
ORIGINAL ARTICLE

Learning a good representation with unsymmetrical auto-encoder

Yanan Sun1 • Hua Mao1 • Quan Guo1 • Zhang Yi1

Received: 29 January 2015 / Accepted: 3 June 2015 / Published online: 24 July 2015

� The Natural Computing Applications Forum 2015

Abstract Auto-encoders play a fundamental role in

unsupervised feature learning and learning initial parame-

ters of deep architectures for supervised tasks. For given

input samples, robust features are used to generate robust

representations from two perspectives: (1) invariant to

small variation of samples and (2) reconstruction by

decoders with minimal error. Traditional auto-encoders

with different regularization terms have symmetrical

numbers of encoder and decoder layers, and sometimes

parameters. We investigate the relation between the num-

ber of layers and propose an unsymmetrical structure, i.e.,

an unsymmetrical auto-encoder (UAE), to learn more

effective features. We present empirical results of feature

learning using the UAE and state-of-the-art auto-encoders

for classification tasks with a range of datasets. We also

analyze the gradient vanishing problem mathematically

and provide suggestions for the appropriate number of

layers to use in UAEs with a logistic activation function. In

our experiments, UAEs demonstrated superior performance

with the same configuration compared to other auto-

encoders.

Keywords Auto-encoder � Neural networks � Feature
learning � Deep learning � Unsupervised learning

1 Introduction

Learning high-level representations of signals for related

tasks remains a critical problem in machine learning.

Recently, deep architectures have emerged as important

tools for learning useful representation. Theoretical results

strongly suggest the benefits of deep architectures; however,

the numerous parameters in deep learning architectures

make their practical application difficult. Learning algo-

rithms such as deep belief networks [11], also known as

deep learning, have been proposed to narrow this gap, which

makes deep architectures more practical. In recent years,

deep learning has played a significant role in the field of

machine learning. Deep learning algorithms include pre-

training and fine-tuning procedures. Unsupervised pretrain-

ing trains the network to an acceptable initial starting point.

Then, the entire network is fine-tuned, usually in a super-

vised manner, relative to the initialization point and the

supervised target to obtain optimal parameters for the task.

Combining unsupervised pretraining and supervised fine-

tuning often results in better generalization than only fine-

tuning from a randomly initialized position. In the pre-

training procedure, each layer is organized as an auto-en-

coder [6] that receives patterns from the output of the

previous layer and reconstructs them. During the pretraining

procedure, auto-encoders can be not only trained, respec-

tively, but also combined into a symmetrical deep neural

network that can be trained simultaneously. During the fine-

tuning procedure, encoders are stacked and decoders are

discarded. Then, a supervised layer such as a logistic

regression layer or a softmax regression layer is added. The

parameters for supervised fine-tuning are initialized using

the weights trained in the pretraining procedure.

There are numerous auto-encoder variants. For example,

sparse auto-encoders [12, 18] add a sparse penalty term to

& Zhang Yi

zhangyi@scu.edu.cn

1 Machine Intelligence Laboratory, College of Computer

Science, Sichuan University, Chengdu 610065, PR China

123

Neural Comput & Applic (2016) 27:1361–1367

DOI 10.1007/s00521-015-1939-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1939-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1939-3&domain=pdf

the cost function, weight decay auto-encoders add a weight

decay term to the overall cost function, denoising auto-

encoders (DAEs) [25] use corrupted input data to recon-

struct the original data, and contractive auto-encoders

(CAEs) [22] penalize the partial derivation of a represen-

tation with respect to the input data. All of these auto-

encoder variants can improve learning ability and the

networks generalization performance and consequently

enhance the effectiveness of the learned representations.

Using effective representations as input for a supervised

task, such as classification, results in better performance,

e.g., lower misclassification rates. Classification perfor-

mance does not depend directly on the choice of classifier;

classification results would nearly be the same if the

learned representations were sufficient [6, 11]. Therefore,

good quality representation is important.

What are the principles of good representation? On the

one hand, the representation should retain the information

on the input data such that it remains consistent with the

underlying data distribution. The ability to capture the

salient structure of the input data distribution is a funda-

mental and intrinsic principle of basic auto-encoders,

sparse auto-encoders, and auto-encoders that use a weight

decay term. On the other hand, the representation should be

robust to the variance of the input pattern, i.e., the repre-

sentation should ignore small variations in input patterns.

Robustness against input pattern variations is demonstrated

by DAEs and CAEs. Auto-encoders discover more robust

representation as the layers of the network increase [5],

which has also been observed empirically [14].

The auto-encoders mentioned above, i.e., traditional

auto-encoders, have symmetrical structures. In some auto-

encoders, the weights of corresponding layers are set to be

symmetrical. In this paper, we investigate the relation

between the number of encoder and decoder layers and

show that symmetrical structure and parameters are not

necessary for learning good representation. We propose an

unsymmetrical auto-encoder (UAE) for unsupervised fea-

ture learning and pretraining. UAEs have different numbers

of layers of encoders and decoders, and UAEs are not

symmetrical. We have assessed the performance of the

proposed UAE using benchmark datasets. The experi-

mental results show that the performance of UAEs is

superior to that of other auto-encoders.

2 Auto-encoders

An auto-encoder [4] is a neural network used for unsu-

pervised learning [15, 16] of efficient features. A typical

auto-encoder has one input layer, one output layer, and

one hidden layer. The output of the hidden layer can be

used as the representation of the input data. The aim of an

auto-encoder is to learn a set of better features by map-

ping given data to the representation space. Typically, the

identification or selection of better, i.e., more efficient,

features is performed to reduce dimensionality and

improve discrimination in classification tasks. An auto-

encoder is a special case of a multilayer perceptron where

the output layer is trained to reconstruct the input from the

representation. Mapping from input to representation is

referred to as encoding, and reconstruction from repre-

sentation to the auto-encoder output is referred to as

decoding. More precisely, input data are denoted by

x 2 R
n, representation is denoted by y 2 R

m, and its

reconstruction is denoted by x̂ 2 R
n. The auto-encoder is

given as follows:

y ¼ F x; heð Þ

x̂ ¼ G y; hd
� �

;

(

ð1Þ

where F : Rn ! R
m is the encoder and G : Rm ! R

n is the

decoder. he are the parameters for the encoder, and hd are

the parameters for the decoder. We denote the parameters

of the auto-encoder as h ¼ he [hd. The reconstruction x̂ is

a deterministic function of input sample x defined as

follows:

x̂ ¼ G � F x; hð Þ: ð2Þ

Then, the performance of the auto-encoder can be mea-

sured by the reconstruction error. The cost function can be

formulated as follows:

J h;Xð Þ ¼ 1

N

X

x2X
LðG � F x; hð Þ; xÞ: ð3Þ

Here, N is the number of data in a set of samples X. L

denotes a measurement of difference. In most cases, we use

square Euclidean distance by which L x̂; xð Þ ¼ 1
2

x̂� xk k2.
By minimizing the cost function, we obtain the optimal

parameters h for the auto-encoder.

Traditional auto-encoders use a symmetrical setting as

follows:

F ¼ F1 � F2 � � � � � FM|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

G ¼ G1 � G2 � � � � � GM|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

:

8
>>><

>>>:

ð4Þ

Here, M is the number of auto-encoders, and Fi x; hei
� �

and

Gi x; hdi
� �

are neuron layers by which f wixþ bið Þ. hi ¼
wi; bif g � h are the parameters for the layer, and f denotes

the activation function. In common cases, especially when

we pretrain a classifier network, the following auto-en-

coders with only one layer are used:

1362 Neural Comput & Applic (2016) 27:1361–1367

123

y ¼ f we
1xþ be1

� �

x̂ ¼ f wd
1xþ bd1

� �
:

(

ð5Þ

When the activation function is linear and there are fewer

hidden nodes than input units, we can obtain a result that is

similar to that of principal component analysis [1]. The

learned weights are the principle components of the input

space. Using more units in the hidden layer than in the

input layer with a linear activation function leads to a

trivial solution by which the weight is an identical matrix.

Commonly, we consider a case using a sigmoid activation

function f ðsÞ ¼ 1
1þe�s and more hidden units than input

units.

To avoid learning a trivial solution, over-fitting, and

other unfavorable results, researchers have introduced

many useful auto-encoder variants.

2.1 Sparse auto-encoder (AE1Sparse)

Potentially, we can simply learn an identity function if we

use the cost function in 3 to train the network. The repre-

sentations will no longer be determined uniquely by the

input data using more units in the hidden layer than in the

input layer with a nonlinear activation function. Among

such representations, one with the most zero components is

interesting by adding sparsity constraints to the cost Eq. 5.

Sparsity constraints are shown to yield features that are (for

some) more invariant to geometric transformations of

images [9, 20, 21]. Cost function of sparse auto-encoders

has the following form:

JAEþSparse h;Xð Þ ¼ J h;Xð Þ þ kSðyÞ; ð6Þ

where S(y) measures the sparsity of y and k is a hyper-

parameter to balance the penalty.

2.2 Weight decay auto-encoder (AE1WD)

It is shown that if we want to improve the generalization

ability of a neural network, we should consider the balance

between the information in the training examples and the

complexity of the network [3, 23, 24]. A way always used

to decrease the complexity is to limit the growth of the

weights through some type of weight decay [17]. Com-

monly, the cost function of auto-encoders with weight

decay has the following form:

JAEþWD h;Xð Þ ¼ J h;Xð Þ þ k
X

w2h

1

2
wk k2F: ð7Þ

Here, k is a hyper-parameter that controls how strongly

large weights are penalized, and k � kF is the Frobenius

norm. It is known that weight decay of this form can

improve generalization [10].

2.3 Denoising auto-encoder

A DAE maps a corrupted example back to an uncorrupted

example [26]. It minimizes the reconstruction error

between the output and the uncorrupted example. Thus, the

network can learn a robust representation. Its cost function

has the following form:

JDAE h;Xð Þ ¼ 1

N

X

x2X
L G � Fðx0; hÞ; xð Þ: ð8Þ

Here, x0 denotes corrupted x. In this context, it is assumed

that the input data with high dimension lay in an underlying

low-dimensional manifold. During training, DAEs learn a

stochastic operator p(x|X) mapping the corrupted X back to

its uncorrupted version. Corrupted examples are more

likely to be outside and distant from the manifold than

uncorrupted examples. The mapping learns from the

examples encompassing corrupted and uncorrupted data to

the manifold by the corrupted examples; thus, it enlarges

the learning territory and increases learning ability.

2.4 Contractive auto-encoder

A CAE [22] uses a training criterion that not only recon-

structs the input data but also encourages the learned rep-

resentation y to be as invariant as possible to the input data

x. The criterion is used to minimize the sum of a recon-

struction error with a Frobenius norm of its Jacobian

matrix, which is the derivation of each hidden unit output

with respect to each input. The cost function of CAEs has

the form:

JCAE h;Xð Þ ¼ J h;Xð Þ þ k
oae

oX

����

����

2

F

: ð9Þ

When we minimize JCAE, the second term will be very

small; thus, we will tend to zero and wd will tend to infinity

to satisfy the first term. To prevent this trivial solution, we

typically employ a tied weight, i.e., wd is forced to the

transpose of we. However, bd and be are initialized and

trained, respectively.

3 Unsymmetrical auto-encoder

We generalize the concept of auto-encoders and propose

the UAE. The UAE demonstrates the following unsym-

metrical structure:

F ¼ F1 � F2 � � � � � FM|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

G ¼ G1 � G2 � � � � � GM0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M0

;

8
>>><

>>>:

ð10Þ

Neural Comput & Applic (2016) 27:1361–1367 1363

123

where the encoder and decoder have different numbers of

layers. Figure 1 illustrates the architecture of a UAE that

differs from conventional auto-encoders.

The proposed UAE is a multilayer neural network with

more than one hidden layer. It contains many encoders

that are used to learn the multiple-level representation,

and many decoders are used to better reconstruct the

input data. Generally, a n-layer UAE, including one out-

put layer and n� 1 hidden layers, with parameters

h ¼ fhiji 2 f1; 2; 3 � � � ngg, where hi ¼ fwi; big, can be

formulated as follows:

zi ¼ wiai�1 þ bi

ai ¼ f iðziÞ
a0 ¼ x:

8
<

:
ð11Þ

Here, x denotes the input data, i denotes layer li, and an

denotes the reconstruction of the input data. UAEs try to

minimize the following cost function:

JUAE h;Xð Þ ¼ 1

N

X

x2X
L an; a0
� �

: ð12Þ

Typically, there are two ways to perform pretraining with

auto-encoders. Here, a total of Q auto-encoders are

assumed. The first pretraining method is to train the first

auto-encoder and then use the output of the hidden layer of

the first auto-encoder as the input of the second auto-en-

coder to train the second auto-encoder. This procedure is

then repeated to train Q auto-encoders. This method is

illustrated in Fig. 2. The second method to train auto-en-

coders is to stack all auto-encoders to formulate a 2Q ? 1-

layer neural network. The number of units of the first and

last layer equals the dimension of the input data. The

number of units in the second layer equals that of the

2Qþ 1-th layer and so on. Then, we train all Q auto-en-

coders. The latter procedure is illustrated in Fig. 3.

The auto-encoders mentioned above (AE?Sparse,

AE?WD, DAE, and CAE) are symmetrical, i.e., the

number of encoders is equal to the number of decoders;

however, with UAEs, the numbers of encoders and deco-

ders are not equal. This is motivated by shadow neural

networks with more units, which have ability comparable

to deep neural networks with fewer units. With the second

training procedure, we reduce the layers between the sec-

ond and Qþ 1-th layer to k that is less than Q with more

units in these k layers, which remains the same ability of

encoding and decoding. However, the number of layers is

less than the Q auto-encoders we use. These neural net-

works become UAEs. Due to gradient vanishing, we cannot

use too many layers in UAEs. We assume that the maxi-

mum number of layers is 2Pþ 1. Using symmetrical auto-

encoders, we use only P auto-encoders. However, if we use

UAEs, we can use k decoders (k[p) and 2P� k encoders

with more units. Such UAEs have the ability of k auto-

encoders. We use k decoders to ensure that we can mini-

mize the reconstruction error. The complexity of the pro-

posed UAEs will be less than that of symmetrical auto-

encoders under the condition of the same variant of auto-

encoder as introduced in Sect. 3. Moreover, we can obtain

improved representation if we use the same number of

layers as symmetrical auto-encoders.

3.1 Explanation of UAE

Why does the proposed UAE learn better representations?

The reason is very intuitive. The UAE has more units in

fewer layers of encoders, which allows it to find more

abstract representations. In addition, it has sufficient

decoders to reconstruct the input patterns. All of the auto-

encoders discussed in Sect. 2 have one hidden layer. With

abstract and robust encoded representation of data, a single

decoder can be used in the same manner as traditional auto-

encoders; thus, the reconstruction is rarely applied. If we

can reconstruct with only a single layer, the representation

would be no more robust. Another important observation is

that if the number of units in one encoder is equal to that of

its corresponding decoder, the number of encoders must be

the same as that of the decoders for rational reconstruction.

The UAE architecture learns robust representation

through more layers of the encoder and demonstrates

greater ability to reconstruct the input data using multipleFig. 1 Architecture for unsymmetrical auto-encoder

Fig. 2 First way to train auto-encoders

Fig. 3 Second way to train auto-encoders

1364 Neural Comput & Applic (2016) 27:1361–1367

123

decoder layers. This conforms to the principle of good

representation, which benefits from more flexible unsym-

metrical structure. Quantitative and qualitative evidence

will be presented in Sect. 4.

3.2 Number of layers in UAE

It is commonly known that the representation will be better

when the network is sufficiently deep. However, until

recently, practical limitations in learning algorithms, e.g.,

gradient vanishing, have prevented us from building a very

deep auto-encoder.

Suppose the number of units of the input and output

layers is m. The number of units of layer i ¼ 1; 2; 3; n� 1

is mi. U
i
j denotes the j-th unit in layer i. We select one path

from Un
p to Un�k

q ðk 2 f1; 2; 3; n� 1gÞ randomly. The

selected unit flowing through the path in layer i is denoted

as Si. Wi
jk denotes the weight on the connection from unit j

of layer i to unit k of layer i� 1.

We use mean square error. The error signal of Un
p

flowing to Un�k
q is illustrated in Fig. 4.

dnp ¼ _f n znp

� �
Xp � anp

� �
; ð13Þ

dnp denotes the error of unit p in layer n and _f nð�Þ denotes
the derivative of function f nð�Þ.

odn�k
q

odnp
¼

Yk�1

l¼0

Wn�l
Sn�lSn�l�1

_f n�l�1 zn�l�1
S

� �
: ð14Þ

If Wn�l
Sn�lSn�l�1

_f n�l�1 zn�l�1
S

� ��� ��[1,
odn�k

q

odnp
will increase expo-

nentially with k. In other words, the error increases expo-

nentially when the error signals arrive at unit Un�k
q . This

leads to oscillating weights and unstable learning.

If Wn�l
Sn�lSn�l�1

_f n�l�1 zn�l�1
S

� ��� ��\1,
odn�k

q

odnp
will decrease

exponentially with k. In other words, the error vanishes and

nothing can be learned in the lower layers of this network.

When we use a logistic sigmoid function, the maximal

value is 0.25. To avoid oscillation, jWn�l
Sn�lSn�l�1 j must be

� 4. If we use a network that is too deep, the top layers

cannot learn anything important. This is a trade-off

between the values used to initialize the weights and the

depth of the network. Typically, we initialize the weights

between �1 and 1. When the depth is[6, the error will be

approximately 10�4. If we use a small learning rate (e.g.,

� 10�1), the error would be even less. If the depth is[6

with the initializing weights, it will be not significant. For

further analysis of error flow, see [2, 7, 19].

3.3 Training with UAE

Basic auto-encoders have been used as building blocks for

training deep neural networks [6]. After training a single

auto-encoder, its representation will be used as the input to

the next auto-encoder. We then train this auto-encoder

continually. The trained auto-encoders are stacked, and an

additional supervised layer is added to build a multilayer

neural network. Weights that have been trained in the auto-

encoders are used to initialize this multilayer neural net-

work. Finally, a supervised criterion is employed to opti-

mize the network. This greedy layer-wise procedure has

been shown to yield significantly better local minima than

random initialization of deep neural networks, thereby

achieving better generalization for numerous tasks.

The procedure for training a deep network with the UAE

is similar. We use the output of the encoder as the input of

the next UAE for unsupervised learning. After training

several UAEs, we stack them and add a supervised layer to

fine-tune the whole network to obtain the best parameters

for a particular task.

4 Experiments and results

We performed experiments with the proposed UAE algo-

rithm on the same benchmark classification problems used

in [22]: CIFAR-bw, which is a grayscale version of the

CIFAR-10 image-classification task [13], MNIST, and

MNIST variations. The variations of the MNIST problem

contain rotation, addition background comprising random

pixels, addition background made from patches extracted

from a set of images, and combinations of these variations.

The MNIST variations benchmark also contains a subset

of the original MNIST problem. Each MNIST variation

problem was divided into a training set with 10,000 exam-

ples, a validation set with 2000 examples, and a test set with

50, 000 examples.1 For all datasets, the input was normal-

ized between 0 and 1. All experiments were performed in

MATLAB with a graphics processing unit (GPU)2.

Fig. 4 Error flows in UAE

1 The MNIST datasets for these problems are available at http://

www.iro.umontreal.ca/*lisa/icml2007.
2 We used two GPU models: NVIDIA GTX750Ti and GTX780.

Neural Comput & Applic (2016) 27:1361–1367 1365

123

http://www.iro.umontreal.ca/~lisa/icml2007
http://www.iro.umontreal.ca/~lisa/icml2007

4.1 Visualization for UAE

First, we used the MNIST dataset to train a UAE and

visualized the features that it learned in the hidden layer. In

this experiment, we initialized the UAE with four hidden

layers of size f2000; 1000; 400; 200g. We set the encoder

only in the first hidden layer and added a sparsity constraint

to this layer. We also added a weight decay penalty to the

weights of all layers. We optimized the cost function using

L-BFGS to reconstruct the input data to train the UAE.

When the optimization of the cost function reaches con-

vergence, we use the activation maximization method [8]

with the trained weights to look for the input X� that can

maximally activate the units of the output of the first hid-

den layer. Then, we use X� to visualize the learned features

in the first hidden layer. Figure 5 shows the visualization

results of the UAE in the first hidden layer and the visu-

alization of the third layer of the stacked denoising auto-

encoder (SDAE) reported in [8].

On the one hand, these learned features in the first layer

in the UAE and in the third layer in SDAE seem inter-

pretable; however, they are quite complex. A common

understanding arising from investigations of the V1 and V2

areas of the human brain is that features are edges in the

first hidden layer and corners in the second hidden layer.

Some of the units have characteristics that we would

associate with the so-called complex cells. On the other

hand, the UAE learns a robust and better representation.

The features the UAE learned in the first hidden layer are

as good as those learned by SDAE in the third hidden layer.

4.2 Classification performance

We used a sigmoid activation function for both encoder

and decoder, cross-entropy for binary classification, and the

log of softmax for multiclass problems in UAE which was

trained by minimizing the cost function on the training set.

First, we used the auto-encoders to perform unsupervised

learning to extract features layer by layer. Then, the

weights and the biases of the encoder were used to train

supervised learning as the initialization.

In all cases, we used stochastic gradient descent with

mini-batches of size 100 for both unsupervised and

supervised training criterion. Due to the hyper-parameters

in each auto-encoder, we used grid search on the validation

set to select the best model according to its performance

with the lowest reconstruction error on the validation set.

Among all auto-encoders, the range of units in the hidden

layer was [500, 2000], and the range of the constant

learning rate was f0:0001; 0:001; 0:01; 0:1g. In the weight

decay auto-encoder, the range of weight decay was 0 to

10�5. In the sparse auto-encoder, we selected the

expectable sparsity parameter in the range [0.1, 0.5], and

the corresponding range of the weight coefficient was [0.1,

10]. In the DAE, we selected masking noise, and the

fraction v was in the range 0–0.8. In the CAE, the weight

coefficient was in the range of 10�1 to 10�5.

For all experiments, we used early stopping based on the

classification error of the model on the validation set. Note

that the maximum epoch was 1000. The best score over the

compared models on the same benchmark was highlighted

with bold font.

The results obtained using one auto-encoder with

MNIST and CIFAR-bw datasets are reported in Table 1. In

these experiments, we trained an auto-encoder with dif-

ferent variants. Then, we constructed a three-layer network

for classification using the parameters obtained by the

trained auto-encoder.

Fig. 5 Activation maximization applied on MNIST. On the left side

visualization of 16 units from the first hidden layers of a UAE. On the

right side one of the solutions to optimization problem for units in the

third layer of the SDAE

Table 1 We use one auto-encoder for pretraining and then fine-tune

with an additional softmax layer

Model MNIST CIFAR-bw

AE?Sparse 2.96 54.74

AE?WD 3.94 56.68

DAE 3.49 52.30

CAE 3.44 51.12

UAE 1.73 49.21

The result is classification error on test datasets and best results are

indicated in bold

Table 2 We use three auto-encoders for pretraining and then fine-

tune with an additional softmax layer

Dataset AE?Sparse AE?WD DAE CAE UAE

basic 5.80 6.12 5.32 6.07 4.17

rot 18.39 16.85 16.83 16.84 13.03

bg-rand 19.95 18.91 19.13 19.55 16.61

bg-img 22.03 30.63 20.65 32.05 17.20

bg-img-rot 52.91 56.91 49.55 57.80 52.86

The result is classification error on the test datasets and best results

are indicated in bold

1366 Neural Comput & Applic (2016) 27:1361–1367

123

We also trained a deep neural network. In this experi-

ment, we trained and stacked three auto-encoders for each

variant. At the trail of it, we added one supervised layer to

perform fine-tuning. The results are reported in Table 2.

5 Conclusion

UAEs are auto-encoders with different numbers of enco-

ders and decoders. The experimental results quantitatively

and qualitatively demonstrate that the proposed UAE can

learn a comparable or even superior representation for

better classification. From an architectural perspective, the

proposed UAE also contains generic auto-encoders;

namely, symmetrical auto-encoders are a special case of

unsymmetrical auto-encoders. In addition, UAEs use reg-

ularization terms that have always been used in symmet-

rical auto-encoders, such as sparsity constraints, weight

decay, and contractive terms. Relative to better represen-

tation, there is a trade-off between reconstruction and

robustness. Generic auto-encoders are more close to better

reconstruction, although there are several types of explicit

regularization terms that can improve the robustness of the

learned representation. UAEs obtain better reconstruction

using more decoders than encoders. In addition, UAEs

learn robust representation using more units in the encoder

layers.

Acknowledgments This work was supported by the National Sci-

ence Foundation of China under Grant 61432012.

References

1. Baldi P, Hornik K (1989) Neural networks and principal com-

ponent analysis: learning from examples without local minima.

Neural Netw 2(1):53–58

2. Baldi P, Pineda F (1991) Contrastive learning and neural oscil-

lations. Neural Comput 3(4):526–545

3. Baum EB, Haussler D (1989) What size net gives valid gener-

alization? Neural Comput 1(1):151–160

4. Bengio Y (2009) Learning deep architectures for AI. Found

Trends Mach Learn 2(1):1–127

5. Bengio Y (2012) Deep learning of representations for unsuper-

vised and transfer learning. Unsupervised Transf Learn Chall

Mach Learn 7:19

6. Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy

layer-wise training of deep networks. Adv Neural Inf Process

Syst 19:153

7. Doya K (1992) Bifurcations in the learning of recurrent neural

networks 3. Learning (RTRL) 3:17

8. Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing

higher-layer features of a deep network. Dept. IRO, Universit de

Montral, Technical Report

9. Goodfellow I, Lee H, Le QV, Saxe A, Ng AY (2009) Measuring

invariances in deep networks. In: Bengio Y, Schuurmans D,

Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural

information processing systems 22, Curran Associates, Inc.,

pp 646–654

10. Hinton GE (1987) Learning translation invariant recognition in a

massively parallel networks. In: PARLE Parallel Architectures

and Languages Europe, vol 1. Springer, Eindhoven, pp 1–13

11. Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-

ality of data with neural networks. Science 313(5786):504–507

12. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is

the best multi-stage architecture for object recognition? In: IEEE

12th international conference on computer vision, 2009. IEEE,

pp 2146–2153

13. Krizhevsky A, Hinton G (2009) Learning multiple layers of

features from tiny images. Computer Science Department,

University of Toronto, Tech. Rep

14. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional

deep belief networks for scalable unsupervised learning of hier-

archical representations. In: Proceedings of the 26th annual

international conference on machine learning, pp 609–616. ACM

15. Liou CY, Cheng WC, Liou JW, Liou DR (2014) Autoencoder for

words. Neurocomputing 139:84–96

16. Liou CY, Huang JC, Yang WC (2008) Modeling word perception

using the Elman network. Neurocomputing 71(16):3150–3157

17. Moody J, Hanson S, Krogh A, Hertz JA (1995) A simple weight

decay can improve generalization. Adv Neural Inf Process Syst

4:950–957

18. Olshausen BA, Field DJ (1997) Sparse coding with an over-

complete basis set: a strategy employed by v1? Vis Res

37(23):3311–3325

19. Pineda FJ (1988) Dynamics and architecture for neural compu-

tation. J Complex 4(3):216–245

20. Ranzato MA, Boureau Y-L, Cun YL (2008) Sparse feature

learning for deep belief networks. In: Platt JC, Koller D, Singer

Y, Roweis ST (eds) Advances in neural information processing

systems 20, Curran Associates, Inc., Red Hook, New York,

pp 1185–1192

21. Ranzato MA, Poultney C, Chopra S, Cun YL (2007) Efficient

learning of sparse representations with an energy-based model.

In: Schölkopf B, Platt JC, Hoffman T (eds) Advances in neural

information processing systems 19, MIT Press, pp 1137–1144

22. Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Con-

tractive auto-encoders: Explicit invariance during feature

extraction. In: Proceedings of the 28th international conference

on machine learning (ICML-11), pp 833–840

23. Schwartz D, Samalam V, Solla SA, Denker J (1990) Exhaustive

learning. Neural Comput 2(3):374–385

24. Tishby N, Levin E, Solla SA (1989) Consistent inference of

probabilities in layered networks: predictions and generalizations.

In: International joint conference on neural networks, IJCNN,

1989. IEEE, pp 403–409

25. Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008)

Extracting and composing robust features with denoising

autoencoders. In: Proceedings of the 25th international confer-

ence on machine learning. ACM, pp 1096–1103

26. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA

(2010) Stacked denoising autoencoders: learning useful repre-

sentations in a deep network with a local denoising criterion.

J Mach Learn Res 11:3371–3408

Neural Comput & Applic (2016) 27:1361–1367 1367

123

	Learning a good representation with unsymmetrical auto-encoder
	Abstract
	Introduction
	Auto-encoders
	Sparse auto-encoder (AE+Sparse)
	Weight decay auto-encoder (AE+WD)
	Denoising auto-encoder
	Contractive auto-encoder

	Unsymmetrical auto-encoder
	Explanation of UAE
	Number of layers in UAE
	Training with UAE

	Experiments and results
	Visualization for UAE
	Classification performance

	Conclusion
	Acknowledgments
	References

