain

functional biomarkers predicting a response to an antide-

pressant is the decrease in quantitative EEG (QEEG) pre-

frontal cordance in theta frequency band [72–74].

Furthermore, in another study it was described that the

decrease in cordance value associated with a switch to

mania [75].

Numerous former EEG studies have attempted to eval-

uate the distinct features of BD and UD as compared to

other clinical and non-clinical populations. One well-

replicated finding in UD is that, compared to healthy

subjects, an inter-hemispheric frontal alpha asymmetry has

been found due to an increased left frontal alpha power as it

is well-known indicator of idling activity on that side [76].

Decreased alpha and increased theta power in the fronto-

central regions are the most common findings in BD

patients [77, 78]. A recent study reported that deficient left

hemisphere alpha power in BD and decreased inter-

Fig. 3 ROC curves of bipolar

disorder subjects for ANN and

PSO–PSO hybrid model
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hemispheric theta coherence in UD could discriminate

these two groups. That study also underlined that BD

patients, as compared to UD, exhibited greater central–

temporal theta and parietal–temporal alpha and theta

coherence [79]. So we used only theta and alpha activity

data and removed delta and beta activity data in this study

(green text will be removed).

Unfortunately, despite intensive research in the field,

findings in cerebral metabolic studies of BD are contro-

versial. When compared to unipolar depression, cerebral

metabolic changes observed in bipolar disorder were sug-

gested to be more associated with dysregulation of the

dorsolateral prefrontal circuit [69] and the anterior cingu-

late [80]. In a study it was suggested that disrupted baseline

metabolic status is reversed by effective treatment [81], but

there is also some evidence of a persistence of metabolic

abnormalities in euthymic patients [82].

Finally, the results demonstrate that EEG cordance

values have potential to discriminate between UD and BD.

The loss of temporal synchronization in the frontal inter-

hemispheric and right-sided frontolimbic neuronal net-

works suggested to be the unique features that distinguish

between BD and UD in previous research [79]. In this

context, the paper puts forward a study using two-step

hybridized methodology: PSO algorithm for feature

selection process and ANN for training process. The

noteworthy performance of ANN–PSO approach stated

that it is possible to discriminate 31 bipolar and 58 unipolar

subjects using selected features from alpha and theta fre-

quency bands with 89.89 % overall classification accuracy.

Our findings support the potential utility of the proposed

methodology to be used as a clinical tool in classifying UD

and BD subjects. Functional neuroimaging methods pro-

vide information about differences in the neural processes

associated with unipolar versus bipolar depression. Further

studies are warranted to replicate this result in order to lead

to the development of clinically useful diagnostic

methodologies.
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