
ORIGINAL ARTICLE

A modified particle swarm optimization algorithm using Renyi
entropy-based clustering

Emre Çomak1

Received: 14 May 2013 / Accepted: 4 June 2015 / Published online: 16 June 2015

� The Natural Computing Applications Forum 2015

Abstract An algorithm proposed using Renyi entropy

clustering to improve the searching ability of traditional

particle swarm optimization (PSO) is introduced in this

study. Modified PSO consists of two steps. In the first step,

particles in initial population are sorted according to Renyi

entropy clustering method, and in the second step, some

particles are removed from population and some new

particles are added instead of them based on the sorted list.

Thus, a reliable new initial population is created. When

using sorted list from first to last with decreasing inertia

weight parameter, or from last to first with increasing

inertia weight parameter, a little improved search perfor-

mances have been observed on three commonly used

benchmark functions. However, in other two combinations

of the proposed algorithm (from last to first with decreasing

inertia weight and from first to last with increasing inertia

weight), little worse optimization performances than tra-

ditional PSO have been noted. These four types of the

proposed algorithm were run with different exchanging

rate values. Thus, the representation ability of Renyi

entropy clustering on initial population and the effect of

organizing inertia weight parameter were evaluated toge-

ther. Experimental results which were surveyed at different

exchanging rate values showed the efficiency of such

evaluation.

Keywords Evolutionary computations � Particle swarm

optimization � Entropy

1 Introduction

Particle swarm optimization (PSO) is a member of general

swarm intelligence methods based on biologically inspired

and intuitive approaches. It was introduced by Kennedy

and Eberhart [9] as a search and optimization method.

There are some similar and different properties between

PSO and other optimization methods such as genetic

algorithms (GA). PSO is initialized with a random popu-

lation similar to GA, although any genetic operator is not

used in PSO. In addition, PSO is easy to carry out, is

computationally inexpensive, has less need for computa-

tional units, and has no gradient information of cost

function. In similar applications, these methods have

almost the same solution quality, but PSO is more effective

than GA in terms of computational cost [5].

Global and local searching abilities should be adjusted

in all optimization methods. Some evolutionary algorithms

regulate the trade-off between global and local searching

abilities via variance of Gaussian random function [14]. To

overcome this complexity, inertia weight (IW) parameter

has been added to PSO. Setting the IW to a large value

increases global searching ability, while setting to smaller

values increases the local one.

However, as dynamic adjustment of the value of IW is

very difficult, linearly changing (decreasing or increasing)

algorithms were developed [14], and a fuzzy-based pro-

cedure was created to adjust IW dynamically. Jiao et al. [8]

proposed a global and local combined PSO to adjust

sharing of information.

Distribution of initial population is also one of the fac-

tors that affect the success of convergence in PSO. Some

studies were proposed by several researchers related

directly or indirectly to the population’s distribution. Van

den Bergh [16] proposed a modified PSO, called multistart

& Emre Çomak

ecomak@pau.edu.tr

1 Department of Computer Engineering, Pamukkale

University, 20020 Denizli, Turkey

123

Neural Comput & Applic (2016) 27:1381–1390

DOI 10.1007/s00521-015-1941-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1941-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1941-9&domain=pdf

PSO (MPSO). In MPSO, until a termination criterion is

true, random initial populations are considered. The results

of each population are saved, and the best one among these

results is determined as a global solution. MPSO improves

the performance of PSO, although its computational cost

increases in implementations with higher dimension. Ala-

tas et al. [1] built chaos-embedded PSO in which chaotic

map functions are run, instead of random numbers. Twelve

chaotic-based PSO algorithms were built in their study.

One of the algorithms could determine the initial popula-

tion positions and velocities via chaotic map functions. Jiao

et al. [7] introduced an improved PSO using decreasing IW

according to the increasing iterative generation. Unlike a

number of studies in the literature, Zheng et al. [18, 19]

proposed a PSO with linearly increasing IW, derived par-

ticle trajectory with convergence analysis, and also used it

in four benchmark functions. Yang et al. [17] developed a

modified PSO with dynamic adaptation, which could reg-

ulate IW independently for every particle and is based on

two parameters (evolution speed factor and aggregation

degree factor). Shi et al. [15] put forward that hybridizing

cellular automata and PSO can overcome the local optima

problem.

Convergence performance does not only depend on

IW. Adjusting the IW value according to distribution of

initial population can be beneficial for a quality conver-

gence in PSO. In this study, Renyi entropy clustering

method was used to evaluate the distribution of popula-

tion. A list reflecting entropy values of original data in

decreasing order was created as a part of new algorithm.

Two new versions of original initial population data set

were constituted based on this order from first index to

last index and from last index to first index. These ver-

sions were run with decreasing and increasing IW

parameters. Thus, four different versions were obtained

for each random initial population. The relationship

between IW and population distribution was evaluated in

these four versions. Two of them somewhat improved

convergence abilities of the population successfully, but

the others exhibited somewhat worse convergence abili-

ties. The aim of this study is to develop an algorithm

integrating IW and the initial population distribution

adjustments.

The rest of the paper is organized as follows. A detailed

description of PSO and Renyi entropy clustering is pre-

sented in Sect. 2. Section 3 provides two versions of the

proposed method for increasing and decreasing IWs. The

simulation results of the proposed method on benchmark

problems are given in Sect. 4. Lastly, Sect. 5 presents the

discussion and conclusion.

2 Materials and methods

In this section, the PSO and clustering are explained based

on Renyi entropy methods, which are related to the

development of the proposed algorithm.

2.1 PSO

PSO is a search and optimization method based on socio-

logically and biologically inspired procedures simulating

bird flocking [9]. Each potential solution is called a parti-

cle. N and D are the population size and dimension of the

search space, respectively. Subsequently, the swarm can be

described by N particles that are defined by D-dimensional

vector. The actual position of the ith particle is represented

by xi ¼ xi1; xi2; . . .; xiDð Þ, and its velocity is represented by

vi ¼ vi1; vi2; . . .; viDð Þ. Also, pi ¼ pi1; pi2; . . .; piDð Þ reflects

the best-visited position for the ith particle until the time t,

and pg ¼ pg1; pg2; . . .; pgD
� �

reflects the best-visited posi-

tion among N particles or local neighbors of pi until the

time t. The updating of pg is likewise with that of the

conventional PSO. The iteration number controls these

running times, and moving of particles in swarm is con-

trolled by (1) and (2),

vid ¼ w� vid þ c1 � r 1ðÞ � pid � xidð Þ þ c2 � r 2ðÞ
� ðpgd � xidÞ

ð1Þ
xid ¼ xid þ vid ð2Þ

where i ¼ 1; 2; . . .;N and d ¼ 1; 2; . . .;D. The index of i is

used for the current particle while g is used for the best

particle among N particles. Parameters C1 and C2 are

positive constants denoting cognitive and social impacts in

PSO, respectively. The functions of r_1 and r_2 generate

random numbers in interval [0, 1] uniformly. Positive

parameter w is the IW. As mentioned in the Introduction

section, w regulates trade-off between global and local

searching abilities.

At each iteration, (1) and (2) are computed repeatedly in

PSO. Various termination criteria such as iteration number,

improvement, or stability-based approaches are available in

the literature. In this study, maximal iteration number

(1000) and target error (10-6) were used as the termination

criteria. When one of them was encountered, algorithm was

terminated. As there is no unit to control the velocities of

the particles, the particles may pass over the borders of the

search space. Thus, the maximal velocity value, Vmax is

determined to avoid this situation. Velocities exceeding

Vmax are set to Vmax.

1382 Neural Comput & Applic (2016) 27:1381–1390

123

2.2 Clustering based on Renyi entropy

Renyi entropy is a method that reflects similarity or dis-

similarity rates between data in the same space and is the

general case of Shannon entropy [3]. Renyi entropy, pro-

posed by Renyi [13], is capable of estimating entropy from

data set [11]. It can be described as the following equation

for continuous case:

Haðf Þ ¼
1

1� a
log

Z
f aðxÞdx 0\a\1; a 6¼ 1 ð3Þ

where a is the information order. a = 2 is called the Renyi

quadratic entropy [11].

HRðf Þ ¼ � log

Z
f 2ðxÞdx ð4Þ

A clustering method based on Renyi entropy was

introduced by Jenssen et al. [6]. The authors proposed

Parzen window density estimation with a multidimensional

Gaussian window function to consider entropy presented in

(4) from the data. Probability density function estimation of

a cluster Ck can be represented as follows [10]:

f ðxÞ ¼ 1

Nk

XNk

i¼1

G x� xi; r
2I

� �
ð5Þ

where Nk is the number of data points belonging to cluster

Ck, and G reflects the Gaussian window function with

covariance matrix. By substituting (5) into (4) the entropy

formula of cluster Ck can be obtained as follows:

H Ckð Þ ¼ � logV Ckð Þ ð6Þ

where V(Ck) can be represented as follows:

V Ckð Þ ¼ 1

N2
k

XNk

i¼1

XNk

j¼1

G xi � xj; 2r
2I

� �
ð7Þ

Equation (6) represents as within-cluster entropy [6]. In

addition to within-cluster entropy, between-cluster entropy

also needs to be computed as follows:

H C1; . . .;Ckð Þ ¼ � logV C1; . . .;Ckð Þ ð8Þ

where V(C1,…,Ck) can be represented as follows:

V C1; . . .;Ckð Þ ¼ 1

2
QK

k¼1 Nk

XN

i¼1

XN

j¼1

M xij
� �

G xi � xj; 2r
2I

� �

ð9Þ

It must be noted that M(xij) is not used in within-cluster

entropy, and its value equals to 1 when xi and xj belong to

different clusters. Obtaining small values using (9) reflects

the well-separated clusters.

H Ci þ xð Þ �H Cið Þ\H Ck þ xð Þ �H Ckð Þ
k ¼ 1; . . .;K and k 6¼ i:

ð10Þ

As indicated in the study by Jenssen et al. [6], all data

points were labeled as a different cluster at the beginning of

the clustering process. Differential entropy clustering was

implemented by using Eq. (10) to determine the cluster of

unknown data points. At each step, ‘‘worst cluster’’ was

determined by using between-cluster entropy, and mem-

bers of the worst cluster were reassigned to the cluster that

was determined by differential entropy clustering; in the

other words, the number of clusters decreased one in each

step. In the present study, the results for each step were

saved, and the best one among the saved values was

determined as in the original algorithm; i.e., this determi-

nation was based on the best entropy values among all

variations of K and N.

3 Proposed algorithms for PSO

As mentioned in the Introduction section, numerous

studies were proposed to adjust IW and the initial

population distribution. An algorithm conducting these

two aspects of PSO together is needed. The main aim

of this study was to develop such algorithms combining

these two aspects. These algorithms are called Renyi

entropy-based PSO (REPSO 1, 2, 3 and 4). The effects

of decreasing and increasing IWs on two initial popu-

lation distributions opposite to each other (clustering

with high or low level fitness) were investigated in

these algorithms.

A total of 50 different initial populations were created

randomly and saved in different files. First, these initial

populations were clustered by Renyi entropy-based clus-

tering method. According to the results of this method, the

best number of initial clusters was found to be 8

(Kinit = 8), and the numbers of initial data points in each

cluster was 2 or 3 (Ninit = 2 or Ninit = 3) for a good

clustering. In other words, Kinit was determined as 8 for all

populations, but Ninit was determined as 2 for some pop-

ulations and as 3 for the remaining ones.

Each population was run ten times with determined Kinit

and Ninit values in Renyi entropy-based clustering method.

The number of encounter for each datum was counted and

saved. The datum point with large values of the number of

encounter reflected that this datum was neighbor to the

largest number of data points. These numbers were sorted

and listed in decreasing order. Figure 1 reflects the pseu-

docode of REPSO 1. Other algorithms similar to REPSO 1

can be explained as follows. In addition to Fig. 1, Fig. 2

also explains the idea of new algorithm.

Decreasing and increasing combinations of this sorting

index and IW created the following four different

algorithms.

Neural Comput & Applic (2016) 27:1381–1390 1383

123

• REPSO 1 takes sorted index from first to last index with

increasing IW.

• REPSO 2 takes sorted index from first to last index with

decreasing IW.

• REPSO 3 takes sorted index from last to first index with

increasing IW.

• REPSO 4 takes sorted index from last to first index with

decreasing IW.

A parameter representing changing rate was determined

in all algorithms. This parameter was named ‘‘exc.’’ In

REPSO 1 and 2, the data, as the number of exc in reverse

order, were replaced in searching space. For example, let

exc be 5 and the population size be 25. In this case, the first

20 particles will not be changed, while the last five parti-

cles will be deleted and rebuilt. New values of these five

particles were determined in 0.05 random neighborhoods

of the first five particles in the sorted index; in other words,

10 (2*exc) particles had almost the same values in

searching space at the beginning of optimization algorithm.

REPSO 3 and 4 functioned similar to REPSO 1 and 2, but

in the reverse direction in the sorted list.

3.1 An example of the running algorithm

Initial population was created randomly as a 25 9 10

matrix.

Row1: -0.49314 -1.7156 -1.9379 -1.1065 0.27699

-0.4736 -0.68364 -1.7816 1.1463 -0.89676

Row2: -0.91572 1.4359 0.07999 0.74275 1.9681

-0.7739 1.5594 -0.0959 -0.06514 -1.1273

:

Row10: 1.7103 -0.0486 1.812 -1.3094 -0.49227

-1.3545 0.87638 0.17106 1.1065 -0.3438

Row11: -1.5848 2.0179 -0.6755 -1.9152 -0.2393

0.10136 0.06229 -2.0199 0.97241 -0.82412

Row12: 1.2785 -0.5189 -0.25656 0.9582 -0.06939

0.57837 0.43363 -0.1993 1.5002 0.7063

:

Fig. 1 Pseudocode of REPSO 1

1384 Neural Comput & Applic (2016) 27:1381–1390

123

Row24: -1.1756 -1.9507 1.9582 0.6497 1.8097 1.5374

1.6587 0.26447 -0.1763 0.10864

Row25: -1.9022 1.5164 0.57549 1.4894 -1.4337

1.3732 -0.89228 1.0944 1.1802 1.199

A sorted list was computed as following according to

Renyi’s entropy clustering values.

10 5 7 8 16 23 22 19 20 3 13 25 24 4 2 1 21 15 6 11 17

18 9 14 12

When the exchanging rate was determined as 1

(exc = 1) in the first-to-last PSO with Renyi’s entropy

clustering, the row10 was deleted and a new row was added

to the population by summing 5 % random noise with

respect to row12 (in the last-to-first PSO with Renyi’s

entropy, row12 was deleted and a new row was added with

respect to row10). Finally, the following matrix came up.

Row1: -0.49314 -1.7156 -1.9379 -1.1065 0.27699

-0.4736 -0.68364 -1.7816 1.1463 -0.89676

Row2: -0.91572 1.4359 0.07999 0.74275 1.9681

-0.7739 1.5594 -0.0959 -0.06514 -1.1273

:

Row10: 1.2944 -0.4825 -0.2498 1.0062 -0.0402

0.5436 0.4669 -0.2301 1.5141 0.7232

Row11: -1.5848 2.0179 -0.6755 -1.9152 -0.2393

0.10136 0.06229 -2.0199 0.97241 -0.82412

Row12: 1.2785 -0.5189 -0.25656 0.9582 -0.06939

0.57837 0.43363 -0.1993 1.5002 0.7063

:

Row24: -1.1756 -1.9507 1.9582 0.6497 1.8097 1.5374

1.6587 0.26447 -0.1763 0.10864

Row25: -1.9022 1.5164 0.57549 1.4894 -1.4337

1.3732 -0.89228 1.0944 1.1802 1.199

The value of exc determines number of the changing

rows. For example when exc = 4, rows 10, 5, 7, and 8

were deleted. PSO algorithm was run with initial popula-

tion and with changed population 50 times separately.

After that, the optimization performances of traditional

PSO and four new variants of REPSO were compared.

Besides, results for exc = 1, 4, 7, and 10 were computed

and compared. These values for the exc were selected

arbitrarily with respect to the population size. Maximal

value of the exc is half of the population size (12.5 in this

study) because of adding with random noise, while the

minimal one is 1. Effect of the exc was evaluated with

values between 1 and 10 by the increment of 3.

4 Benchmark problems and experimental results

This section describes the mathematical background of

benchmark problems and presents the experimental results.

4.1 Benchmark functions

In the experiments, the three most preferred benchmark

functions were used as objective functions. These functions

were Griewangk, Rastrigin, and Rosenbrock. As detailed in

Table 1, one of them is unimodal (has only one optimum)

Start

Initialize particles
with random
position and

velocity vectors

For each particle’s
position (p)

evaluate fitness

If fitness (p) better
than fitness
(pbest) then

pbest=p

Set best of pbests
as gbest

Update part icles
velocity (eq.1) and

position (eq.2)

*Optimal
solutionStop

Reorder
population by
using Renyi’s

Entropy
Clustering

Y N

Fig. 2 *Maximal iteration number (1000) and target error (10-6) are

used as an optimality criteria. When one of them is encountered,

algorithm is terminated

Table 1 Properties of benchmark functions

Function name lb ub Optimum point Modality

Griewangk -600 600 0 Multimodal

Rastrigin -5.12 5.12 0 Multimodal

Rosenbrock -2.048 2.048 0 Unimodal

Neural Comput & Applic (2016) 27:1381–1390 1385

123

and two of them are multimodal (have numerous local

optima and one global optimum). Here, lb represents the

lower bound, and ub represents the upper bound. The

effectiveness of the proposed algorithms can be evaluated

using these three benchmark functions.

4.1.1 Griewangk function

Griewangk function has numerous local optima as indi-

cated in Fig. 3. Hence, finding the optimum point is very

difficult [4]. This function can be described as follows:

f ðxÞ ¼
X30

i¼1

x2i
4000

� �
�
Y30

i¼1

cos
xiffiffi
i

p
� �

þ 1;

xi 2 �600; 600½ �
ð11Þ

The global optimum point of the function is at x = (0,

0,…,0) and f(x) = 0.

4.1.2 Rastrigin function

Rastrigin function is similar to De Jong’s function with the

addition of cosine modulation as indicated in Fig. 4. Thus,

this addition makes the function highly multimodal [12]

and can be defined as follows:

f ðxÞ ¼ 10� 30þ
X30

i¼1

x2i � 10� cos 2pxið Þ
� �

;

xi 2 �5:12; 5:12½ �
ð12Þ

The global optimum point of the function is at x = (0,

0,…,0) and f(x) = 0.

4.1.3 Rosenbrock function

Rosenbrock function is also known as banana function

because of its shape as indicated in Fig. 5. Convergence to

optimum is difficult, and hence, this function has been

repeatedly used in testing many optimization algorithms

[2]. This function can be described as follows:

f ðxÞ ¼
X30

i¼1

100 xiþ1 � x2i
� �2 þ 1� xið Þ2;

xi 2 �2:048; 2:048½ �
ð13Þ

The global optimum point of the function is at x = (1,

1,…,1) and f(x) = 0.

4.2 Experimental results

Four new algorithms and standard PSO algorithm with

linearly increasing/decreasing IW were run on the three

explained benchmark functions. All the experiments were

carried out using at MATLAB software. Each algorithm

was run 50 times for evaluation of its performance, and full

related topology was preferred; i.e., all particles in the

population were evaluated to find the best article. Arith-

metic means of these 50 evaluations for all implementa-

tions were presented as ‘‘Average Best Fitness’’ in all

tables. The population size and dimension size were

determined as 25 and 10, respectively. The maximum

number of iterations (generations) was determined as 1000.

Cognitive and social parameters were adjusted as

C1 = C2 = 2. Choices of the values of parameters were

decided on the literature studies solving the same problems

Fig. 3 Griewangk function

1386 Neural Comput & Applic (2016) 27:1381–1390

123

[15, 17, 19]. These above-mentioned properties are pre-

sented in Table 2.

According to the literature studies mentioned above,

maximal iteration number and error goal were determined

as 1000 and 10-6 respectively. For the Rastrigin and

Rosenbrock, this error goal is adequate to evaluate per-

formances of the algorithms. Although for the Griewangk

function, the proposed algorithm reached smaller values

than this error goal. Thus, average iteration number term

was added to Table 5 for a reliable comparison among the

algorithms.

REPSO algorithms were compared with traditional PSO.

The results of REPSO and traditional PSO algorithm are

presented in (Table 3 for Rosenbrock function, in Table 4

for Rastrigin function, and in Table 5 for Griewangk

function).

As shown in Table 3 (REPSO 2), Table 4 (REPSO 2),

and Table 5 (REPSO 2), first to-last-REPSO with

decreasing weight had improved optimization ability (at

least one exc value), when compared with traditional PSO.

With regard to Rosenbrock function, first-to-last REPSO

reflected an improvement in exc = 4 and 7 changing val-

ues, as indicated in Table 3. In addition to Rosenbrock

function, first-to-last REPSO with decreasing IW reflected

improvement in optimization ability in all changing values

for Rastrigin and Griewangk functions, as indicated in

Table 4 (REPSO 2) and Table 5 (REPSO 2).

Moreover, last-to-first REPSO with increasing weight

showed better optimization ability than traditional PSO

except Griewangk function, as shown in Table 3 (REPSO

3), Table 4 (REPSO 3), and Table 5 (REPSO 3). Further-

more, as indicated in Table 3 (REPSO 3), with regard to

Rosenbrock function, last-to-first REPSO reflects a slightly

superior performance than the traditional PSO in exc = 4,

7, and 10 changing values. Table 4 (REPSO 3) shows that

the last-to-first REPSO has a slight superior performance

than the traditional PSO in all exc values of Rastrigin

function. Finally, for Griewangk function, last-to-first

Fig. 4 Rastrigin function

Fig. 5 Rosenbrock function

Table 2 Properties of PSO algorithms

Parameter Value

Population size 25

Maximal iteration 1000

Maximal weight value 1.2

Minimal weight value 0.1

C1 2.0

C2 2.0

Dimension 10

Error goal 1 9 10-6

Neural Comput & Applic (2016) 27:1381–1390 1387

123

REPSO was noted to have a slight superior performance

than the traditional PSO in exc = 1, 4, and 7 changing

values.

On the contrary, last-to-first REPSO with decreasing

weight value and first-to-last REPSO with increasing

weight value methods were found to have worse opti-

mization ability than the traditional PSO in all threshold

values. However, a better performance was surprisingly

noted in one situation [in Table 4 (REPSO 4), last-to-first

REPSO with decreasing weight value for Rastrigin

function].

According to experimental results, exc = 4 and 7

threshold values generally provide better results than the

other threshold values. These results prove that [4, 7]

interval of threshold values may be the most preferable

interval for this type of problems. When the value of exc is

selected minimal, results of the REPSO algorithm will be

very near to the traditional PSO. Otherwise, average best

fitness and standard deviation of the REPSO may be very

different from the traditional PSO because of very different

distribution of initial population. Also, the experimental

results demonstrate that increasing or decreasing order of

weight coefficient is directly related to distribution of ini-

tial population for good optimization ability.

When clusters are nearer to each other (first-to-last

representation in this study) in the initial population,

REPSO with decreasing IW generally has superior per-

formance than PSO. However, when clusters have rela-

tively longer distance between each other (last-to-first

representation in this study) in the initial population,

REPSO with increasing IW generally exhibits superior

performance than PSO.

5 Discussion and conclusion

Adaptation of IW value depending on the initial population

is one of the useful ways for good optimization ability.

Renyi’s entropy clustering is a reliable similarity-based

metric to represent population distribution. When entropy

values are in decreasing entropy order (first-to-last REPSO)

with decreasing weight, or in contrast, in increasing

entropy order with increasing weight in the experiments,

better results have been observed. However, worse results

Table 3 Optimization performances of four variants of REPSO algorithm and standard PSO for Rosenbrock Function

Method Average best fitness/standard deviation

REPSO 1 REPSO 2 REPSO 3 REPSO 4

Standard PSO 4.1925/13.7910 5.4132/64.5421 6.3199/60.9870 5.6793/62.5789

PSO with Renyi’s entropy clustering (exc = 1) 5.0883/17.3245 7.0796/89.4187 6.6390/75.3520 5.7065/46.8240

PSO with Renyi’s entropy clustering (exc = 4) 5.1972/17.4480 4.6317/13.7030 6.2985/61.0628 7.7334/103.1289

PSO with Renyi’s entropy clustering (exc = 7) 5.1489/19.8703 4.8757/16.0281 6.2274/63.9279 5.8066/64.0275

PSO with Renyi’s entropy clustering (exc = 10) 5.5862/16.4086 6.3817/70.3087 4.6551/17.2194 6.2938/77.0099

REPSO 1 takes sorted index from first to last index with increasing IW

REPSO 2 takes sorted index from first to last index with decreasing IW

REPSO 3 takes sorted index from last to first index with increasing IW

REPSO 4 takes sorted index from last to first index with decreasing IW

Table 4 Optimization performances of four variants of REPSO algorithm and standard PSO for Rastrigin function

Method Average best fitness/standard deviation

REPSO 1 REPSO 2 REPSO 3 REPSO 4

Standard PSO 7.8714/18.7592 8.7556/25.3421 9.6326/19.3212 7.8587/16.7068

PSO with Renyi’s entropy clustering (exc = 1) 9.7660/30.8680 7.8608/8.8232 8.3345/30.0940 9.2517/61.3621

PSO with Renyi’s entropy clustering (exc = 4) 9.0420/56.0491 7.2627/15.9201 9.1939/25.2998 9.2532/55.5323

PSO with Renyi’s entropy clustering (exc = 7) 10.2082/17.0057 8.1582/39.1901 8.5055/15.3554 7.3632/26.1202

PSO with Renyi’s entropy clustering (exc = 10) 9.8720/67.7065 8.5763/23.9541 8.1834/37.0552 10.5471/99.3729

REPSO 1 takes sorted index from first to last index with increasing IW

REPSO 2 takes sorted index from first to last index with decreasing IW

REPSO 3 takes sorted index from last to first index with increasing IW

REPSO 4 takes sorted index from last to first index with decreasing IW

1388 Neural Comput & Applic (2016) 27:1381–1390

123

have been noted under opposite conditions. As a perfor-

mance metric, the average best fitness and the average

iteration number (in the Griewangk function) were used.

When the population size was set to the value of 25,

generally 4 and 7 values for the exc parameter showed the

better results than others. These results might be useful for

studies in the field of evolutionary computation. As a future

research topic, an adjustment algorithm changing the

weight value automatically based on Renyi’s entropy could

be developed. Such an algorithm might provide better

optimization ability than REPSO.

Renyi clustering algorithm is composition of the

between-cluster entropy and within-cluster entropy in

terms of computational complexity. The computational

complexities of the between-cluster entropy and within-

cluster entropy are represented as O (N2) and O (Nk),

respectively, where N stands for the number of all the

data in an application and Nk stands for the number of

data in each cluster, k = 1,…,K. When applications

comprising of large data sets are implemented, memory

requirement becomes a serious bottleneck because of the

computational complexity cost of the algorithm. But in

this study since a smaller data set was used, such problem

did not appear.

Acknowledgments This work is supported by Pamukkale Univer-

sity Scientific Research and Projects Unit (Grant No. 2011BSP015).

References

1. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle

swarm optimization algorithms. Chaos, Solitons Fractals

40:1715–1734

2. De Jong K (1975) An analysis of the behaviour of a class of

genetic adaptive systems. PhD thesis, University of Michigan

3. Gokcay E, Principe I (2002) Information theoretic clustering.

IEEE Trans Pattern Anal Mach Intell 24(2):158–170

4. Griewangk AO (1981) Generalized descent of global optimiza-

tion. J Optim Theory Appl 34:11–39

5. Hassan R, Cohanim B, de Weck O, Venter G (2005) A com-

parison of particle swarm optimization and the genetic algorithm.

In: 1st AIAA multidisciplinary design optimization specialist

conference, No. AIAA-2005-1897, Austin, TX

6. Jenssen R, Hild KE, Erdogmus D, Principe JC, Eltoft T (2003)

Clustering using Renyi’s entropy. In: Proceeding of international

joint conference on neural networks, Portland, USA, July 20–24,

pp 523–528

7. Jiao B, Lian Z, Gu X (2008) A dynamic inertia weight particle

swarm optimization algorithm. Chaos, Solitons Fractals

37(3):698–705

8. Jiao B, Lian Z, Chen Q (2009) A dynamic global and local

combined particle swarm optimization algorithm. Chaos, Solitons

Fractals 42(5):2688–2695

Table 5 Optimization performances of four variants of REPSO algorithm and standard PSO for Griewangk Function

Method Average best fitness/average iteration number/standard deviation

REPSO 1 REPSO 2 REPSO 3 REPSO 4

Standard

PSO

9.0757 9 10-7/106.7/7.4419 7.7728 9 10-7/630.7/25.3280 8.2313 9 10-7/107.4/24.7317 8.4998 9 10-7/628.0/8.0525

PSO with

Renyi’s

entropy

clustering

(exc = 1)

8.8897 9 10-7/119.0/11.8232 6.7670 9 10-7/625.2/34.1464 8.7827 9 10-7/105.2/16.9414 8.3797 9 10-7/631.2/24.0119

PSO with

Renyi’s

entropy

clustering

(exc = 4)

7.7939 9 10-7/143.7/39.5376 8.2731 9 10-7/623.8/15.0885 8.9094 9 10-7/104.0/14.0122 8.4598 9 10-7/632.2/11.5138

PSO with

Renyi’s

entropy

clustering

(exc = 7)

8.4217 9 10-7/143.7/22.3020 7.6701 9 10-7/626.3/17.2208 9.3051 9 10-7/104.4/4.0168 8.8129 9 10-7/632.2/7.3592

PSO with

Renyi’s

entropy

clustering

(exc = 10)

8.7652 9 10-7/122.4/15.0086 7.7367 9 10-7/624.7/22.9297 9.2100 9 10-7/109.5/3.2739 7.8625 9 10-7/629.4/33.2283

REPSO 1 takes sorted index from first to last index with increasing IW

REPSO 2 takes sorted index from first to last index with decreasing IW

REPSO 3 takes sorted index from last to first index with increasing IW

REPSO 4 takes sorted index from last to first index with decreasing IW

Neural Comput & Applic (2016) 27:1381–1390 1389

123

9. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:

Proceedings of the IEEE conference on neural networks, Perth,

Australia, pp 1942–1948

10. Parzen E (1962) On the estimation of a probability density

function and the mode. Ann Math Stat 32:1065–1076

11. Principe J, Xu D, Fisher J (2000) Unsupervised adaptive filtering.

In: Haykin S (ed) Information theoretic learning, vol 1, chapter 7.

Wiley

12. Rastrigin LA (1974) External control systems. In: Theoretical

foundations of engineering cybernetics series. Nauka, Moscow,

Russia

13. Renyi A (1960) On Measures of entropy and information. In:

Fourth Berkeley symposium on mathematical statistics and

probability, pp 547–561

14. Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm opti-

mization. In: Proceedings of the 2001 congress on evolutionary

computation, vol 1, pp 101–106

15. Shi Y, Liu H, Gao L, Zhang G (2011) Cellular particle swarm

optimization. Inf Sci 181:4460–4493

16. Van den Bergh F (2001) An analysis of particle swarm opti-

mizers. Doctoral Thesis, University of Pretoria

17. Yang X, Yuan J, Ji Yuan, Mao H (2007) A modified particle

swarm optimizer with dynamic adaptation. Appl Math Comput

2007(189):1205–1213

18. Zheng YL, Ma LH, Zhang LY, Qian JX (2003a) On the con-

vergence analysis and parameter selection in particle swarm

optimization. In: Proceedings of the IEEE international confer-

ence on machine learning and cybernetics. IEEE Press, Piscat-

away, pp 1802–1807

19. Zheng YL, Ma LH, Zhang LY, Qian JX (2003b) Empirical study

of particle swarm optimizer with an increasing inertia weight. In:

Proceedings of the 2003 IEEE congress on evolutionary com-

putation. IEEE Press, Piscataway, pp 221–226

1390 Neural Comput & Applic (2016) 27:1381–1390

123

	A modified particle swarm optimization algorithm using Renyi entropy-based clustering
	Abstract
	Introduction
	Materials and methods
	PSO
	Clustering based on Renyi entropy

	Proposed algorithms for PSO
	An example of the running algorithm

	Benchmark problems and experimental results
	Benchmark functions
	Griewangk function
	Rastrigin function
	Rosenbrock function

	Experimental results

	Discussion and conclusion
	Acknowledgments
	References

