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Abstract Surface electromyography (EMG) signals have

been studied extensively in the last years aiming at the

automatic classification of hand gestures and movements as

well as the early identification of latent neuromuscular

disorders. In this paper, we investigate the potentials of the

conjoint use of relevance vector machines (RVM) and

fractal dimension (FD) for automatically identifying EMG

signals related to different classes of limb motion. The

adoption of FD as the mechanism for feature extraction is

justified by the fact that EMG signals usually show traces

of self-similarity. In particular, four well-known FD esti-

mation methods, namely box-counting, Higuchi’s, Katz’s

and Sevcik’s methods, have been considered in this study.

With respect to RVM, besides the standard formulation for

binary classification, we also investigate the performance

of two recently proposed variants, namely constructive

mRVM and top-down mRVM, that deal specifically with

multiclass problems. These classifiers operate solely over

the features extracted by the FD estimation methods, and

since the number of such features is relatively small, the

efficiency of the classifier induction process is ensured.

Results of experiments conducted on a publicly available

dataset involving seven distinct types of limb motions are

reported whereby we assess the performance of different

configurations of the proposed RVM?FD approach.

Overall, the results evidence that kernel machines equipped

with the FD feature values can be useful for achieving good

levels of classification performance. In particular, we have

empirically observed that the features extracted by the

Katz’s method is of better quality than the features gen-

erated by other methods.

Keywords EMG signal classification � Relevance vector

machines � Fractal dimension � Feature extraction

1 Introduction

In the last decades, the surface electromyography (EMG)

signal has been widely investigated for the purpose of

neuromuscular disorder diagnosis, rehabilitation and con-

trol of prosthetic devices as well as man–machine inter-

face, targeting individuals with amputations or congenitally

deficient limbs [2, 8, 17, 24, 26, 37, 41]. This is because the

EMG signal provides a highly useful characterization of

the neuromuscular system, also allowing that many

pathological processes—whether arising in the nervous

system or in the muscles—manifest themselves by alter-

ations in the signal properties.

In order to accomplish the analysis and processing of

EMG signals, mainly aiming at performing pattern classi-

fication, different approaches have been proposed in the

literature, most of which are composed of two interde-

pendent modules [15, 26]: (1) feature extraction and (2)

classification. Feature extraction is especially helpful if the
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pattern to be represented is a sequence of values taken as a

function of time, say x(t), such as the EMG signal. In

general, there are four classes of feature extraction

approaches to representing 1D signals, namely those based

on time, frequency, time–frequency, and nonlinear

dynamics.

It has been shown that biomedical signals, such as the

EMG, are inherently nonlinear in nature, exhibiting well-

defined properties, such as scale invariance, scaling range,

power law scaling, and self-similarity [14, 38]. The phe-

nomenon of self-similarity, in particular, whereby a small

scale structure can resemble the large-scale structure of an

object, has been investigated for the purpose of charac-

terizing different biomedical signals as well as for identi-

fying different patterns available in these signals [25, 32].

In fact, EMG signals usually show noticeable traces of self-

similarity that could be captured by fractal dimension (FD)

measures [22], representing a way to extract discriminative

features directly from these signals [13]. Grossly speaking,

FD amounts to a non-integer or fractional dimension of a

geometric object [4, 44].

In [33], among different nonlinear methods investigated

for representing EMG signals, fractal dimension was found

to be especially interesting for its sensitiveness to the

magnitude and rate of the generated muscle force. On the

other hand, in the work of Hu et al. [22], FD was calculated

from filtered surface EMG signals in order to discriminate

between forearm supination (FS) and forearm pronation

(FP) movements. The results reported by the authors

showed that the values of fractal dimension of filtered FS

surface EMG signals and those of filtered FP surface EMG

signals distribute in two different regions, demonstrating

the usefulness of FD in capturing different motion patterns

of surface EMG signals. More recently, Phinyomark

et al. [34] have investigated the specific case of low-level

EMG signal classification through a single-channel system,

which comes to be a difficult pattern classification task.

The authors concluded that detrended fluctuation analysis

(DFA), which is an advanced fractal analysis method suited

for the identification of low-level muscle activations, per-

forms better than other conventional features in the clas-

sification of EMG signals from bifunctional movements,

such as flexion–extension. By other means, Ancillao

et al. [3] have conducted an experimental study investi-

gating the correlation between the fractal dimension of the

surface EMG signal recorded over the main erector muscle

of the human leg, viz. the rectus femoris muscle, during a

vertical jump and the height reached in that jump. The

authors concluded that FD is able to properly characterize

the EMG signal, and a linear regression analysis showed a

very high correlation coefficient between the fractal

dimension and the height of the jump achieved by all the

20 healthy subjects recruited.

Regarding the classification stage, this can be briefly

defined as the process of assigning one out of C discrete

labels (classes) for a given input vector x [5]. The classi-

fication of EMG signals, in particular, appears to be a hard

pattern recognition task to pursue since there are usually

lots of interferences and fluctuations happening in the

EMG signal [21]. Numerous empirical studies have been

conducted investigating the use of different types of clas-

sifiers operating on different types of features extracted

from the EMG signal. These classifiers include artificial

neural networks (ANN) [9], linear and quadratic discrimi-

nant analysis [6, 35], Bayesian classifiers [16], fuzzy

classifiers [7], and also support vector machines

(SVM) [12, 28, 31, 45]. In a recent work [46], Yousefi and

Hamilton-Wright conducted a critical review of some of

the classification methodologies used in EMG characteri-

zation and also present the state-of-the-art accomplish-

ments in this field, emphasizing neuromuscular pathology.

Most of the aforementioned classifiers are based on the

idea of solely minimizing the training error, which is

usually called empirical risk. However, the combination of

limited amounts of training data and the quest for high

classification accuracy over these data often leads to

overfitting problems [5]. In addition, the levels of accuracy

exhibited by these classifiers are usually much sensitive to

the feature dimension of the given pattern set. Since they

are not plagued by these deficiencies, SVM appear as the

method of choice in coping with highly complex classifi-

cation problems, such as those involving biomedical

signals.

The relevance vector machines (RVM) were introduced

by Tipping [42] as a Bayesian variant of SVM, which

means that they also do not suffer from the aforementioned

drawbacks. The RVM yield a probabilistic sparse model

identical in functional form to the SVM, representing a

new approach to pattern classification that has recently

attracted a great deal of interest. In many problems, RVM

classifiers have produced competitive results to other ker-

nel-based classifiers, being recently thoroughly investi-

gated in the context of electroencephalogram (EEG) signal

classification for epilepsy diagnosis [29, 30].

In order to deal directly with multiclass classification

problems, the RVM formulation has been recently adap-

ted [36]. A straightforward multiclass adaptation of RVM

is problematic due to the bad scaling of the maximization

of the marginal likelihood procedure with respect to the

number of classes [10] and dimensionality of the Hessian

required for the Laplace approximation [5]. In [36], Pso-

rakis et al. conceived an approach to circumvent these

difficulties, bringing about two multiclass multikernel

RVM methods (hereafter referred to as mRVM) that are

able to address multikernel learning while producing both

sample-wise and kernel-wise sparse solutions.
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In this paper, we investigate the conjoint use of RVM and

FD for tackling the task of EMG signal classification. For this

purpose, besides the standard RVM formulation, two types of

mRVM, namely constructive mRVM and top-down mRVM,

aswell as different methods for calculating the FD of an EMG

signal, were considered.As far as the authors are aware of, this

is the first work providing a thorough assessment of the

potentials of combining RVM and FD into a single EMG

signal classification framework. Several experiments have

been conducted on a dataset involving seven distinct types of

limb motions, and the performance of distinct configurations

of the RVM?FD approach is reported.

The rest of the paper is organized as follows. In Sects. 2

and 3, we present four methods for estimating the FD from a

1D signal and the mathematical formulations behind RVM

andmRVMmodels, respectively. In Sect. 4, we characterize

the EMG dataset used in the experiments and outline some

procedures adopted for data preprocessing. We then present

and discuss the results achieved by different configurations

of the RVM?FD approach, taking as reference the perfor-

mance delivered by SVMmodels. Finally, Sect. 5 concludes

the paper and brings remarks on future work.

2 Fractal dimension

In a nutshell, fractal dimension alludes to a statistical index

of complexity, indicating how the details in a given

physical pattern (or object) change with the scale at which

they are measured [1, 4]. The value of this index is usually

a non-integer, fractional number, hence the designation of a

fractal dimension. There are many notions of FD, and

various algorithms have been proposed to compute

them [44]. None of these methods, however, should be

considered as universal, which justifies an empirical com-

parison of their abilities as feature extractors from EMG

signals. In the following subsections, we outline the four

methods adopted in our experiments.

2.1 Box-counting method

The idea behind the box-counting (BC) method is to apply

successive hypercube grid coverings over a curve (e.g., an

1D signal), yielding as a result a value which is usually very

similar to that produced by the Hausdorff Dimension, which

is another standard method for calculating the FD [4]. Since

in each iteration of the BC method, a finer covering is

applied, the method is said to perform a finer and finer

analysis on the fractal. Usually, when thismethod is used, the

final FD measure is named as box-counting dimension.

For the calculus of the BC dimension, the successive

coverings generated by the method are reflected on a log–

log curve (a.k.a. BC curve), which is composed of points

that represent the relation between the shrinking of the

hypercubes and their occupation rates. The straight line

that best approaches the BC curve represents the behavior

of the observations from the signal under analysis. The

power law of this curve (i.e., the slope of the straight line

that best fits it) represents the BC of the fractal.

Formally speaking, the calculation of the BC dimension

(D) is given by [4]:

D ¼ lim
n!1

logðNnðKÞÞ
logð2nÞ ;

where K 2 HðRmÞ is an attractor in the Euclidean metric

space whose points are compact subsets ofRm; NnðKÞ is the
number of boxes intersecting the attractor; and n denotes the

nth iteration of the process. Simply put, the BC method

coversRmwith a grid of boxeswith lateral size equal to 1=2n.

2.2 Higuchi’s method

As the former, the Higuchi’s method [19, 44] is iterative in

nature. However, it is especially indicated to handle

waveforms as objects. Consider s ¼ fsð1Þ; sð2Þ; . . .; sðNÞg
as an epoch of the time series to be analyzed. Then, con-

struct k new time series (aka sub-epochs) skm, each of which

being defined as [44]

skm ¼ sðmÞ; sðmþ kÞ; sðmþ 2kÞ; . . .; s mþ ðN � mÞ
k

� �
k

� �� �
;

where N is the total length of the data sequence s; m ¼
1; 2; 3; . . .; k indicates the initial time value; k indicates the

discrete time interval between points (delay); and b�c
means the floor operator.

For each of the sub-epochs skm, the average length LmðkÞ
is computed as

LmðkÞ ¼
1

k

ðN � 1Þ
ðN�mÞ

k

j k
k

XðN�mÞkb c

i¼1
sðmþ ikÞ � sðmþ ði� 1ÞkÞj j

8<
:

9=
;;

where ðN � 1Þ=bðN � mÞ=kck is a normalization factor.

Then, the length of the epoch L(k) for the time interval k is

computed as the mean of the k values, form ¼ 1; 2; . . .; k, as

given in Eq. (1). This procedure is repeated for each k,

ranging from 1 to kmax (kmax ¼ 5 in our experiments).

LðkÞ ¼
Xk
m¼1

LmðkÞ: ð1Þ

The total average length L(k), for scale k, is proportional to

kD, where D is the FD of the curve describing the shape of

the epoch as calculated by Higuchi’s method. Otherwise, if

L(k) is plotted against k on a double-logarithmic scale, then

the coefficient of the linear regression of this plot can be

taken as an estimate of the FD of the epoch [19].
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2.3 Katz’s method

Consider sðiÞ ¼ ðxi; yiÞ, i ¼ 1; 2; . . .;N, where xi are values
of the abscissa and yi are values of the ordinate. If the

points s(i) and s(j) are represented as ðxi; yiÞ and ðxj; yjÞ,
respectively, the Euclidean distance between the points is

computed as:

distðsðiÞ; sðjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
:

According to the Katz’s method, the FD of the curve rep-

resenting a time series can be defined as [27]:

D ¼ logðLÞ
logðdÞ ; ð2Þ

where L is the total length of the curve or the sum of the

Euclidean distances between successive points in the same

curve, and d is the diameter estimated as

d ¼ maxðdistðsðiÞ; sðjÞÞÞ; i; j ¼ 1; . . .;N:

If there are no intersections of the curve, i can be set equal

to 1 and d can be estimated as the maximum distance

between the first sample and the farthest of all subsequent

samples in sðiÞ; i ¼ 2; . . .;N.
Obviously, d and L should be dimensionless number to

calculate the logarithms in Eq. (2). However, this is not

always true. Katz [27] proposed to normalize d and L by

the length of the average step, defined as L=Nl. In this way,

Eq. (2) becomes

D ¼ logðNlÞ
logðNlÞ þ logðd=LÞ ; ð3Þ

where Nl ¼ N � 1.

2.4 Sevcik’s method

Let yi; i ¼ 1; . . .;N be a set of values sampled from a signal

between time zero and tmax with sampling period d. Sup-
pose also that the waveform is submitted to a double-linear

transformation that maps it into a unit square. Then, the

normalized abscissa x�i and the normalized ordinate y�i of

the square can be defined, respectively, as [40]

x�i ¼
xi

xmax

;

y�i ¼
yi � ymin

ymax � ymin

;

where xmax (ymax) denotes the maximum value of xi (yi),

and ymin is the minimum value of yi. Thus, the FD of the

waveform can be approximated by [40]

D ¼ 1þ lnðLÞ
lnð2NlÞ

where ln is the natural logarithm, L is the length of the

curve in the unit square and Nl ¼ N � 1.

3 Relevance vector machines and their multiclass
versions

As mentioned before, RVM can be regarded as a Bayesian

variant of SVM, aimed at overcoming some of the SVM

limitations [5, 30, 42]. In this section, we present the basic

formulation underlying standard RVM classifiers and also

the recently proposed multiclass versions [18, 36].

3.1 Relevance vector machines

The standard formulation of the RVM assumes, for a given

input xn, that the error between the classifier output, given

by f ðxn;wÞ, and the desired output tn, where tn 2 0; 1f g,
has a normal distribution with zero mean and variance r2.

It also assumes that the samples fxi; tigNi¼1 are indepen-

dently generated, so that the likelihood of the observed

dataset can be written as [42]:

pðtjw; r2Þ ¼ ð2pr2Þ�N=2 exp � 1

2r2
jjt�Uwjj2

� �
;

where t ¼ ½t1; . . .; tN �T , w ¼ ½w0; . . .;wN �T , and

U ¼ ½/ðx1Þ; . . .;/ðxNÞ�T , with /ðxiÞ ¼ ½1;Kðxi; x1Þ; . . .;
Kðxi; xNÞ�T . The function Kð�; �Þ denotes a kernel function

defined on a (high-dimensional) dot product space [39],

whereas the final decision function is given by

f ðxn;wÞ ¼
PN

i¼0 wiKðxi; xnÞ.
RVM uses an a priori probability over the model

parameters (weights) controlled by a set of hyper-param-

eters. Each weight becomes associated with a hyper-pa-

rameter, and most likely values for the weights are

estimated iteratively from the training data [42]. In a

Bayesian perspective, the model parameters w and r2 can

be estimated initially from an a priori distribution and then

reestimated by calculating a posterior distribution using the

observed data likelihood. Tipping [42] proposed the fol-

lowing a priori distribution for each model parameter:

pðwjjaj; r2Þ ¼
ffiffiffiffiffiffi
aj
2p

r
exp �

ajw2
j

2

( )
¼ Nð0; a�2j Þ;

where j ¼ 0; . . .;N and a ¼ ½a0; . . .; aN �T is the hyper-pa-

rameter vector, which is estimated iteratively from the

training data.

Given an a priori distribution, the Bayes rule can be

used to determine the posterior distribution of the model

parameters through pðw; a; r2jtÞ ¼ pðwjt; a; r2Þpða; r2jtÞ.
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Moreover, for a new sample xn, the prediction of the

corresponding label tn can be provided by

pðtnjtÞ ¼
Z

pðtnjw; a; r2Þpðw; a; r2jtÞdwdadr2:

However, an analytical expression for the posterior distri-

bution of the model parameters is still not available. In

order to solve this problem, it is necessary to adopt an

effective approximation. The posterior distribution of the

parameters can be decomposed into two components

according to

pðw; a; r2jtÞ ¼ pðwjt; a; r2Þpða; r2jtÞ: ð4Þ

The first term of the right-hand side of Eq. (4) is the pos-

terior probability of the weights w given r2 and a. The

computation of these probabilities is well detailed in [42].

Once the weights were obtained, the hyper-parameters

ai are updated according to ai ¼ ki
w2
i

, where w2
i is the square

of the ith average weight, ki is defined as ki ¼ 1�
P

ii, andP
ii is the ith element of the main diagonal of the covari-

ance matrix, which may be interpreted as a measure of how

well each parameter wi is estimated. The optimization of

the hyper-parameters continues until a pre-defined thresh-

old is achieved or until certain number of iterations is

performed.

Sparsity emerges when most of the ai go to infinity, thus

effectively removing the corresponding basis functions; the

remaining basis functions are called the relevance vectors

(RV) [42]. For large-scale problems, this number can be

high and testing complexity might become prohibitive,

namely OðNtsNRVÞ, where Nts is the number of samples in

the test set and NRV is the number of relevance vectors.

Standard RVM models can be used to handle classifi-

cation problems with multiple classes by decomposing the

problem into several binary classification tasks, each

solved efficiently by an RVM model. The simplest

approach, known as the one-versus-one approach, is to

decompose the problem with C classes into
CðC�1Þ

2
binary

problems. A binary classifier is built to discriminate

between each pair of classes, while discarding the rest of

the classes. When testing a new sample, a voting is per-

formed among the classifiers and the class which received

the most votes is deemed to be the outcome.

3.2 Multiclass relevance vector machines

Two different types of mRVM were proposed in [18, 36],

namely the constructive type (referred to as mRVM1) and

the top-down type (mRVM2). The idea of both is not to

train multiple RVM classifiers but to train only a single

model that could deal directly with multiclass problems.

While mRVM1 achieves sparsity by starting with an empty

model and adding samples from the training set based on

their contribution to the model, the strategy underlying

mRVM2 is to follow a top-down strategy by loading the

whole training kernel into memory and iteratively remov-

ing non-relevant samples.

The training phase of mRVM2 is similar to that of

mRVM1, being both based on the expectation maximiza-

tion (EM) algorithm. The main difference in that is the

mRVM2 does not adopt the marginal likelihood maxi-

mization as mRVM1 does [see Eq. (5)] but rather employs

an extra E-step for the updates of the hyper-parame-

ters [18]. Moreover, mRVM2 is relatively more expensive

than mRVM1 because each sample i has different scales aic
across classes. However, if mRVM2 prunes a sample, such

sample cannot be reintroduced into the model. In what

follows, we present the main equations underlying the

formulation of the mRVM1. The reader is referred to [36]

for more detailed explanations.

Consider a training set xn; tnf gNn¼1, where xn 2 Rm and

tn 2 1; . . .;Cf g. Let kn be the nth row of the kernel matrix

K (K 2 RN�N), expressing how the nth sample correlates

with the others from the training set. The learning process

involves the inference of the model parameters W 2 RN�C

in such a way that the quantity WTK acts as a sort of voting

system expressing which data relationships are important

to capture for increasing the model’s discriminative

properties.

Moreover, let Y ¼ y11; . . .; y1N ; . . .; yc1; . . .; ycN ; . . .;f
yC1; . . .; yCNg 2 RC�N denote a matrix of auxiliary vari-

ables introduced for the purpose of multiple class dis-

crimination, acting as targets for WTK. The variables ycn
are assumed to obey a standardized noise model, i.e.,

ycnjwc, kn�N ycnðwT
c kn; 1Þ, whereas the model parameters

wnc follow a standard zero-mean Gaussian distribution,

namely wnc�Nð0; 1=ancÞ, where anc belongs to the scaling
matrix A ¼ ða1; . . .; aNÞT 2 RN�C.

The formulation of mRVM1 adopts as objective the

maximization of the marginal likelihood pðYjK;AÞ ¼R
pðYjK;WÞpðWjAÞdW. In order to differentiate this

likelihood, Psorakis et al. [36] followed the assumption

that each sample n has a common scale an shared across all

classes. So, for mRVM1, the vector of hyper-parameters an
associated with a sample turns out to be a simple scalar an.
The maximization of the marginal likelihood results in a

criterion to either add a sample n, delete it, or update its

associated an. So, the model can start with a single sample

and then proceed in a constructive manner.

In order to achieve this goal, the log of the marginal

likelihood is decomposed into contributing terms based on

each sample, that is,
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LðAÞ ¼ log pðYjK;AÞ

¼
XC
c¼1
� 1

2
N log 2pþ log jCj þ yTcC

�1yc
	 


;
ð5Þ

where C ¼ I þ KA�1KT , whose determinant and inverse

were derived by Tipping and Faul [43] as a function of C�i,
that is, the value of C with the ith sample removed. The

determinant of C is given by

jCj ¼ jC�ijj1þ a�1i kTi C
�1
�i kij;

whereas the inverse of C is given by

C�1 ¼ C�1�i �
C�1�i kik

T
i C
�1
�i

ai þ kTi C
�1
�i ki

: ð6Þ

Equipped with these results, Eq. (5) can be rewritten as:

LðAÞ¼LðA�iÞþ
XC
c¼1
�1
2

logaic� logðaiþsiÞþ
q2ci

aiþsi

� �
;

where si and qci are called sparsity factor and quality

factor, respectively, and these are defined as si ¼ kTi C
�1
�i ki

and qci ¼ kTi C
�1
�i yc. The sparsity factor can be seen as a

measure of how much the descriptive information of the

ith sample is already captured from the existing samples.

On the other hand, the quality factor measures how good

the ith sample is in helping to describe a specific

class [36].

By setting the derivative oLðAÞ=oai ¼ 0, one obtains

ai ¼
Cs2iPC

c¼1 q
2
ci � Csi

; if
XC

c¼1 q
2
ci [Csi ð7aÞ

ai ¼ 1; if
XC

c¼1 q
2
ci�Csi: ð7bÞ

The quantity hi ¼
PC

c¼1 qci � Csi captures the contri-

bution of the ith sample to the marginal likelihood in terms

of how much additional descriptive information it provides

to the model. By resorting to this quantity, it is possible to

establish some rules for including or excluding a given

sample, or updating its hyper-parameter [18]:

– IF hi [ 0 and ai\1 THEN set/update ai with (7a);

– IF hi� 0 and ai\1 THEN set ai with (7b).

Then, the M-step and E-step of EM are used to estimate W

and the posterior expectations of the auxiliary variables Y,

respectively. The weights are estimated as:

ŵc ¼ ðKKT þ AcÞ�1K~yTc :

Assuming a given class i, the E-step calculates the

expected value of yin as

~yin ¼ ŵT
i kn �

X
j6¼i

~yjn � ŵT
j kn

 !
;

whereas 8c 6¼ i, the E-step yields

~ycn  ŵT
c kn �

EpðuÞ N uðŵT
c kn � ŵT

i kn; 1ÞUn;i;c
u

 �
EpðuÞ Uuðuþ ŵT

i kn � ŵT
c knÞUn;i;c

u

 � ;
where u�Nð0; 1Þ and U denotes the Gaussian cumulative

distribution function.

In the classification phase, the test sample xn is labeled

as of the class i whose auxiliary variable yin, 1� i�C, is

maximum, i.e., tn ¼ argmaxiðyinÞ.

4 Computational experiments

In what follows, we provide details about the dataset used

in the experiments and how the experiments were set up.

Then, we present the accuracy results revealed by the RVM

and mRVM models, considering the different methods to

calculate the fractal dimension. For each model, we also

report the optimized kernel parameter value and the asso-

ciated number of relevance vectors, so as to measure the

complexity of the induced models. In this paper, the one-

versus-one approach was adopted when using the standard

RVM approach.

4.1 Description of the dataset

The EMG signal dataset used in our experiments was

originally collected by Chan and collaborators [6, 17]. The

authors used eight channels of surface EMG to collect

signals from the right arm of 30 normally limbed subjects.

Each subject underwent four sessions, with one to two days

of separation between sessions. Each session consisted of

six trials. EMG signals were collected from seven sites on

the forearm and one site on the biceps. An electrode was

placed on the wrist to provide a common ground reference.

Table 1 Class distribution for each trial

Trials Classes

#1 #2 #3 #4 #5 #6 #7 Total

#1 105 100 100 99 99 96 105 704

#2 100 100 100 101 103 100 99 703

#3 100 98 100 105 98 100 102 703

#4 98 102 99 104 97 101 102 703

#5 95 103 96 102 99 104 103 702

#6 102 101 99 98 96 102 103 701
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These signals were amplified with gain of 1000 and a

bandwidth of 1 Hz to 1 KHz. Signals were sampled at

3 KHz using an analog-to-digital converter.

Seven distinct limb motions (classes) were performed:

hand open, hand close, supination, pronation, wrist flexion,

wrist extension, and rest. For each trial, the subject repe-

ated each limb motion four times, holding each motion for

3 s, each time. The order of these limb motions was ran-

domized. Chan and Green [6] only used the session four in

their experiments. Data from the first two trials were used

as training data, and data from the remaining four trials

were used as testing data. In this paper, we also make use

of data from session four, but the investigated models were

assessed separately on each trial using 5� 2 cross-

validation.

4.2 Experimental setup

The main purpose of this paper is to empirically assess the

performance of RVM models in the task of EMG signal

classification. In the experiments, we have considered only

the radial basis function kernel [39], which has an associ-

ated hyper-parameter to be calibrated beforehand, namely

the radius r. The value of this parameter was varied in our

experiments. Although we know that there are several

heuristics to select the values of hyper-parameters, we have

opted to set the value of r as one in the range

f2i; i ¼ �3;�2;�1; 0; 1; 2; 3; 4; 5g. For each of the nine

values in this range, a 5� 2-fold cross-validation run per

trial was performed in order to measure the average per-

formance of the methods.

In what concerns data preprocessing, samples were

extracted from the EMG signals using a sliding window

of 256 ms in length, spaced 32 ms apart [15]. Then, the

FD values, as calculated by the different methods

described in Sect. 2, were used to build up the feature

vectors. The dimension of each transformed sample (i.e.,

feature vector) was of eight features, since there were

eight channels and one FD value was calculated for each

channel. The class distribution for each trial is presented

in Table 1.

4.3 Simulation results

In Table 2, we report the best accuracy results achieved

by the different kernel machines, including SVM, con-

sidering the four types of FD features. The results are

given in terms of average and standard deviation of the

generalization error calculated over the 5� 2-fold cross-

validation process. In this table, we highlight the best

calibrated kernel parameter value for each kernel machine

and also present the number of relevance vectors or sup-

port vectors associated with each model. The accuracy

results are complemented with those reported in Table 3,

which relates to the application of the two-sided Wil-

coxon rank sum test over the cross-validation errors [11].

The Wilcoxon rank sum test is a nonparametric statistical

procedure that helps answering the following question:

Do two independent samples, say x and y, represent two

different populations? The null hypothesis is that data in x

and y are samples from continuous distributions with

equal medians. Assuming a 5 % significance level, having

a p-value lower than 0.05 indicates that the Wilcoxon rank

sum test rejects the null hypothesis, and so the difference

in performance between the given kernel machines is

statistically significant [20]. In our case, the test is applied

per trial and one of the samples always relates to the

kernel machine with the lowest average cross-validation

error for the given trial.

On the other hand, Tables 4 and 5 show the specificity

and sensitivity values delivered by the best calibrated

kernel machines, as reported in Table 2, for each

Table 3 Results of the Wilcoxon rank sum test over the cross-vali-

dation errors

Feature Trial SVM RVM mRVM1 mRVM2

p value p value p value p value

Box counting (BC) #1 – 0.820 0.006 0.384

#2 0.622 0.791 0.449 –

#3 0.791 – 0.059 0.226

#4 0.970 – 0.008 0.021

#5 – 0.021 0.005 0.045

#6 – 0.910 0.003 0.104

Higuchi (HG) #1 – 0.017 0.013 0.041

#2 – 0.017 0.002 0.037

#3 – 0.096 0.000 0.054

#4 – 0.426 0.063 0.004

#5 – 0.121 0.001 0.002

#6 – 0.058 0.040 0.007

Katz (KT) #1 0.014 0.058 – 0.002

#2 0.254 0.910 – 0.021

#3 0.363 0.254 – 0.031

#4 – 0.272 0.089 0.003

#5 0.405 – 0.623 0.048

#6 – 0.149 0.159 0.016

Sevcik (SV) #1 0.910 – 0.005 0.273

#2 – 0.185 0.001 0.007

#3 0.520 – 0.000 0.007

#4 – 0.623 0.000 0.023

#5 – 0.384 0.000 0.001

#6 0.910 – 0.000 0.031
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combination of FD method and trial. Each of the last 14

columns in these tables refers to either a specificity or a

sensitivity result for a certain class. Sensitivity (also called

the true positive rate) measures the proportion of actual

positives of a class which are correctly identified as such,

whereas specificity (aka the true negative rate) measures

the proportion of negatives of a class which are correctly

identified as such.

The features were normalized to have 0 as mean and 1

as standard deviation. Since the accuracy results produced

by using the feature values extracted by the Katz’s method

were significantly better than those obtained by using the

feature values extracted by the other FD methods, we

decided to inspect in more detail the effect of the calibra-

tion of the kernel parameter value for the cases where the

Katz’s method was employed. Thus, Figs. 1, 2, 3 and 4

show the way the accuracy rate (i.e., 1—error rate)

obtained by the different kernel machines has varied as a

function of the kernel parameter value. Figures 5, 6, 7, and

8 do the same job but focus on the sensitivity. The choice

of the trial #1 was arbitrary since the purpose here is only

to contrast the profiles produced by the different machines.

Table 4 Best specificity (Spec) results achieved by models for each class and FD method using trial #1

Model FD r Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Spec 6 Spec 7

SVM BC 1.00 0.66 ± 0.06 0.56 ± 0.06 0.54 ± 0.05 0.56 ± 0.04 0.74 ± 0.08 0.60 ± 0.05 0.82 ± 0.05

HG 4.00 0.70 ± 0.08 0.97 ± 0.03 0.84 ± 0.06 0.73 ± 0.05 0.86 ± 0.05 0.95 ± 0.02 0.70 ± 0.05

KT 8.00 0.95 ± 0.03 0.95 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.96 ± 0.03 0.94 ± 0.03

SV 8.00 0.69 ± 0.05 0.62 ± 0.07 0.51 ± 0.05 0.65 ± 0.10 0.77 ± 0.06 0.71 ± 0.06 0.68 ± 0.04

RVM BC 2.00 0.67 ± 0.08 0.66 ± 0.04 0.52 ± 0.06 0.60 ± 0.10 0.72 ± 0.04 0.60 ± 0.06 0.72 ± 0.04

HG 4.00 0.64 ± 0.06 0.96 ± 0.04 0.84 ± 0.04 0.69 ± 0.06 0.83 ± 0.05 0.95 ± 0.03 0.73 ± 0.07

KT 16.00 0.96 ± 0.03 0.94 ± 0.03 0.97 ± 0.03 0.98 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.94 ± 0.02

SV 2.00 0.66 ± 0.08 0.63 ± 0.07 0.55 ± 0.06 0.63 ± 0.07 0.76 ± 0.09 0.76 ± 0.06 0.71 ± 0.05

mRVM1 BC 2.00 0.67 ± 0.04 0.73 ± 0.09 0.42 ± 0.09 0.48 ± 0.08 0.73 ± 0.09 0.61 ± 0.10 0.65 ± 0.08

HG 8.00 0.57 ± 0.06 0.94 ± 0.05 0.89 ± 0.04 0.69 ± 0.05 0.88 ± 0.06 0.96 ± 0.02 0.67 ± 0.08

KT 32.00 0.95 ± 0.02 0.95 ± 0.03 0.98 ± 0.02 0.99 ± 0.02 0.97 ± 0.02 0.95 ± 0.03 0.95 ± 0.02

SV 1.00 0.63 ± 0.05 0.59 ± 0.03 0.39 ± 0.12 0.62 ± 0.05 0.79 ± 0.07 0.72 ± 0.05 0.71 ± 0.07

mRVM2 BC 2.00 0.67 ± 0.06 0.70 ± 0.09 0.49 ± 0.11 0.59 ± 0.09 0.72 ± 0.05 0.61 ± 0.10 0.69 ± 0.08

HG 2.00 0.62 ± 0.03 0.96 ± 0.03 0.85 ± 0.06 0.68 ± 0.06 0.84 ± 0.09 0.94 ± 0.02 0.70 ± 0.06

KT 4.00 0.93 ± 0.05 0.94 ± 0.02 0.97 ± 0.02 0.98 ± 0.02 0.96 ± 0.02 0.91 ± 0.03 0.95 ± 0.03

SV 0.50 0.64 ± 0.07 0.62 ± 0.07 0.45 ± 0.10 0.64 ± 0.05 0.76 ± 0.08 0.70 ± 0.14 0.69 ± 0.07

Table 5 Best sensitivity (Sens) results achieved by models for each class and FD method using trial #1

Model FD r Sens 1 Sens 2 Sens 3 Sens 4 Sens 5 Sens 6 Sens 7

SVM BC 1.00 0.93 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01 0.86 ± 0.03

HG 4.00 0.94 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.95 ± 0.02 0.97 ± 0.01 0.99 ± 0.00 0.95 ± 0.01

KT 8.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01

SV 8.00 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.91 ± 0.01 0.93 ± 0.02 0.97 ± 0.01 0.93 ± 0.02

RVM BC 2.00 0.93 ± 0.03 0.90 ± 0.02 0.90 ± 0.02 0.91 ± 0.02 0.92 ± 0.01 0.93 ± 0.02 0.91 ± 0.03

HG 4.00 0.94 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.93 ± 0.02

KT 16.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.01

SV 2.00 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 0.93 ± 0.02 0.96 ± 0.01 0.92 ± 0.03

mRVM1 BC 2.00 0.91 ± 0.02 0.89 ± 0.03 0.91 ± 0.03 0.91 ± 0.02 0.89 ± 0.02 0.90 ± 0.04 0.92 ± 0.02

HG 8.00 0.94 ± 0.02 0.97 ± 0.01 0.96 ± 0.02 0.95 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.94 ± 0.02

KT 32.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.00

SV 1.00 0.91 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.89 ± 0.04 0.95 ± 0.02 0.89 ± 0.03

mRVM2 BC 2.00 0.93 ± 0.02 0.90 ± 0.04 0.91 ± 0.02 0.90 ± 0.03 0.92 ± 0.03 0.93 ± 0.03 0.90 ± 0.02

HG 2.00 0.93 ± 0.02 0.97 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.99 ± 0.01 0.93 ± 0.02

KT 4.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01

SV 0.50 0.91 ± 0.04 0.91 ± 0.05 0.92 ± 0.03 0.89 ± 0.04 0.91 ± 0.03 0.96 ± 0.01 0.90 ± 0.02
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The bars in Figs. 1, 2, 3, and 4 represent the variance in

accuracy rate per class (one standard deviation from the

mean) for each value of r considered.

Finally, in Tables 6 and 7, we provide the average

processing time elapsed during the training and testing

phases for each combination of classifier model, fractal

dimension estimation method, and experimental trial.

4.4 Discussion

From the results presented in Tables 2 and 3, it is possible

to conclude that, in general, the accuracy rates displayed by

SVM and RVM were rather similar to each other,

prevailing in the majority of the cases over those produced

by mRVM2. On the other hand, the performance of

mRVM1 varies in accordance with the feature extractor

adopted. Considering specifically the BC and Sevcik’s

methods, SVM and RVM usually outperformed the others,

as testified by the low p-values associated with mRVM1

and mRVM2. For Higuchi’s method, SVM performed

consistently better than mRVM1 and mRVM2, but was

comparable to RVM in most of the cases. On the other

hand, irrespective of the type of kernel machine, the

accuracy rates obtained with the aforementioned FD

methods were significantly worse than those achieved with

Fig. 1 Variation of accuracy rate per class as a function of the kernel

parameter value for SVM using trial #1 and feature vector extracted

through the Katz’s method

Fig. 2 Variation of accuracy rate per class as a function of the kernel

parameter value for RVM using trial #1 and feature vector extracted

through the Katz’s method

Fig. 3 Variation of accuracy rate per class as a function of the kernel

parameter value for mRVM1 using trial #1 and feature vector

extracted through the Katz’s method

Fig. 4 Variation of accuracy rate per class as a function of the kernel

parameter value for mRVM2 using trial #1 and feature vector

extracted through the Katz’s method
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the Katz’s method. For this feature type, the performance

levels delivered by SVM, RVM, and mRVM1 were rather

comparable, since the null hypothesis could not be rejected

in five out of six trials. In half of the trials, mRVM1 has

provided the best average results, whereas in all cases,

mRVM2 was overmatched by the best kernel machine. It is

also worth mentioning that the standard deviation values of

the error rates obtained with the Katz’s method were usu-

ally smaller for all machines, evidencing the robustness of

the induced models to the variability of training/test data in

the cross-validation process.

In what concerns the efficiency of FD-based RVM and

its variations in terms of computational time, the results

shown in Tables 6 and 7 reveal that the training of these

models is usually more expensive than that of SVM.

However, in the testing phase, this time reduced from 2 s

on average for SVM to circa 1.5 s on average for RVM and

to about 0.4 s on average for mRVM1 and mRVM2. This

suggests that the FD-based multiclass RVM can yield more

sparse solutions, which means a better data reduction

ability. Anyway, regardless of the FD estimation technique

used, the time taken to obtain the final classification out-

puts from the induced RVM models is usually small, which

ensures their practical deployment in real-world settings.

By looking at the values shown in Tables 4 and 5, one

can perceive that the use of the Katz’s method as feature

extractor has endowed all classifiers with the capability to

provide a good balance between specificity and sensitivity

Fig. 5 Variation of sensitivity per class as a function of the kernel

parameter for SVM using trial #1 and feature vector extracted through

the Katz’s method

Fig. 6 Variation of sensitivity per class as a function of the kernel

parameter for RVM using trial #1 and feature vector extracted

through the Katz’s method

Fig. 7 Variation of sensitivity per class as a function of the kernel

parameter for mRVM1 using trial #1 and feature vector extracted

through the Katz’s method

Fig. 8 Variation of sensitivity per class as a function of the kernel

parameter for mRVM2 using trial #1 and feature vector extracted

through the Katz’s method
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of the classes. In fact, for all FD methods but Katz’s, the

specificity values were usually significantly lower than the

sensitivity values. Besides, as evidenced in Figs. 5, 6, 7,

and 8, very high sensitivity values could be obtained for all

seven classes, irrespective of the value used for the kernel

parameter. This behavior could not be reproduced by the

other FD methods.

The choice of the kernel parameter value was not a

crucial factor to distinguish between the overall best error

rates exhibited by the models, even though for each

kernel machine, there are some values of r that appear

more frequently in Table 2, such as r ¼ 8 for SVM and

r ¼ f2; 4g for RVM. As depicted in Figs. 1, 2, 3, and 4,

there is usually a range of values for the kernel parameter

yielding quite interesting results, although there is no

optimal value yielding 100 % of correct classification for

all classes. Interestingly, the best values of r for the

combination of mRVM1 and Katz’s method were always

the same, namely r ¼ 32, the highest value of the studied

range. Maybe higher values of this parameter could yield

even better results for the mRVM1. In terms of stability,

RVM models were usually more robust to the choice of

r, considering the mean accuracy over all classes

altogether.

Table 6 Average CPU time (in

seconds) spent in the training

phase for each combination of

FD estimation method, classifier

type, and experimental trial

Model FD Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 Trial #6 Average #

SVM BC 83.874 78.230 75.913 82.057 82.651 80.030 80.459

HG 70.342 59.462 62.795 61.826 61.448 61.623 62.916

KT 59.030 56.776 59.107 58.316 59.723 58.199 58.525

SV 76.657 77.458 75.644 78.977 80.005 79.341 78.014

RVM BC 395.237 389.891 382.572 381.816 394.904 388.657 388.846

HG 372.106 387.296 367.190 376.485 374.384 372.156 374.936

KT 291.536 319.270 258.482 256.289 239.642 244.999 268.370

SV 395.939 404.915 386.840 397.688 401.969 396.744 397.349

mRVM1 BC 364.851 389.985 316.299 360.709 318.953 346.452 349.542

HG 328.064 353.138 298.344 325.205 285.865 307.457 316.346

KT 319.234 384.032 480.383 379.395 358.734 395.872 386.275

SV 377.182 371.101 323.581 398.207 340.964 335.092 357.688

mRVM2 BC 383.436 374.228 385.177 379.760 356.889 342.905 370.399

HG 383.326 420.473 420.152 403.707 385.867 412.833 404.393

KT 524.064 498.941 509.644 563.858 529.767 491.003 519.546

SV 357.942 388.900 361.419 419.416 362.607 382.724 378.835

Table 7 Average CPU time (in

seconds) spent in the test phase

for each combination of FD

estimation method, classifier

type, and experimental trial

Model FD Trial #1 Trial #2 Trial #3 Trial #4 Trial #5 Trial #6 Average #

SVM BC 2.397 2.395 2.404 2.418 2.395 2.386 2.399

HG 2.390 2.385 2.388 2.388 2.386 2.386 2.387

KT 2.393 2.386 2.396 2.391 2.393 2.395 2.392

SV 2.395 2.396 2.393 2.399 2.397 2.390 2.395

RVM BC 1.508 1.503 1.519 1.505 1.516 1.510 1.510

HG 1.519 1.514 1.525 1.521 1.518 1.526 1.521

KT 1.535 1.528 1.535 1.523 1.534 1.527 1.530

SV 1.511 1.501 1.523 1.507 1.506 1.510 1.510

mRVM1 BC 0.402 0.403 0.403 0.401 0.401 0.401 0.402

HG 0.418 0.416 0.416 0.415 0.414 0.415 0.416

KT 0.400 0.401 0.404 0.399 0.400 0.402 0.401

SV 0.403 0.402 0.402 0.404 0.403 0.401 0.402

mRVM2 BC 0.406 0.404 0.404 0.405 0.402 0.403 0.404

HG 0.424 0.420 0.423 0.427 0.421 0.422 0.423

KT 0.428 0.425 0.424 0.422 0.426 0.419 0.424

SV 0.406 0.404 0.407 0.405 0.414 0.405 0.407
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Finally, in what regards the complexity of the induced

models, the number of support vectors and relevance vectors

of the best calibrated SVM and RVM models was usually

significantly higher than the number of RV associated with

mRVM models—refer to Table 2. An exception occurs for

the combination of mRVM1 and Katz’s method. In this case,

the number of RV was much higher than those obtained by

using the other methods for calculating the FD. On the other

hand, the models induced by mRVM2 were always the less

complex ones, regardless of the FD method. So, when the

sparsity of the induced model is a key aspect to take into

account, the use ofmRVM2 seems to bemuch recommended.

5 Concluding remarks

In this paper, we investigated the potentials of using rele-

vance vector machines (both in the standard and multiclass

formulations) to cope with the task of EMG signal classi-

fication. In this study, we have considered different meth-

ods for calculating the fractal dimension of 1D signals as

feature extractors.

Through experiments conducted on a publicly available

dataset involving different types of limb movements (seven

classes in total), we have empirically confirmed that the

deployment of the kernel machines equipped with the FD

feature values can be useful for achieving good levels of

classification performance. In particular, the combination

of SVM, RVM, and mRVM1 with Katz’s method was the

best, across the different experiment trials, in terms of

accuracy and generalization. In what concerns the com-

plexity issue, however, mRVM2 has consistently produced

more sparse models, implying higher efficiency when

classifying large batches of novel samples.

As ongoing work, we are currently extending the scope

of investigation by considering other nonlinear dynamics

methods to extract the hidden information in the EMG

signals, such as the Lyapunov exponent, and Hurst expo-

nent [2]. As future work, we plan to investigate the impact

of using EMG sub-segments of different sizes and also of

using different feature selection methods, since feature

selection is a preprocessing step that can bring about gains

in terms of classifier accuracy [23, 45]. Finally, the com-

bination of different kernel machines in heterogeneous

committee machines will also be researched in the context

of EMG signal classification.
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