
ORIGINAL ARTICLE

Consensus problems for multi-agent systems with nonlinear
algorithms

Guoying Miao1 • Qian Ma2 • Qingqing Liu1

Received: 27 January 2015 / Accepted: 3 June 2015 / Published online: 25 June 2015

� The Natural Computing Applications Forum 2015

Abstract The paper investigates consensus problems for

multi-agent systems with nonlinear algorithms. Group

consensus algorithms with actuator saturation for the first-

order and second-order multi-agent systems are proposed.

In addition, the adaptive consensus algorithm with non-

linear dynamic is also given. By applying the graph theory,

Lyapunov function, and LaSalle’s invariance principle,

consensus conditions for multi-agent systems are derived.

Finally, three simulation examples are provided to denote

the effectiveness of obtained theoretical results.

Keywords Multi-agent � Consensus � Actuator
saturation � Group consensus

1 Introduction

In recent years, consensus problem for multi-agent systems

has been a hot topic in the control field, owing to widely

applications of multi-agent systems to numerous areas [1–

26] such as vehicle traffic control, robot formation control,

communication network of automatic weather stations. The

key problem of consensus is that how to design consensus

algorithms makes all agents reach the same constant as

time goes on. Moreover, consensus algorithms of multi-

agent systems are usually adopted in distributed control,

that is, every agent only uses the neighbor’s information,

which doesn’t need the global information.

So far, results of consensus problems for multi-agent

system have been obtained. In general, researchers have

studied linear consensus algorithms and nonlinear cases.

Owing to accelerate the convergence rate or limited ability

of physical machines, nonlinear consensus algorithms for

multi-agent systems are considered. Consensus problem of

multi-agent systems with time delays was discussed in [4].

And consensus tracking algorithms were proposed in [5, 6].

Since every machine has the physical limitations in prac-

tice, consensus algorithms with input saturation are sig-

nificant and important to study. Consensus problem for the

first-order multi-agent systems with input saturation was

discussed in [7], where authors pointed out that the con-

sensus algorithm which was widely applied in the first-

order multi-agent systems was efficient to the ones with

input saturation. Leader-following consensus problem of

the second-order multi-agent systems with actuator satu-

ration was investigated in [8]. Moreover, authors in [8]

extended the results under the fixed topology to that under

switching topologies. In jointly connected topologies,

nonlinear consensus algorithms for leader-following con-

sensus problems for multi-agent systems were proposed in

[9], where finite-time consensus conditions were given by

applying LaSalle’s invariance principle. Finite-time con-

sensus problem was extended the results of the first-order

multi-agent systems in [10] to that of the second-order

multi-agent systems in [9], where the leader was jointly

reachable under switching topologies. Based on algebraic

Riccati equality and Lyapunov function, semi-global con-

sensus problem for the high-order multi-agent system with

input saturation was investigated in [11], where small gains

were introduced. By using the low-gain method, leader-

& Guoying Miao

mgyss66@163.com

1 School of Information and Control, Nanjing University of

Information Science and Technology,

Nanjing 210044, Jiangsu, People’s Republic of China

2 School of Automation, Nanjing University of Science and

Technology, Nanjing 210094, Jiangsu,

People’s Republic of China

123

Neural Comput & Applic (2016) 27:1327–1336

DOI 10.1007/s00521-015-1936-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1936-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1936-6&amp;domain=pdf


following consensus algorithms for high-order multi-agent

systems with input saturation were discussed under the

undirected topology in [12]. Consensus problem for high-

order discrete-time multi-agent systems with input satura-

tion was studied under fixed topology in [13]. Output

regulation of multi-agent systems with input saturation was

discussed under switching topologies in [14]. In addition,

finite-time consensus was investigated in [15].

Since there exists external uncertainty, stochastic noises,

and disturbance, it is important and meaningful to study

adaptive consensus problems, which has attracted

increasing attention. Adaptive consensus problem for lea-

der-following multi-agent systems with nonlinear dynam-

ics was discussed in [16]. For high-order multi-agent

systems with unknown nonlinear uncertainty, adaptive

finite-time consensus algorithm was given in [17]. By

applying the Lyapunov stability theory, adaptive consensus

problem for the second-order multi-agent systems with

time delays and nonlinear uncertainty was investigated in

[18]. And two adaptive distributed consensus algorithms

for high-order multi-agent systems were given in [19],

where they are the ones with time-varying weight for each

edge and for each node in the communication topology,

respectively. And by parameterizing the acceleration and

nonlinear disturbance, adaptive leader-following consensus

problem of the second-order multi-agent systems was

investigated in [20]. In addition, other adaptive consensus

problems were studied in [21, 22]. Moreover, agents in

multi-agent systems may achieve several consensus

according to different tasks or unexpected environment.

Then, group consensus of multi-agent systems was intro-

duced in [23, 24]. Furthermore, group consensus algo-

rithms for the continuous- and discrete-time second-order

multi-agent systems were given in [25] and [26],

respectively.

To the best of our knowledge, few results about group

consensus for multi-agent systems with input saturation

have been investigated, which is our motivation. In this

paper, group consensus algorithms with input saturation for

the first-order and second-order multi-agent systems will be

given. In addition, adaptive leader-following consensus

algorithm will be also proposed, which has been not

investigated fully.

The paper is organized as follows. In Sect. 2, graph

theory needed in this paper is given. Main results of our

contribution are in Sect. 3. In Sect. 4, three examples are

given to denote the effectiveness of proposed methods in

this paper. In Sect. 5, concluding remarks are presented.

Notations: The matrix P[ ð� Þ0 means that P is pos-

itive (semi) definite matrix. And PT is the transpose of the

matrix P. The symbol k � k denotes the Euclidean norm. 1n
represents a column vector with every element 1.

2 Graph theory

In this section, we give some preliminaries about graph

theory in this paper. Assume that G ¼ fV; E;Ag is a directed
graph corresponding to the fixed communication topology,

where V ¼ f1; . . .; i; . . .; ng is the set of nodes with i repre-

senting the ith agent, E is a set of edges, A ¼ ½aij�n�n is a

weighted adjacent matrix. The Laplacian matrix L ¼ ½lij�n�n

associated with the graph G is defined with lij ¼ �aij for

i 6¼ j and lii ¼
Pn

j¼1;j6¼i aij for i ¼ j. From the above defini-

tion, L has at least a simple zero eigenvalue. In the directed

graph G, if there exist some positive constants wi [ 0 for

i ¼ 1; . . .; n, wiaij ¼ ajiwj holds for i; j ¼ 1; . . .; n. Then, we

say the graph G is detailed balanced.

In some situations, graph �G ¼ f �V; �E; �Ag including nþ
m agents is divided into two subgroups G1 ¼ fV1; E1;A1g
with V1 ¼ f1; . . .; ng and G2 ¼ fV2; E2;A2g with

V2 ¼ fnþ 1; . . .; nþ mg, where �V ¼ V1 [ V2 and
�E ¼ E1 [ E2. If

Pnþm
j¼n aij ¼ 0 for i 2 G1; j 2 G2 and

Pn
j¼1 aij ¼ 0 for i 2 G2; j 2 G1 are satisfied, we say there is

a balance between G1 and G2.

3 Main results

3.1 Group consensus for the first-order multi-agent

system

Consider the ith agent’s dynamics of the first-order multi-

agent system, which is described as follows

_xiðtÞ ¼ satðuiðtÞÞ; ð1Þ

where satðuðtÞÞ ¼ ½satðu1ðtÞÞT � � � satðunþmðtÞÞT �T ,

satðuiðtÞÞ ¼
uiðtÞ; if � 1� uiðtÞ� 1;
1; if uiðtÞ[ 1;
�1; if uiðtÞ\� 1:

8
<

:
ð2Þ

In the paper, the group consensus protocol is considered as

follows

uiðtÞ ¼
Pn

j¼1 aijðxjðtÞ � xiðtÞÞ þ
Pnþm

j¼nþ1 aijxjðtÞ; i 2 G1;
Pnþm

j¼nþ1 aijðxjðtÞ � xiðtÞÞ þ
Pn

j¼1 aijxjðtÞ; i 2 G2;

(

ð3Þ

where G1 ¼ fV1; E1;A1g, G2 ¼ fV2; E2;A2g.

Assumption 1

(1)
Pnþm

j¼nþ1 aij ¼ 0 with ai;nþi\0 and aij [ 0 for i 6¼ j

and j 6¼ nþ i, i 2 G1; j 2 G2;

(2)
Pn

j¼1 aij ¼ 0 with ai;nþi\0 and aij [ 0 for i 6¼ j and

j 6¼ nþ i, for i 2 G2; j 2 G1.
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Together (1) with (3), we have

_XðtÞ ¼ satð�HXðtÞÞ; ð4Þ

where XðtÞ¼½xT1 ðtÞ xT2 ðtÞ ��� xTnþmðtÞ�
T
, H¼½hij�ðnþmÞ�ðnþmÞ

with hij¼�aij for i 6¼j and hii¼
Pnþm

j¼1;j 6¼iaij for i¼j.

Set nðtÞ ¼ HXðtÞ, system (4) can be rewritten as follows

_nðtÞ ¼ �HsatðnðtÞÞ: ð5Þ

Thus, stability of system (4) is converted to stability of

system (5).

Assumption 2 In the directed topology, suppose that

H has only two simple zero eigenvalues and the others have

positive real parts.

Definition 1 ([23, 24]) System (1) is said to achieve

group consensus if the following conditions are satisfied:

(1) limt!1 kxiðtÞ � xjðtÞk ¼ 0, for i; j 2 G1;

(2) limt!1 kxiðtÞ � xjðtÞk ¼ 0, for i; j 2 G2;

(3) limt!1 kxiðtÞ � xjðtÞk 6¼ 0; for i 2 G1; j 2 G2.

Theorem 1 Suppose that Assumptions 1 and 2 hold and

there is a directed topology �G. Under the consensus pro-

tocol (3), system (1) can achieve group consensus in finite

time.

Proof Firstly, a set M is introduced in the following

M ¼ fjniðtÞj � 1; jnjðtÞj � 1; for i 2 G1; j 2 G2g: ð6Þ

In the next, we will show that niðtÞ 2 M holds for any the

initial condition nið0Þ 2 M. Following the method in [7],

we obtain

_n1ðtÞ ¼� a11satðn1ðtÞÞ þ
Xn

j¼2

a1jsatðnjðtÞÞ þ
Xnþm

j¼nþ1

a1jnjðtÞ

¼
Xn

j¼2

a1jðsatðnjðtÞÞ � satðn1ðtÞÞÞ þ
Xnþm

j¼nþ1

a1jnjðtÞ;

_nnþ1ðtÞ ¼
Xn

j¼1

anþ1;jsatðnjðtÞÞ � anþ1;nþ1satðnnþ1;nþ1ðtÞÞ

þ
Xnþm

j¼nþ2

anþ1;jsatðnjðtÞÞ

¼
Xnþm

j¼nþ2

anþ1;jðsatðnjðtÞÞ � satðnnþ1ðtÞÞÞ

þ
Xn

j¼1

anþ1;jnjðtÞ: ð7Þ

In view of Assumption 1, (7) can be rewritten

_n1ðtÞ ¼
Xn

j¼2

a1jðsatðnjðtÞÞ � satðn1ðtÞÞÞ

þ
Xnþm

j¼nþ2

a1jðsatðnjðtÞÞ � satðnnþ1ðtÞÞÞ;

_nnþ1ðtÞ ¼
Xn

j¼2

anþ1;jðsatðnjðtÞÞ � satðn1ðtÞÞÞ

þ
Xnþm

j¼nþ2

anþ1;jðsatðnjðtÞÞ � satðnnþ1ðtÞÞÞ: ð8Þ

Taking jn1ðtÞj ¼ 1, jnnþ1ðtÞj ¼ 1, �1� njðtÞ� 1 for

j ¼ 2; . . .; n; nþ 2; . . .; nþ m, we have

_n1ðtÞ�
Xn

j¼2

a1jðnjðtÞ � 1Þ þ
Xnþm

j¼nþ2

a1jðnjðtÞ � 1Þ

� 0; ifn1ðtÞ ¼ 1; nnþ1ðtÞ ¼ 1;

_nnþ1ðtÞ�
Xn

j¼2

anþ1;jðnjðtÞ � 1Þ þ
Xnþm

j¼nþ2

anþ1;jðnjðtÞ � 1Þ

� 0; ifn1ðtÞ ¼ 1; nnþ1ðtÞ ¼ 1; ð9Þ

_n1ðtÞ�
Xn

j¼2

a1jðnjðtÞ � 1Þ þ
Xnþm

j¼nþ2

a1jðnjðtÞ � 1Þ

� 0; ifn1ðtÞ ¼ �1; nnþ1ðtÞ ¼ �1;

_nnþ1ðtÞ�
Xn

j¼2

anþ1;jðnjðtÞ � 1Þ þ
Xnþm

j¼nþ2

anþ1jðnjðtÞ � 1Þ

� 0; ifn1ðtÞ ¼ �1; nnþ1ðtÞ ¼ �1: ð10Þ

From the above analysis, if jn1ð0Þj � 1 and jnnþ1ð0Þj � 1,

we have jn1ðtÞj� 1 and jnnþ1ðtÞj � 1. Similarly, jniðtÞj � 1

is obtained if jnið0Þj � 1. Then, we obtain M is an invariant

set.

In the next section, we will show all solutions of system

(5) converge to the origin in the invariant set M. There

exists an invertible matrix �P, such that

�P�1H �P ¼ K; ð11Þ

where K ¼

0

0

J1

. .
.

Jr

2

6
6
6
6
6
4

3

7
7
7
7
7
5
, Ji is the Jordan

canonical block for i ¼ 1; . . .; r. Observing Assumption 2,

we know that 0 is simple eigenvalues with geometric

multiplicity 2. In the set M, system (5) is changed to

_nðtÞ ¼ �HnðtÞ: ð12Þ
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From (11), which implies

_nðtÞ ¼ ��PK�P�1nðtÞ: ð13Þ

The first and second columns of the matrix �P are

p1 ¼ ½1 � � � 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n

0 � � � 0�T , p2 ¼ ½0 � � � 0 1 � � � 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m

�T ,

w1 and w2 denote the first and second rows of the matrix
�P�1.

Noting nð0Þ ¼ Hxð0Þ, we have

limt!1 nðtÞ ¼ limt!1 �Pexpð�KtÞ�P�1nð0Þ
¼ limt!1½p1 p2�½wT

1 wT
2 �

TðHxð0ÞÞ:
ð14Þ

Since w1 and w2 are left eigenvectors of H corresponding to

zero eigenvalue, ½wT
1 wT

2 �
T
H ¼ 0 is derived. Then,

limt!1 nðtÞ ¼ 0: ð15Þ

Noting nðtÞ ¼ HxðtÞ , limt!1ðHxðtÞÞ ¼ 0 is implied in

(15). Therefore, as time t goes to infinity, x(t) will converge

null space of matrix H, which is generated by the vector p1
and p2. Thus,

limt!1 xðtÞ !
a1n
b1m

� �

; ð16Þ

where a is a constant, and b is a constant.

Following a similar line to that in [7], we obtain that

system (5) converges to the invariant set M in finite time.

Then, system (1) can achieve group consensus under the

consensus protocol with saturation (3) in finite time. The

proof is completed. h

Remark 1 Theorem 1 has extended the consensus prob-

lem for the first-order multi-agent system in [7] to group

consensus problems. In the paper, the fixed topology is

directed. Finite-time consensus protocols with saturation

were proposed in [15], while we give another method for

group consensus of multi-agent systems with saturation.

Remark 2 The linear group consensus algorithms were

proposed in [23–26]. However, the nonlinear group consensus

algorithm with actuator saturation for the first-order multi-

agent system is given in this paper. Group consensus was

investigated in an undirected topology in [23], while group

consensus is studied in the directed topology in this paper.

In the following, we will discuss partly the saturation of

the actuators in the consensus protocol. Consider the ith

dynamic behavior of multi-agent system is described as

follows

_xiðtÞ ¼ uiðtÞ; ð17Þ

where xiðtÞ and uiðtÞ represent the position and input

control of the ith agent, respectively. The group consensus

algorithm is proposed

uiðtÞ ¼
Pn

j¼1 aijsatðxjðtÞ � xiðtÞÞ þ
Pnþm

j¼nþ1 aijðxjðtÞÞ; i 2 G1;

�
Pn

j¼1 aijðxjðtÞÞ þ
Pnþm

j¼nþ1 aijsatðxjðtÞ � xiðtÞÞ; i 2 G2:

(

ð18Þ

Set e1 ¼ 1
n

Pn
i¼1 xið0Þ, e2 ¼ 1

m

Pnþm
i¼nþ1 xið0Þ. Take ~xiðtÞ ¼

xiðtÞ � e1 for i ¼ 1; . . .; n and ~xjðtÞ ¼ xjðtÞ � e2 for

j ¼ nþ 1; . . .; nþ m, ~XðtÞ ¼ ½~xT1 ðtÞ � � � ~xTnþmðtÞ�
T
.

Combining (17) and (18), we have

_~xiðtÞ ¼
Pn

j¼1 aijsatð~xjðtÞ � ~xiðtÞÞ þ
Pnþm

j¼nþ1 aij~xjðtÞ; i 2 G1;

�
Pn

j¼1 aij~xjðtÞ þ
Pnþm

j¼nþ1 aijsatð~xjðtÞ � ~xiðtÞÞ; i 2 G2:

(

ð19Þ

Lemma 1 ([9]) Suppose that the topology �G is undirected

and connected, aij ¼ aji for i; j ¼ 1; . . .; nþ m. If f : R ! R

is an odd function, for ~xðtÞ 2 Rn,

Xn

i¼1

Xn

j¼1

aij~xiðtÞf ð~xiðtÞ � ~xjðtÞÞ ¼
1

2

Xn

i¼1

Xn

j¼1

aijð~xiðtÞ

� ~xjðtÞÞf ð~xiðtÞ � ~xjðtÞÞ:
ð20Þ

Corollary 1 Suppose that the topology �G is connected

and undirected. Under the group consensus protocol (18),

system (17) can achieve group average consensus.

Proof Choose the Lyapunov function Vð~xðtÞÞ ¼
1
2

Pnþm
i¼1 ~x2i ðtÞ. Since the saturation function is odd, by

Lemma 1 and calculating the derivation of Vð~xðtÞÞ, we
obtain

_Vð~xðtÞÞ ¼
Xnþm

i¼1

~xiðtÞ _~xiðtÞ

¼
Xn

i¼1

~xiðtÞ
Xn

j¼1

aijsatð~xjðtÞ � ~xiðtÞÞ

þ
Xn

i¼1

~xiðtÞ
Xnþm

j¼nþ1

aij~xjðtÞ þ
Xnþm

i¼nþ1

~xiðtÞ

�
Xnþm

j¼nþ1

aijsatð~xjðtÞ � ~xiðtÞÞ

�
Xnþm

i¼nþ1

~xiðtÞ
Xn

j¼1

aij~xjðtÞ

¼ � 1

2

Xn

i¼1

Xn

j¼1

aijð~xiðtÞ � ~xjðtÞÞsatð~xiðtÞ � ~xjðtÞÞ

þ
Xn

i¼1

~xiðtÞ
Xnþm

j¼nþ1

aij~xjðtÞ

� 1

2

Xnþm

i¼nþ1

Xnþm

j¼nþ1

aijð~xiðtÞ � ~xjðtÞÞsatð~xiðtÞ � ~xjðtÞÞ

�
Xn

i¼1

Xnþm

j¼nþ1

aji~xiðtÞ~xjðtÞ
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¼� 1

2

Xn

i¼1

Xn

j¼1

aijð~xiðtÞ � ~xjðtÞÞsatð~xiðtÞ � ~xjðtÞÞ

� 1

2

Xnþm

i¼nþ1

Xnþm

j¼nþ1

aijð~xiðtÞ � ~xjðtÞÞsatð~xiðtÞ � ~xjðtÞÞ

� 0: ð21Þ

From the above analysis, _Vð~xðtÞÞ ¼ 0 if and only if ~xiðtÞ ¼
~xjðtÞ for i; j 2 G1 and ~xiðtÞ ¼ ~xjðtÞ for i; j 2 G2 hold. By

using LaSalle’s invariance principle, we know that system

(17) can reach group average consensus. The proof is

completed. h

3.2 Group consensus for the second-order multi-

agent system

In this section, we will discuss group consensus for the

second-order multi-agent system. The ith dynamic of the

second-order multi-agent system is considered as follows

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ satðuiðtÞÞ;

�

ð22Þ

where xiðtÞ and viðtÞ is the position and velocity of the ith

agent, respectively. And the group consensus protocol is

given as follows

uiðtÞ ¼

Pn
j¼1 aij ðxjðtÞ � xiðtÞÞ þ ðvjðtÞ � viðtÞÞ

� �

�
Pnþm

j¼nþ1 aij xjðtÞ þ vjðtÞ
� �

; i 2 G1;
Pnþm

j¼nþ1 aij ðxjðtÞ � xiðtÞÞ þ ðvjðtÞ � viðtÞÞ
� �

�
Pn

j¼1 aij xjðtÞ þ vjðtÞ
� �

; i 2 G2:

8
>>>>><

>>>>>:

ð23Þ

Set a ¼ 1
n

Pn
j¼1 xjðtÞ, b ¼ 1

n

Pn
j¼1 vjðtÞ, �a ¼ 1

m

Pnþm
j¼nþ1 xjðtÞ,

�b ¼ 1
m

Pnþm
j¼nþ1 vjðtÞ, ~xiðtÞ ¼ xiðtÞ � a, ~viðtÞ ¼ viðtÞ � b for

i 2 G1. Set ~xiðtÞ ¼ xiðtÞ � �a, ~viðtÞ ¼ viðtÞ � �b for i 2 G2.

Together (22) with (23), we have

_~xiðtÞ ¼ ~viðtÞ;
_~viðtÞ ¼ ~uiðtÞ;

(

ð24Þ

where ~uiðtÞ ¼
satðuiðtÞÞ �

1

n

Xn

j¼1

satðujðtÞÞ; i 2 G1;

satðuiðtÞÞ �
1

m

Xnþm

j¼nþ1

satðujðtÞÞ; i 2 G2:

8
>>>><

>>>>:

Assumption 3 Suppose that the topology �G is strongly

connected and detailed balanced. Then, there exist positive

constants wi [ 0, such that WH ¼ HTW , where

W ¼ diagfw1; . . .;wn;wnþ1; . . .;wnþmg, H is the same as

that in Theorem 1.

Lemma 2 ([21, 27]) If V(t) satisfies the following

conditions:

(i) V(t) is lower bounded;

(ii) _VðtÞ is negative semi-definite;

(iii) _VðtÞ is uniformly continuous in time or €VðtÞ is

bounded, then _VðtÞ ! 0 as t ! 1.

Theorem 2 Suppose the directed topology �G is con-

nected and detailed balance, Assumptions 1–3 holds.

Under the consensus protocol (23), system (22) can

achieve group consensus.

Proof Set ~vðtÞ ¼ ½~vT1 ðtÞ � � � ~vTnþmðtÞ�
T

and ~xðtÞ ¼
½~xT1 ðtÞ � � � ~xTnþmðtÞ�

T
. Choose the Lyapunov function

candidate in the following

Vð~xðtÞ; ~vðtÞÞ ¼ 1

2
~vTðtÞWH~vðtÞ þ

Xn

i¼1

wiU

� �
Xn

j¼1

aijð~xjðsÞ þ ~vjðsÞÞ �
Xnþm

j¼nþ1

aij~xjðsÞ �
Xnþm

j¼nþ1

aij~vjðsÞ
 !

þ
Xnþm

i¼nþ1

wiU �
Xnþm

j¼nþ1

aijð~xjðsÞ þ ~vjðsÞÞ �
Xn

j¼1

aij~xjðsÞ �
Xn

j¼1

aij~vjðsÞ
 !

;

ð25Þ

whereUðsÞ ¼
R s
0
satðtÞdt. From Assumption 3, we know that

WH is a positive semi-definite matrix. Then, VðtÞ� 0 is

obtained in (25). Set a ¼ ½1Tn 1
n

Pn
j¼1 satðujðtÞÞ 1Tm

1
m

Pnþm
j¼nþ1

satðujðtÞÞ�T . In view of Ha ¼ 0, it implies

~vTðtÞH _~vðtÞ ¼2~vTðtÞH~uðtÞ
¼2~vTðtÞHsatðuðtÞÞ;

ð26Þ

where ~uðtÞ ¼ ½~uT1 ðtÞ � � � ~uTnþmðtÞ�
T
, uðtÞ ¼

½u1ðtÞ � � � uTnþmðtÞ�
T
. Take the derivation of V(t) in (25),

which implies

_VðtÞ ¼
Xn

i¼1

~vTi ðtÞ
Xn

j¼1

wiaijsatðujðtÞÞ þ
Xnþm

j¼nþ1

wiaijsatðujðtÞÞ
 !

þ
Xnþm

i¼nþ1

~viðtÞ
Xnþm

j¼nþ1

wiaijsatðujðtÞÞ

þ
Xn

i¼1

wisatðuiðtÞÞ �
Xn

j¼1

aij~vjðtÞ �
Xn

j¼1

aijsatðujðtÞÞ
"

�
Xnþm

j¼nþ1

aij~vjðtÞ �
Xnþm

j¼nþ1

aijsatðujðtÞÞ
#

þ
Xnþm

i¼nþ1

wisatðuiðtÞÞ �
Xnþm

j¼nþ1

aij~vjðtÞ
"

�
Xnþm

j¼nþ1

aijsatðujðtÞÞ �
Xn

j¼1

aij~vjðtÞ �
Xn

j¼1

aijsatðujðtÞÞ
#

þ
Xnþm

i¼nþ1

~viðtÞ
Xn

j¼1

wiaijsatðujðtÞÞ: ð27Þ
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Observing wiaij ¼ ajiwj,

_VðtÞ ¼ � �WTðtÞWH �WðtÞ; ð28Þ

where W ¼ diagfw1; . . .;wnþmg, �WðtÞ ¼ ½satðu1ðtÞÞT

� � � satðunðtÞÞT satðunþ1ðtÞÞT � � � satðunþmðtÞÞT �T .
W and H is the same as that in (25). Since the matrix WH is

the positive semi-definite matrix, in view of (28), we obtain

_VðtÞ� 0: ð29Þ

Noting satðuiðtÞÞ is uniformly continuous in time, _VðtÞ is

uniformly continuous in time. By applying Lemma 2,

limt!1 _VðtÞ ¼ 0 is derived. Then, we have limt!1 ~x1ðtÞ ¼
� � � ¼ limt!1 ~xnðtÞ, limt!1 ~v1ðtÞ ¼ � � � ¼ limt!1 ~vnðtÞ,
limt!1 ~xnþ1ðtÞ ¼ � � � ¼ limt!1 ~xnþmðtÞ, limt!1 ~vnþ1ðtÞ ¼
� � � ¼ limt!1 ~vnþmðtÞ. Observing (24), we have limt!1
x1ðtÞ ¼ � � � ¼ limt!1 xnðtÞ, limt!1 v1ðtÞ ¼ � � � ¼ limt!1
vnðtÞ, limt!1 xnþ1ðtÞ ¼ � � � ¼ limt!1 xnþmðtÞ, limt!1
vnþ1ðtÞ ¼ � � � ¼ limt!1 vnþmðtÞ. Thus, system (22) can

reach group consensus under the consensus protocol (23).

The proof is completed. h

Remark 3 In [8], authors investigated single consensus

for the second-order for multi-agent systems subjected to

actuator saturation. In this paper, group consensus of the

second-order multi-agent system is discussed in the direc-

ted topology. Furthermore, we can extend the above results

to group average consensus. In order to save space, we

omit it.

3.3 Adaptive consensus for the second-order multi-

agent system

In this section, adaptive leader-following consensus for

multi-agent systems is considered. The dynamic of the

leader is denoted as follows

_x0ðtÞ ¼ v0ðtÞ;
_v0ðtÞ ¼ u0ðtÞ;

�

ð30Þ

where x0ðtÞ, v0ðtÞ, u0ðtÞ denote the position, velocity, and

input control of the leader, respectively. Suppose u0ðtÞ is

the nonlinear function, which is parameterized as follows

u0ðtÞ ¼ /T
0 ðtÞh0ðtÞ; ð31Þ

where /0ðtÞ is the basis function, h0ðtÞ is unknown

parameter.

The dynamic behavior of the ith agent for the second-

order multi-agent systems can be expressed as follows

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ uiðtÞ;

�

ð32Þ

where xiðtÞ, viðtÞ, uiðtÞ denote the ith agent’s position,

velocity, and input control, respectively.

The consensus protocol is proposed as follows

uiðtÞ ¼/T
0 ðtÞ~h0ðtÞ þ cðtÞ

Xn

j¼1

aijðxjðt � sÞ � xiðt � sÞÞ
 "

�biðxiðt � sÞ � x0ðt � sÞÞÞ

þ
Xn

j¼1

aijðvjðt � sÞ � viðt � sÞÞ
 

�biðviðt � sÞ � v0ðt � sÞÞÞ�;
ð33Þ

where ~h0ðtÞ is the estimation of h0ðtÞ in (31). Set

x̂iðtÞ ¼ xiðtÞ � x0ðtÞ, v̂iðtÞ ¼ viðtÞ � v0ðtÞ, ĥiðtÞ ¼ ~hiðtÞ�
hiðtÞ for i ¼ 1; . . .; n. Under the consensus protocol (33),

(32) can be rewritten

_̂xiðtÞ ¼ v̂iðtÞ;

_̂viðtÞ ¼/T
0 ðtÞĥ0ðtÞ � cðtÞ

Xn

j¼1

aijx̂iðt � sÞ þ bix̂iðt � sÞ
 !

� cðtÞ
Xn

j¼1

aijv̂jðt � sÞ þ biv̂iðt � sÞ
 !

; ð34Þ

where s[ 0 is the time delay, Ĥ ¼ Lþ �B with
�B ¼ diagfb1; . . .; bng, L is Laplacian matrix corresponding

to the follower’s topology. If there is a path from leader

to the ith follower, we have bi ¼ 1; otherwise, bi ¼ 0.

Set �nðtÞ ¼ ½x̂T1 ðtÞ � � � x̂TnþmðtÞ v̂T1 ðtÞ � � � v̂TnþmðtÞ�
T
.

And (34) is rewritten in the matrix form, which implies

_�nðtÞ ¼ A�nðtÞ þ B�nðt � sÞ þ FðUðtÞWðtÞÞ ð35Þ

where

F ¼ 0

1

� �

, A ¼ 0 In
0 0

� �

, B ¼ 0 0

�cðtÞĤ � cðtÞĤ

� �

,

WðtÞ ¼ ½ĥ1ðtÞT � � � ĥnðtÞT �T , UðtÞ ¼ diagf/0ðtÞ � � �/0ðtÞg.
Adaptive laws of ĥiðtÞ and c(t) are designed as follows

_̂hiðtÞ ¼ � 2ri/0ðtÞðx̂iðtÞ þ v̂iðtÞÞ; i ¼ 1; . . .; n; ð36Þ

_cðtÞ ¼ � l�n
TðtÞP~B�nðt � sÞ; ð37Þ

where ri [ 0, l[ 0 are positive constants to be deter-

mined, P is defined in (42), ~B ¼ 0 0

�Ĥ � Ĥ

� �

.

Assumption 4 Suppose that /0ðtÞ in (31) is persistently

exciting(PE), that is, there exist positive constants T0 [ 0

and �[ 0,
Z tþT0

t

UðsÞUTðsÞds� �In [ 0; 8t[ 0: ð38Þ

Lemma 3 ([16, 22]) Let _XðtÞ ¼ f ðX; tÞ, where XðtÞ 2 Rn.

If f ðX; tÞ ! 0 and STðtÞXðtÞ ! 0, where S is upper
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bounded and satisfies the persistently exciting(PE) prop-

erty in (38), then XðtÞ ! 0.

Theorem 3 Suppose that there exists at least a path form

the leader to one follower in undirected and connected

topology, Assumption 4 holds and /0ðtÞ is upper bounded.
Under the consensus protocol (33), systems (30) and (32)

can reach consensus, if the following conditions hold for

positive numbers q[ 0,c[ 0,

X ¼ Nþ 1

q
PB̂B̂

T
Pþ cQþ qsIn 0

0 � cQ

2

4

3

5\0; ð39Þ

where B̂ is the same as that in (47), the matrix P is the same

as that in (41),

N¼ PðAþ B̂Þ þ ðAþ B̂ÞTP¼ �ĉĤ � Ĥĉ 0

0 2ðIn � ĉHÞ

" #

:

ð40Þ

Proof We take the Lyapunov function

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ; ð41Þ

where

V1ðtÞ ¼ �n
TðtÞP�nðtÞ; ð42Þ

V2ðtÞ ¼ c
Z t

t�s

�n
TðsÞQ�nðsÞds; ð43Þ

V3ðtÞ ¼ q
Z t

t�s
ðs� t þ sÞj _�nðsÞj2ds; ð44Þ

V4ðtÞ ¼
ðcðtÞ � ĉÞ2

l
þ ĥTðtÞĥðtÞ

2ri
; ð45Þ

where q[ 0 and c[ 0 are constant numbers, ĉ� 2
kminðĤÞ,

P ¼ 2ĉĤ In
In In

� �

. From above, we know P is a posi-

tive definite matrix. Taking the derivation of V1ðtÞ, we

have

_V1ðtÞ ¼ 2�n
TðtÞPA�nðtÞ þ 2�n

TðtÞPB�nðt � sÞ
þ 2�n

TðtÞPFUðtÞWðtÞ ð46Þ

Noting the condition (36) and (37), we have

_V4ðtÞ ¼ �2�n
TðtÞPB�nðt � sÞ � 2�n

TðtÞPFUðtÞWðtÞ
þ 2�n

TðtÞPB̂�nðt � sÞ; ð47Þ

where B̂ ¼ 0 0

�ĉĤ � ĉĤ

� �

. Therefore,

_V1ðtÞ ¼ 2�n
TðtÞ½PðAþ B̂Þ��nðtÞ � 2�n

TðtÞPB̂ð�nðtÞ � �nðt� sÞÞ:
ð48Þ

Thus, (46) can be rewritten as follows

_V1ðtÞ ¼ 2�n
TðtÞ½PðAþ B̂Þ��nðtÞ � 2�n

TðtÞPB̂ð�nðtÞ � �nðt � sÞÞ

¼ 2�n
TðtÞ½PðAþ B̂Þ��nðtÞ � 2�n

TðtÞPB̂
Z t

t�s

�nðsÞds

� 2�n
TðtÞ½PðAþ B̂Þ��nðtÞ þ q�1�n

TðtÞPB̂B̂T
P�nðtÞ

þ q
Z t

t�s
j _�nðsÞj2ds: ð49Þ

Taking the derivation of V2ðtÞ and V3ðtÞ, we have

_V2ðtÞ ¼c�n
TðtÞQ�nðtÞ � c�n

Tðt � sÞQ�nðt � sÞ; ð50Þ

_V3ðtÞ ¼qsj�nðtÞj2 � q
Z t

t�s
j _�nðsÞj2ds: ð51Þ

Combining (41)-(51), we have

_VðtÞ� �n
TðtÞ½PðAþ B̂Þ þ ðAþ B̂ÞTP��nðtÞ þ q�1�n

TðtÞ

PB̂B̂
T
P�nðtÞ þ c�n

TðtÞQ�nðtÞ � c�n
Tðt � sÞQ�nðt � sÞ

þ qsj�nðtÞj2: ð52Þ

In view of the condition (39), we have

_VðtÞ\0: ð53Þ

And we know that limt!1 �nðtÞ ¼ 0 and limt!1 �nðt � sÞ ¼
0. Then, limt!1ðxiðtÞ � x0ðtÞÞ ¼ 0 and limt!1ðviðtÞ �
v0ðtÞÞ ¼ 0 are obtained. From (35), we obtain

UðtÞWðtÞ ! 0. Noting (36), we know that
_̂hiðtÞ ! 0. From

the Lemma 3, we have that limt!1 ĥiðtÞ ¼ 0. Thus, the

proof is completed. h

Remark 4 By linearly parameterized models, authors

have studied adaptive consensus protocols for the second-

order multi-agent systems without time delay in [20].

Moreover, adaptive consensus problems of the second-

order multi-agent systems without time delay were con-

sidered in [16] and [17]. In this paper, we discuss adaptive

consensus for the second-order multi-agent systems with

time delay under the nonlinear protocols.

4 Simulation examples

Example 1 Consider the first-order multi-agent system in

Theorem1 has seven agents. The agents f1; 2; 3g are included
in the first group. The agents f4; 5; 6; 7g are included in the

second group. Assume that the matrix H in (4) is that
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H ¼

1 0 � 1 � 0:5 0:5 0 0

�1 1 0 0:5 � 0:5 0 0

0 � 1 1 0 0 0 0

�0:5 0 0:5 1 � 1 0 0

0:5 0 � 0:5 0 1 � 1 0

0 0 0 0 0 1 � 1

0 0 0 � 1 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

:

ð54Þ

According to Theorem 1, we know that under the

consensus protocol (3), system (1) can reach group con-

sensus. Figure 1 shows the trajectories of system _nðtÞ ¼
�HsatðnðtÞÞ. Figure 2 shows the curves of x(t).

Example 2 Assume that there are seven agents in the

directed topology �G in Theorem 2. A set of the agents

f1; 2; 3g is in the first group G1. And the agents f4; 5; 6; 7g
are in the second group G2. The adjacent weighted ele-

ments are a13 ¼ 1, a23 ¼ 2, a31 ¼ 2, a32 ¼ 1, a14 ¼ �1,

a15 ¼ 1, a24 ¼ 0:5, a25 ¼ �0:5, a41 ¼ �0:5, a42 ¼ 0:5,

a51 ¼ 1, a52 ¼ �1, a45 ¼ 1, a54 ¼ 1, a56 ¼ 1, a65 ¼ 2,

a67 ¼ 1, a76 ¼ 1. The directed topology �G is detail balance
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Fig. 1 Curves of nðtÞ in system _nðtÞ ¼ �HsatðnðtÞÞ in Theorem 1
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Fig. 2 Curves of x(t) in Theorem 1
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Fig. 3 Position trajectories of multi-agent systems in Theorem 2
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Fig. 4 Velocity trajectories of multi-agent systems in Theorem 2
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Fig. 5 Errors of positions between the leader and followers in

Theorem 3
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and Assumption 3 holds. According to Theorem 2, group

consensus is derived. Then, Figs. 3 and 4 denote the

curves of the positions and velocities in (22), respectively.

Example 3 Consider there are three followers and one

leader in the multi-agent systems. Assume that the Lapla-

cian matrix L associated with the followers’ topology and

the matrix �B are

L ¼
1 � 1 0

�1 2 � 1

0 � 1 1

2

6
4

3

7
5; �B ¼

1 0 0

0 0 0

0 0 1

2

6
4

3

7
5: ð55Þ

Take the time delay s ¼ 0:2, /0ðtÞ ¼ sin t, which is sat-

isfies the conditions of Theorem 3. Under the consensus

protocol (33), systems (30) and (32) can achieve adaptive

leader-following consensus. Then, Fig. 5 is the picture of

the position errors between the leader and the followers.

Figure 6 denotes the curves of the velocity errors

between the leader and the followers. Figure 7 shows the

estimation errors hiðtÞ for i ¼ 1; 2; 3 and adaptive

parameter c(t).

5 Conclusions

In this paper, group consensus algorithms subjected to

actuator saturation have been given for the continuous-time

multi-agent systems. Furthermore, adaptive consensus

nonlinear algorithms are proposed. Based on the graph

theory, LaSalle’s invariance principle, and Lyapunov

function, consensus conditions for multi-agent systems are

derived. Finally, three simulation examples are provided to

illustrate the obtained results in this paper. One direction of

our future work is to study group consensus under

stochastic topologies and noises.
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