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Abstract This study deals with the development of an

artificial neural network (ANN) and a multiple regression

(MR) model that can be employed for estimating the Cal-

ifornia bearing ratio (CBR) value of some Aegean sands.

To achieve this, the results of CBR tests performed on the

compacted specimens of nine different Aegean sands with

varying soil properties were used in the development of the

ANN and MR models. The results of the ANN and MR

models were compared with those obtained from the

experiments. It is found that the CBR values predicted

from the ANN model matched the experimental values

much better than the MR model. Moreover, several per-

formance indices, such as coefficient of determination,

root-mean-square error, mean absolute error, and variance,

were used to evaluate the prediction performance of the

ANN and MR models. The ANN model has shown higher

prediction performance than the MR model based on the

performance indices, which demonstrates the usefulness

and efficiency of the ANN model. Thus, the ANN model

can be used to predict CBR value of the Aegean sands

included in this study as an inexpensive substitute for the

laboratory testing, quite easily and efficiently.

Keywords Aegean sands � Artificial neural networks �
California bearing ratio � Experimental investigations

1 Introduction

The California bearing ratio (CBR) is defined as the ratio

of force per unit area required to penetrate a soil mass

with standard circular piston at the rate of 1.25 mm/min to

that required for the corresponding penetration of a

standard material [12]. The CBR test was firstly used in

1920s in the California State Highway Department and

was adapted by US Corp of Engineer in the 1940s for

military airfield [60]. The CBR tests can be performed

either in the laboratory or in the field. In the laboratory,

the CBR test is typically performed on compacted soil

samples, while in the field the CBR test is performed at a

ground surface, or on a level surface excavated in a test

pit, trench, or bulldozer cut [16]. The CBR test results are

very important for geotechnical engineering and earth

structures such as earth dams, highway embankments,

bridge abutments, and the fills behind retaining walls [88].

A CBR value is affected by the type of soil and different

soil properties [92]. Many researchers [1–3, 6, 39, 44, 47,

57, 62, 67, 78, 79, 85, 86, 88] have conducted studies to

show the effect of soil types and characteristics on CBR

values. The CBR value has also been correlated empiri-

cally with resilient modulus and a variety of other engi-

neering soil properties [2].

Artificial neural networks (ANNs) offer an interesting

approach for modeling soil behavior [70]. ANN is an

oversimplified simulation of human brain [5] and is

accepted as a reliable data modeling tool to capture and

represent complex relationships between inputs and outputs

[9]. This is in contrast to most traditional empirical and

statistical methods, which need prior knowledge about the

nature of relationships among the data [74]. Thus, ANNs

are well suited to modeling the complex behavior of most

geotechnical engineering materials which, by their very
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nature, exhibit extreme variability [74]. This modeling

capability, as well as the ability to learn from experience,

has given ANNs superiority over most traditional methods

since there is no need for making assumptions about what

the underlying rules that govern the problem in hand could

be [74]. Since the early 1990s, ANNs have been effectively

applied to almost every problem in geotechnical engi-

neering [74], including constitutive modeling [51, 59], geo-

material properties [21, 54, 56], bearing capacity of pile

[15, 55], slope stability [13, 24–26, 91], shallow founda-

tions [27, 28, 73], liquefaction potential [30, 46, 50, 58, 68,

87], and tunnels and underground openings [75, 90].

Even though there is an ample of literature related to the

ANN applications in geotechnical engineering, only a few

studies have been done to predict the CBR values of the

soils. Taskiran [79] used CBR tests on fine-grained soils

from Southeast Anatolia Region, Turkey, to develop an

ANN model. Different combinations of dry unit weight,

optimum water content, liquid limit, plasticity index, sand

content, No: 200 sieve passing percent (clay ? silt), and

gravel percent were taken as inputs while developing the

ANN model. The ANN model was found to be able to

predict successfully the CBR values of the fine-grained

soils. Yildirim and Gunaydin [88] used the CBR data

collected from the public highways of Turkey’s different

regions to develop an ANN and two traditional statistical

(single regression (SR) and MR) models. The results

obtained from the models showed that the constructed

ANN model exhibited a higher performance than both

traditional models in predicting the CBR values. Kaur et al.

[42] developed an ANN model for the prediction of CBR

of soil. While developing the ANN model, the percentage

of gravel fraction, sand fraction, fine fraction, liquid limit,

plasticity index, and maximum dry density were taken as

input parameters. The results achieved from the model

showed that the ANN model predicts CBR values quite

efficiently. Ramakrishna et al. [61] developed an ANN

model for the prediction of CBR of soil by using the results

of CBR tests on the black cotton soil stabilized with rice

husk ash and cement. The results obtained from the model

showed that the ANN model predicts CBR values quite

successfully. Sabat [65] developed the ANN and MR

models for the prediction of CBR of lime and quarry dust

stabilized soil. While developing both models, the per-

centage of quarry dust, the percentage of lime, curing

period, optimum moisture content, and maximum dry

density were taken as input parameters. The results

achieved from the models showed that both ANN and MR

models were very accurate in predicting the CBR of lime

and quarry dust stabilized soil, and the performance of the

ANN model was relatively better than the MR model.

In this paper, an ANN model, with respect to the above

advantages, and a MR model were developed to predict the

CBR value of some Aegean sands. To achieve this, the

results of CBR tests performed on the compacted speci-

mens of nine different Aegean sands with varying soil

properties were used. Both models had ten input parame-

ters, namely specific gravity (G), coefficient of uniformity

(Cu), coefficient of curvature (Cc), dry density (qdry), water
content (w), the proportions of quartz, feldspar, calcite,

corund, and amorphous minerals denoted as Q, Fel, Ca, C,

and A, respectively, and an output parameter, CBR. The

results of the ANN and MR models were compared with

those obtained from the experiments. It is found that the

CBR values predicted from the ANN model are much more

close to the experimental values than those obtained from

the MR model. Moreover, several performance indices,

such as coefficient of determination, root-mean-square

error, mean absolute error, and variance, were used to

evaluate the prediction performance of the ANN and MR

models. The ANN model has shown higher prediction

performance than the MR model based on the performance

indices.

2 Artificial neural networks

ANNs are a form of artificial intelligence which are based

on the biological nervous system and inspired by the

structure of biological neural networks and their way of

encoding and solving problems [49]. An ANN is composed

basically of a large number of highly interconnected pro-

cessing elements called neurons working in parallel to

solve the specific problem. The neural network is first

trained by processing a large number of input patterns and

the corresponding output [43]. The neural network is cap-

able of recognizing similarities when presented with a new

input pattern after proper training and predicting the output

pattern [43]. Neural networks are also able to detect sim-

ilarities in inputs, even though a particular input may never

have been known previously [43]. This property allows its

excellent interpolation capabilities, especially when the

input data are not definite [43]. Neural networks may be

used as a direct substitute or an alternative for autocorre-

lation, multivariable regression, linear regression, trigono-

metric, and other statistical analysis techniques [43, 76].

Many authors have described the structure and operation

of ANNs (e.g., [31, 40, 48, 63, 93]. ANNs architectures are

formed by three or more layers, which consist of an input

layer, one or more hidden layers, and an output layer [20].

Each layer consists of a number of interconnected pro-

cessing elements (PEs), commonly referred to as neurons

[20]. The neurons interact with each other via weighted

connections [20]. Each neuron is connected to all the

neurons in the next layer [20]. In the input layer, data are

presented to the network [20]. The output layer holds the

1416 Neural Comput & Applic (2016) 27:1415–1426

123



response of the network to the input [20]. The hidden layers

enable these networks to represent and compute compli-

cated associations between inputs and outputs [20]. This

ANN architecture is commonly referred to as a fully

interconnected feed-forward multilayer perceptron (MLP)

[20]. In addition, there is also a bias, which is only con-

nected to the neurons in the hidden and output layers, with

modifiable weighted corrections.

The neural network ‘‘learns’’ by modifying the weights

of the neurons in response to the errors between the actual

output values and the target output values [20]. A number

of learning algorithms are available for training of neural

networks, but the back-propagation algorithm is the most

versatile and robust technique [43]. It provides the most

efficient learning procedure for multilayer neural networks

[43]. Also, the fact that back-propagation algorithms are

especially capable of solving predictive problems makes

them so popular [43]. The back-propagation neural net-

work has been applied with great success to model many

phenomena in the field of geotechnical engineering [19,

20–22, 34, 35, 71]. In the back-propagation neural network,

learning is carried out through gradient descent on the sum

of the squares of the errors for all the training patterns [34,

64]. Each neuron in a layer receives and processes

weighted inputs from neurons in the previous layer and

transmits its output to neurons in the following layer

through links [20]. Each link is assigned a weight which is

a numerical estimate of the connection strength [20]. The

weighted summation of inputs to a neuron is converted to

an output according to a nonlinear transfer function [20].

The common transfer function widely used in the literature

is the sigmoid function. The changes in the weights are

proportional to the negative of the derivative of the error

term [20]. One pass through the set of training patterns,

together with the associated updating of the weights, is

called a cycle or an epoch [20]. Training is carried out by

repeatedly presenting the entire set of training patterns

(updating the weights at the end of the each epoch) until

the average sum-squared error over all the training patterns

is minimal and within the tolerance specified for the

problem [20].

At the end of the training phase, the neural network

should correctly reproduce the target output values for the

training data; provided errors are minimal (i.e., conver-

gence occurs) [20]. The associated trained weights of the

neurons are then stored in the neural network memory [20].

In the next phase, the trained neural network is fed a

separate set of data [20]. In this testing phase, the neural

network predictions using the trained weights are com-

pared to the target output values [20]. The performance of

the overall ANN model can be assessed by several criteria

[5, 69, 72, 75]. These criteria include coefficient of deter-

mination R2, mean squared error, mean absolute error,

minimal absolute error, and maximum absolute error [20].

A well-trained model should result in an R2 close to 1 and

small values of error terms [20].

In this study, determination of CBR has been modeled

using the ANN in which network training was accom-

plished with the neural network toolbox written in

MATLAB environment (Math Works 7.0 Inc. 2006), and

the Levenberg–Marquardt back-propagation learning

algorithm [17] was used in the training stage. Details of the

experimental investigations [82], which have yielded the

data for the ANN and MR models, are presented in the

following section.

3 Experimental investigations

CBR tests were performed on Aegean sands obtained from

nine different locations in Manisa [82], as depicted in

Fig. 1. These sands were air-dried, and the fraction passing

through a 4.76-mm sieve (ASTM No. 4) was separated into

representative subsamples by passing through the riffle box.

In order to establish gradational characteristics of these

sands, sieve tests were performed in duplicate on each

sample following the guidelines presented by ASTM D

422-63 [4]. Average values were used for developing the

representative gradation curve for the sample. The grada-

tional curves for the sand samples are presented in Fig. 2,

and the basic soil parameters are listed in Table 1. Specific

gravity tests were conducted according to Turkish Stan-

dards [80] in order to determine the G value of the samples,

and the results are presented in Table 1. The qdry–w rela-

tionship was determined by using the 2.5 kg rammer

method according to Turkish Standards [80]. The optimum

water content (wopt) is given in Table 1 for each sand

sample. Maximum and minimum compaction tests were

also performed on each sample [7] to determine the maxi-

mum and minimum densities. The results of these tests were

used to establish the maximum and minimum void ratios

(emax and emin), and these ratios are given in Table 1.

Mineralogical determinations by means of X-ray

diffraction analyses were performed on the sand samples

by means of whole-rock powder in the Material Laboratory

of Izmir Institute of Technology (Izmir-Turkey). Accord-

ing to the characteristic peaks for each mineral, mineral

composition and their semiquantitative quantities were first

identified from the X-ray diffractions on whole-rock

powder. According to XRD results, 100 % proportion of

quartz mineral were found in both samples A and I. Quartz

was also appeared to be the dominant mineral in samples

B, D, E, and F, while feldspar was the secondary dominant

mineral in these samples. In sample H, higher proportions

(75 %) of feldspar mineral and 25 % corundum mineral

had been observed. While higher proportion of corundum
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(100 %) had been observed in sample G, sample C was

evaluated as completely amorphous mineral (100 %). The

results of XRD are also summarized in Table 2.

In the CBR tests [82], a 100-kN load cell capacity

compression testing machine supplied by Humboldt, USA,

was employed. The surface area of the plunger is

19.35 cm2 with the rate of penetration of 1.27 mm/min. A

60-kN load cell, attached to a digital readout unit, was used

for recording the load P transmitted to the sample. Prior to

loading of the sample, silicon grease was applied on the

two pistons to minimize the side friction. The sample was

compacted dynamically into the CBR mold in three layers

to achieve a certain density. Samples B, E, and H were

tested at six different densities, while samples A, C, D, G,

and I were tested at seven different densities, and sample F

was tested at eight different densities. For each density

tested in each sample, two specimens having diameter of

152 mm, length of 127 mm were prepared at the same

density and at the optimum water contents given in Table 1

for each sample. After the preparation, curing was not

applied to the specimens, and CBR tests were then per-

formed on the specimens according to Turkish Standards

[81]. Then, CBR values of the specimens were determined.

Finally, the average value of two tests at the same density

was calculated and taken as CBR value of the sample at

this density for the evaluation of test results.

After the CBR values of the individual specimens was

determined for each sand sample, CBR values were plotted

against dry density (qdry) to establish the CBR versus qdry
relationship. The typical CBR versus qdry behavior was

then obtained as shown in Fig. 3 for sample G. The data

trends were similar for all samples, indicating an existence

of a linear relationship between CBR and qdry. This

observation is consistent with research reported by Doshi

et al. [18] and Taskiran [79].

Fig. 1 Location map of the

study area [82]
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Fig. 2 Particle size distribution characteristics of the sand samples

[82]
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4 Artificial neural network model

An ANN model is developed to predict the CBR value of

some Aegean sands. Five soil properties (G, Cu, Cc, qdry,
and w) and five mineralogical parameters (Q, Fel, Ca, C,

and A) were used as the input parameters in the ANN

model, whereas the measured CBR value was the output

parameter. The details of the input and output parameters

of the ANN model are given in Table 3.

The data were then divided into two subsets: a training

set, to construct the neural network model, and an inde-

pendent validation set to estimate model performance in

the deployed environment. Therefore, in total (61 data

sets), 80 % of the data were used for training and 20 % for

testing. It has been shown that a network with one hidden

layer can approximate any continuous function, provided

that sufficient connection weights are used [41]. Conse-

quently, one hidden layer was used. The neural network

toolbox of MATLAB 7.0, a popular numerical computation

and visualization software [84], was used for training and

testing of MLPs. The optimum number of neurons in the

hidden layer of the model was determined by varying their

number, starting with a minimum of 1 and then increasing

the network size in steps by adding 1 neuron each time.

Different transfer functions (such as log-sigmoid [66], tan-

sigmoid [52], and purelin) were investigated to achieve the

best performance in training as well as in testing. Two

Table 1 Physical and

compaction characteristics of

the sand samples [82]

Sample G emax emin wopt (%) D10 (mm) D50 (mm) Cu Cc Unified soil classification

A 2.68 0.90 0.47 13.9 0.94 1.50 1.92 0.88 SP

B 2.68 0.96 0.56 11.0 0.88 1.23 1.58 0.91 SP

C 3.24 0.75 0.28 12.2 0.17 0.77 5.91 1.39 SP

D 2.67 0.92 0.57 11.8 0.12 0.45 4.76 1.78 SP-SM

E 2.56 0.87 0.51 13.4 0.87 1.26 1.68 0.90 SP

F 2.67 0.90 0.24 2.6 0.29 0.81 3.53 1.12 SP

G 3.57 1.07 0.62 9.9 0.60 1.25 2.53 1.09 SP

H 3.30 1.04 0.54 14.4 0.91 1.39 1.78 0.89 SP

I 2.48 0.76 0.39 7.2 1.51 1.10 2.62 1.10 SP

Table 2 Whole-rock powder diffraction analysis results (% fraction

by weight) for the sand samples [82]

Sample Q Fel Ca Dol Px C Clay A

A 100 – – – – – – –

B 60 25 5 5 – – 5 –

C – – – – – – – 100

D 60 30 5 – – – 5 –

E 55 25 10 5 – – 5 –

F 60 40 – – – – – –

G – – – – – 100 – –

H – 75 – – – 25 – –

I 100 – – – – – – –

Q quartz, Fel feldspar, Ca calcite, Dol dolomite, Px pyroxene,

C corund, A amorphous
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dry (g/cm3)

Fig. 3 Typical CBR versus qdry behavior of the sample G [82]

Table 3 Details of the parameters used in the ANN model developed

Parameters used Minimum Maximum Mean SD

Input parameters

Q (%) 0 100 49.0164 38.12064

Fel (%) 0 75 20.9836 23.62590

Ca (%) 0 10 2.0492 3.33879

C (%) 0 100 13.9344 32.12106

A (%) 0 100 11.4754 32.13700

qdry (g/cm
3) 1.41 2.50 1.7613 0.25950

G 2.48 3.57 2.8702 0.36987

Cc 0.88 1.78 1.1285 0.28401

Cu 1.58 5.91 2.9944 1.44574

w (%) 2.57 14.90 10.2756 3.55676

Output parameter

CBR 2.04 42.43 19.6534 14.28860
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momentum factors, l (=0.01 and 0.001), were selected for

the training process to search for the most efficient ANN

architecture. Over-fitting makes multilayer perceptrons

(MLPs) to memorize training patterns in such a way that

they cannot generalize well to new data [14, 84]. There-

fore, training started with a small number of epochs (=10)

and kept on incrementing by 10 epochs until the onset of

specialized training as reflected in the reversal of the

downward trend of the error for testing data. The maximum

number of epochs to train was chosen as 100. The coeffi-

cient of determination, R2, and the mean absolute error,

MAE, were used to evaluate the performance of the

developed ANN models. In order to determine the opti-

mum network geometry, the performance of the network

during the training and testing processes was examined for

each network size until no significant improvement

occurred.

The details of the optimal performance of the networks

are given in Table 4. Table 4 shows that ANN with five

hidden neurons resulted in the maximum R2 of 0.9387 and

the minimum MAE of 2.53 in the testing phase. There-

fore, it was chosen as the best ANN model. The archi-

tecture of the best ANN model is also given in Fig. 4.

Connection weights and biases for the model are pre-

sented in Table 5.

5 Multiple regression model

Multiple regression (MR), a time-honored technique going

back to Pearson’s use of it in 1908, is employed to account

for (predict) the variance in an interval dependent, based on

linear combinations of interval, dichotomous, or dummy

independent variables [89]. The general purpose of MR is

to learn more about the relationship between several

independent or predictor variables and a dependent or

criterion variable [89]. MR analysis was carried out by

using SPSS 10.0 package to correlate the measured CBR

value to the five soil physical properties (G, Cu, Cc, qdry,
and w) and five mineralogical parameters (Q, Fel, Ca, C,

and A). The data used while developing the ANN model

(i.e., 61 data sets) were used in the development of the MR

model. The MR model revealed the following correlations:

CBR ¼ �140:132� 0:160 Q� 0:305Fel� 0:195Ca

� 0:436C� 0:450Aþ 102:192qdry � 6:890G

þ 49:869Cc � 13:195Cu þ 0:844w R2 ¼ 0:81

ð1Þ

6 Results and discussion

A comparison of experimental results with the results

obtained from the ANN model is depicted in Figs. 5 and 6

for training and testing samples, respectively. It can be

noted from the figures that CBR values obtained from the

Table 4 Details of the optimal performance of networks in predicting CBR

Number of neurons

in the hidden layer

Transfer function in l Number of epochs Training Testing

Neurons of the

hidden layer

Neurons of the

output layer

R2 MAE R2 MAE

1 Log-sigmoid Tan-sigmoid 0.001 5 0.9623 2.60 0.8870 3.28

2 Tan-sigmoid Tan-sigmoid 0.001 6 0.9600 2.39 0.9181 3.61

3 Tan-sigmoid Tan-sigmoid 0.001 5 0.9582 2.36 0.9283 2.44

4 Tan-sigmoid Tan-sigmoid 0.001 5 0.9730 2.10 0.9365 3.00

5 Tan-sigmoid Tan-sigmoid 0.001 8 0.9783 2.05 0.9387 2.53

Inputs Hidden layer Output 

5 neurons in the hidden layer 

CBR 

Q

Fel 

Ca 

C 

A 

dry

G 

Cc

Cu

w

Fig. 4 Architecture of the best ANN model
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ANN model are quite close to the experimentally obtained

CBR values, as their R2 values are much close to unity.

This shows that the ANN model is able to predict CBR

values of the Aegean sands, if their physical properties (G,

Cu, Cc, qdry, and w) and five mineralogical parameters (Q,

Fel, Ca, C, and A) are known. In order to show that there

might be an important relation between input and output

parameters used in the ANN model which causes to

achieve these performance results of the model, the cor-

relation coefficients (r) of each input and the output one by

one were calculated and given in Table 6. Smith [77]

suggested the following guide for values of rj j between 0.0

and 1.0:T
a
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Fig. 5 Comparison of the CBR values obtained from experimental

investigations with the CBR values predicted from the ANN model

for training sample
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investigations with the CBR values predicted from the ANN model

for testing samples
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rj j � 0:8 strong correlation exists between the two

sets of variables;

0:2\ rj j\0:8 correlation exists between the two sets of

variables;

rj j � 0:2 weak correlation exists between the two

sets of variables

The r values in Table 6 are smaller than 0.8, which

indicate that there is not a strong correlation between the

parameters causing to achieve the performance results of

the ANN model. This result also indicates that ANN is a

reliable data modeling tool to capture and represent com-

plex relationships between input and output parameters.

A comparison of experimental results with the results

obtained from the MR model is depicted in Fig. 7 for all

samples. It can be noticed from the figure that predicted

CBR values from the MR model are in good agreement

with the experimentally obtained CBR values, as their R2

of 0.812.

A paired t test, a statistical test, utilizes the mean of the

difference between the observations in one group and the

matched observations in the other group. A paired t test is

carried out to determine whether there is a significant dif-

ference between two observations. A paired t test result can

be expressed in terms of a p value, which represents the

weight of evidence for rejecting the null hypothesis [53].

The null hypothesis is the equality of mean of difference

between comparisons [11]. The null hypothesis can be

rejected, that is, the mean of difference between

comparisons are significantly different, if the p value is less

than the selected significance level [11]. A significance

level of 0.05 is used for all paired t tests [11]. Thus,

p[ 0.05 meant there was not a meaningful difference, and

p\ 0.05 meant there was a meaningful difference [83]. In

this study, a paired t test was performed by using the SPSS

13.0 package to look for a statistically significant differ-

ence between calculated and predicted CBR values for the

ANN and MR models. p value was found as 0.345 and

0.989 for the ANN and MR models, respectively, indicat-

ing no significant difference in CBR between the calculated

and predicted values for both models.

The data measured and predicted from the ANN model

are shown in Figs. 4 and 5. The data measured and pre-

dicted from the MR model are shown in Fig. 6. It can be

noted from Figs. 4, 5, and 6 that the predicted values from

the ANN model matched the measured values much better

than those obtained from the MRA model. In fact, the

coefficient of correlation between the measured and pre-

dicted values is a good indicator to check the prediction

performance of the model [37]. In this study, variance

(VAF), represented by Eq. 2, and the root-mean-square

error (RMSE), represented by Eq. 3, were also computed to

assess the performance of the developed models [19–26,

29, 32, 36, 38]

VAF ¼ 1� var y� ŷð Þ
var yð Þ

� �
� 100 ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
yi � ŷið Þ2

r
ð3Þ

where var denotes the variance, y is the measured value, ŷ

is the predicted value, and N is the number of the sample. If

VAF is 100 % and RMSE is 0, the model is treated as

excellent.

Values of VAF and RMSE for the ANN and MR models

developed are listed in Table 7. It can be noted from

Table 7 that the ANN model developed exhibits higher

prediction performance than MR model based on the per-

formance indices, which demonstrates the usefulness and

Table 6 Correlation

coefficients of each input and

the output one by one

Output parameter Input parameters

Q Fel Ca C A qdry G Cc Cu w

CBR 0.087 0.101 0.169 0.053 0.167 0.558 0.150 0.022 0.060 0.134
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Fig. 7 Comparison of the CBR values obtained from experimental

investigations with the CBR values predicted from the MR model for

all samples

Table 7 Performance indices (R2. RMSE. MAE and VAF) of the

ANN and MR models developed

Model Data R2 MAE RMSE VAF (%)

ANN Training set 0.9783 2.05 2.33 97.66

Testing set 0.9387 2.53 3.65 92.28

MR All set 0.8120 4.97 6.14 81.20
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efficiency of the ANN model. Therefore, the CBR value of

the sands considered in this study could be predicted using

trained ANN structures as quite easily and efficiently.

Similar ANN models could also be developed for other

materials using the same input parameters.

Neural network applications are treated as black-box

applications in general [8, 10]. Some researchers such as

Cabalar and Cevik [8], Cevik et al. [10], Köroğlu et al.

[45], Erzin and Ecemis [30] opened this black box and

introduced the NN application in a closed-form solution by

using related NN parameters such as weights and biases.

Similarly, ANN model developed in this study can be

expressed in explicit function form using the related NN

parameters. Using the weights and biases of the optimal

ANN model (Table 5), California bearing ratio (CBR) can

be expressed in terms of five soil physical properties (G,

Cu, Cc, qdry, and w) and five mineralogical parameters (Q,

Fel, Ca, C, and A) as follows:

CBR ¼ 0:9þ tanh Wð Þ � 22:44½ � þ 2:04 ð4Þ

where tanh xð Þ ¼ ðex � e�xÞ= ex þ e�xð Þ and finally output

is computed as:

W ¼ 0:9906� tanh U1 � 0:1726� tanh U2 þ 1:4155

� tanh U3 � 2:4134� tanh U4

� 0:4022� tanh U5 þ 0:4973

U1 ¼ 0:5659� Q� 1:0875� Feþ 0:7623� Ca� 0:0578

� Cþ 0:5420� Aþ 3:1700� qdry�0:5297� G

þ 0:1505� Cc � 1:5852� Cu þ 1:2556

� w� 2:0497

U2 ¼ 0:0520� Qþ 0:5846� Fe� 0:2835� Caþ 0:8873

� Cþ 0:8813� A� 1:5265� qdry

þ 0:0394� Gþ 2:0516� Cc þ 0:1637

� Cu � 0:7604� w� 1:3111

U3 ¼ 0:1939� Qþ 0:7613� Feþ 0:1360� Ca� 0:8739

� C� 1:4867� Aþ 0:6545� qdry

� 0:7289� Gþ 0:5198� Cc � 0:8251

� Cu � 0:9104� wþ 0:7744

U4 ¼ �0:3568� Qþ 0:3321� Fe� 0:3099

� Caþ 0:6878� C� 0:4581� A� 2:7683� qdry

� 0:6558� G� 1:8021� Cc þ 2:2908

� Cu þ 0:1801� w� 0:8964

U5 ¼ 0:8837� Q� 0:2022� Feþ 0:2270� Ca� 1:1514

� C� 0:6346� A� 0:9099� qdry

þ 0:5144� G� 0:1411� Cc þ 0:4109

� Cu þ 0:3594� wþ 1:6051

It should be noted that the proposed ANN model in this

study are valid for the ranges of parameters given in

Table 3. Similar ANN models could also be developed for

other materials using the same input parameters.

Sensitivity analyses were also carried out on the trained

work to determine which of the input parameters have the

most significant effect on the settlement predictions. A

simple and innovative technique proposed by Garson [33],

as employed by Shahin et al. [71] and Erzin and Gul [28],

was utilized to interpret the relative importance of the input

parameters by examining the connection weights of the

trained network. For a network with one hidden layer, the

technique involves a process of partitioning the hidden

output connection weights into components associated with

each input node [71]. The sensitivity analyses are repeated

for networks trained with different initial random weights

to control the robustness of the model in relation to its

ability to obtain information about the relative importance

of the physical factors influencing the CBR value of the

sands used in this study. In this study, training of the net-

work is repeated four times with different random starting

weights. The results of the sensitivity analysis are given in

Table 8. It can be seen from the table that qdry has the most

significant effect on the predicted CBR. However, the

relative importance of the remaining input variables

changed depending on which initial weights were used

(Table 8). The sensitivity analyses indicated that qdry, Cu,

and Cc are the most important factors affecting CBR with

average relative importance of 28.2, 13.6, and 11.6 %,

respectively. The analyses also show that the proportion of

Table 8 Sensitivity analyses of

the relative importance of ANN

input variables

Trial no. Relative importance for input variables (%)

Q Fel Ca C A qdry G Cc Cu w

1 9.6 8.7 4.8 10.4 5.3 29.8 8.1 9.4 4.4 9.4

2 5.9 4.4 9.7 5.3 9.0 30.6 4.7 10.8 11.9 7.7

3 3.4 6.3 3.2 9.2 6.5 28.3 2.6 14.3 20.2 6.0

4 4.4 6.7 3.9 7.6 8.9 24.3 7.2 12.1 18.1 6.9

Average 5.8 6.5 5.4 8.1 7.4 28.2 5.6 11.6 13.6 7.5

Ranking 8 7 10 5 6 1 9 3 2 4

Neural Comput & Applic (2016) 27:1415–1426 1423

123



calcite mineral (Ca) and G have less impact on the CBR

value with average relative importance of 5.4 and 5.6 %,

respectively.

7 Conclusions

In this study, efforts were made to develop an ANN and a

MR model that can be employed for estimating the CBR

value of nine different sands collected from different

locations of the Manisa area (Fig. 1) located in the Aegean

region. For this purpose, the results of CBR tests performed

on the compacted specimens of nine different Aegean

sands with varying soil properties were used in the devel-

opment of the ANN and MR models. Both models had ten

input parameters (G, Cu, Cc, qdry, w, Q, Fel, Ca, C, and A)

and an output parameter, CBR. The results of the ANN and

MR models were compared with those obtained from

experiments. It is found that the ANN model exhibits more

reliable predictions than the MR model.

In addition, several performance indices (R2, RMSE,

MAE, and VAF) were used to assess the prediction per-

formance of the ANN and MR models. In the ANN model,

the R2, RMSE, MAE, and VAF values were obtained as

0.9783, 2.33, 2.05, and 97.66, respectively, for the training

samples and obtained as 0.9387, 3.65, 2.53, and 92.28,

respectively, for the testing samples. In the MR model, the

R2, RMSE, MAE, and VAF values were obtained as 0.8120,

6.14, 4.97, and 81.20, respectively, for all samples. Based

on the performance indices, the ANN model has shown

higher prediction performance than the MR model, which

demonstrates the usefulness and efficiency of the ANN

model. Therefore, the ANN model can be used to predict

CBR value of the Aegean sands included in this study as an

inexpensive substitute for the laboratory testing, quite easily

and efficiently. Similar ANN models could also be devel-

oped for other materials using the same input parameters.

The sensitivity analysis indicates that the qdry, Cu, and

Cc are the most important factors affecting the CBR value

of the Aegean sands used in this study. The sensitivity

analysis also shows that the G and the proportion of calcite

mineral (Ca) have less impact on the CBR value.
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