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Abstract In this paper, an adaptive neural network (NN)

tracking controller is developed for a class of uncertain

multi-input multi-output (MIMO) nonlinear systems with

input saturation. Radial basis function neural networks are

utilized to approximate the unknown nonlinear functions in

the MIMO system. A novel auxiliary system is developed

to compensate the effects induced by input saturation (in

both magnitude and rate) during tracking control. Endowed

with a switching structure that integrates two existing

representative auxiliary system designs, this novel auxil-

iary system improves control performance by preserving

their advantages. It provides a comprehensive design

structure in which parameters can be adjusted to meet the

required control performance. The auxiliary system signal

is utilized in both the control law and the neural network

weight-update laws. The performance of the resultant

closed-loop system is analyzed, and the bound of the

transient error is established. Numerical simulations are

presented to demonstrate the effectiveness of the proposed

adaptive neural network control.

Keywords Neural networks (NNs) � Input saturation �
MIMO systems � Adaptive tracking control

1 Introduction

The control of multi-input multi-output (MIMO) nonlinear

systems is a practical yet challenging problem since most

of engineering systems are multivariable and nonlinear.

The control challenge is mainly due to the couplings of

both inputs and outputs. Moreover, the uncertainties and

nonlinearities in the input coupling matrix lead to further

complication [1]. It is therefore important to develop

effective control techniques for uncertain MIMO systems.

Among the available control techniques for control of

uncertain MIMO nonlinear systems (e.g., [2–4]), neural

network (NN)-based adaptive controller has attracted

considerable interests [5–9]. Various control strategies

have been developed, with most of them focusing on

integrating the neural networks to the robust adaptive

control techniques under the scheme of the popular back-

stepping approach [1, 10–12]. In [1], the singularity prob-

lem of the control input matrix has been overcome by

leveraging on the properties of the MIMO systems in block

triangular form. In [10], the developed NN-based robust

control design relaxes the requirement for off-line training.

These results have demonstrated that NN-based controllers

are effective for control of highly nonlinear systems with

uncertainties.

Physical dynamical systems inevitably suffer from input

constraint due to actuator limitations in magnitude and rate.

This may severely degrade system performance if handled

inappropriately. Various attempts have been made to

address this issue for both single-input single-output

(SISO) (e.g., [13–17]) systems and MIMO systems (e.g.,

[18–31]). In [26], a modified tracking error system was

developed as a novel strategy to deal with the adaptation

process for online approximation when input saturation

occurs. The main advantage of the proposed control system
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is to protect the learning capabilities in the presence of

input saturation. In [28], an adaptive backstepping control

scheme using command filters to emulate actuator physical

constraints on both the control law and the virtual control

laws was presented. The issue of input constraints is more

complicated for uncertain nonlinear MIMO systems. In

[29], the auxiliary system design in [26] was extended to

guarantee the H1 performance for a general class of

nonlinear MIMO systems with uncertainties in the presence

of both disturbances and control input constraints. A

model-based adaptive control was developed in [30] to

handle the nonsymmetric input saturation, and a NN-based

robust controller was developed in [31] to resolve a general

input nonlinearity concerning both input saturation and

deadzone. In both works, a new type of auxiliary system

design is proposed with its signal utilized in the designed

control law. The semi-global uniformly ultimate bound-

edness of all the signals in the closed-loop system is

achieved in the presence of input saturations by virtue of

the special design of the auxiliary system.

In this work, we address the tracking control problem for a

class of uncertain MIMO nonlinear systems with input con-

straints in magnitude and rate. The developed control adopts

the extensively studied neural networks with radial basis

function (RBFNNs) to approximate the unknown dynamics of

the MIMO system on account of its outstanding capability in

modeling highly nonlinear functions. A novel auxiliary sys-

tem is proposed to accommodate the effects of input con-

straints. The design of the auxiliary system is motivated by the

works in [30] and [31], where the auxiliary system takes on a

special structure based on the norm of the auxiliary signal. In

both works, to achieve the control objective (of guaranteeing

the desired tracking performance in the presence of input

saturation), the auxiliary system is designed to indicate the

level of saturation of the system input and respond to it

properly to mitigate the effects of the input saturation. To

achieve this, whenever the current auxiliary system is about to

lose its capability of indicating the level of saturation, it will be

reset with a new initial condition. If the auxiliary system loses

its capability of indicating the level of saturation in a short

time after it is reset with a new initial condition, this initial

condition is considered as not able to properly indicate the

level of saturation. Under this circumstance, the results of the

auxiliary system in mitigating the effects of input saturation

are limited. Thus, a more efficient auxiliary system needs to be

developed to solve this issue.

This work proposes a modified auxiliary system design to

further improve the control performance in the presence of

input saturation. The proposed modified auxiliary system is

endowed with a switching structure that integrates the auxil-

iary system design proposed in [30] and the direct learning

control scheme proposed in [26]. The modified auxiliary

system no longer requires a proper selection of the initial

condition to be able to indicate the input saturation. Moreover,

new design parameters of the auxiliary system are introduced

to guarantee its performance. Furthermore, these design

parameters can be adjusted in accordance with the control

requirements. By utilizing the signals of the proposed auxil-

iary system in both the control law and NN weight-update

laws, the advantages of the auxiliary system design in both

[26] and [30] are preserved. The performance of the resultant

closed-loop system with input saturations under the proposed

switching control scheme is analyzed, and explicit bound of

the tracking error is established. The remainder of this paper is

organized as follows. Section 2 formulates the problem.

Section 3 presents the proposed adaptive NN controller and

the stability analysis. Section 4 reports the results of numerical

simulations conducted to verify the effectiveness of the pro-

posed approach. Section 5 summarizes the paper.

Notations : k � k denotes Frobenius norm of matrices or

the standard Euclidean norm of vectors. Given a matrix A

and a vector n, the Frobenius norm and Euclidean norm are

defined as kAk2 ¼ tr ðATAÞ ¼
P

i;j a
2
ij and knk2 ¼

P
i n

2
i ,

respectively. kmaxðBÞ and kminðBÞ denote the largest and

smallest eigenvalues of a square matrix B, respectively. In
represents the identity matrix of dimension n� n.

2 Problem formulation

Consider the following MIMO nonlinear system

_x ¼ FðxÞ þ GðxÞUðuÞ
y ¼ x

ð1Þ

where x 2 R
n is the state vector, F 2 R

n and G 2 R
n�n are

unknown nonlinear functions and input coefficient matri-

ces, respectively, y 2 R
n is the system output vector, u ¼

½u1; . . .; un�T is the designed control input and UðuÞ ¼
½Uðu1Þ; . . .;UðunÞ�T is the actual input to system (1) with

Uð�Þ being a nonlinear function defining the magnitude and

rate constrains of the control input.

Assumption 1 The magnitude limitations on design

control input u are given by [29]

UðuiÞ ¼
ui max; if ui [ ui max

ui; if ui min � ui � ui max

ui min; if ui\ui min

8
><

>:
ð2Þ

where ui is an element of the vector u, ui max and ui min are

the known upper limit and lower limit of input saturation

constraints, respectively. The rate limitation nonlinearity is

defined similarly. The bound of UðuÞ is denoted as um, i.e.,

kUðuÞk� um (um is known constant). A first-order model

filter (as shown in Fig. 1) same as that used in [29] is

employed for producing UðuiÞ in implementation.
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The control objective is to design a control u so that the

output y follows the desired trajectories xd (generated from

smooth bounded _xd) in the presence of input constraints

imposed by Uð�Þ. The tracking error is defined as

e, x� xd.

3 Adaptive tracking controller design

In this section, an adaptive tracking controller is designed

for the uncertain MIMO nonlinear system (1) using

RBFNNs. To facilitate the control development, the fol-

lowing functions are introduced and approximated by

RBFNNs:

hf ðZf Þ ¼ FðxÞ ð3Þ

hgðZgÞ ¼ GðxÞ ð4Þ

where Zf ¼ Zg ¼ x.

3.1 NN approximation

RBFNN is an efficient tool for modeling nonlinear func-

tions [1]. With the ideal weights W�
f 2 R

Lf and

W�
g 2 R

Lg�n, the basis function vector Sf ðZf Þ 2 R
Lf , and

the basis function matrix SgðZgÞ 2 R
Lg�n, hf ðZf Þ and hgðZgÞ

can be represented by RBFNNs as

hf ðZf Þ ¼ W�T
f Sf ðZf Þ þ �f ð5Þ

hgðZgÞ ¼ W�T
g SgðZgÞ þ �g ð6Þ

where �f and �g are the approximation errors corresponding

to the ideal weights.

The approximation of hf ðZf Þ and hgðZgÞ are given as

ĥf ðZf Þ ¼ ŴT
f Sf ðZf Þ ð7Þ

ĥgðZgÞ ¼ ŴT
g SgðZgÞ ð8Þ

where Ŵf 2 R
Lf and Ŵg 2 R

Lg�n are the estimates of the

NN weight matrices.

The RBFNNs estimation employed here has the fol-

lowing properties to facilitate subsequent control

development.

Property 1 [1: The ideal weights W� are defined as the

weights that minimize the norm of approximation error for

all Z 2 XZ � RL .

W�
, arg min

Ŵ2XW

sup
Z2XZ

jhðZÞ � ŴTSðZÞj
( )

ð9Þ

where XW is some suitable prefixed large compact set.

Property 2 [1]: The Gaussian RBFNN adopted in this

work uses the Gaussian functions of the form

siðZÞ ¼ exp
�ðZ � aiÞTðZ � aiÞ

b2
i

" #

; i ¼ 1; 2; . . .; L

ð10Þ

where ai and bi are the center of the receptive field and the

width of the Gaussian function, respectively.

Property 3 [31]: kSðZÞk is bounded by known constant,

i.e., kSf ðZf Þk� ff , kSgðZgÞk� fg, with ff [ 0 and fg [ 0.

Property 4 [31]: The ideal weights are assumed to exist

and bounded, i.e., kW�
f k� �Wf , kW�

gk� �Wg, with �Wf [ 0

and �Wg [ 0 .

Property 5 [1, 31]: The NN approximation errors corre-

sponding to the ideal weights are bounded over a compact

set, i.e., k�f k� ��f , k�gk� ��g, with ��f [ 0 and ��g [ 0.

3.2 Control law synthesis

Define Du ¼ UðuÞ � u. To compensate for effects induced by

the rate and magnitude limitations as defined by UðuÞ, an

auxiliary system with state n 2 R
n is introduced. Let nð0Þ

denote the initial condition of n. With e1 and e2 denoting two

positive designed constants satisfying e1 	knð0Þk and

e2 \ e1, the idea of the design of the auxiliary system is

described as follows. If nð0Þ\ e1, n is initially set to be driven

by a designed function v1 2 R
n (i.e., _n ¼ v1) until

knðtÞk ¼ e1. After which, n is set to be driven by function

v2 2 R
n (i.e., _n ¼ v2), which is designed to force knk to

decrease from e1 to e2. Subsequently, n is set to be driven by v1

again. The process repeats in such a way that every time when

knk increases to e1, n is set to be driven by v2, and when knk
reduces to e2,n is set to be driven byv1. Ifnð0Þ ¼ e1,n is driven

by v2 first. The algorithm of the design of n is provided below.

Fig. 1 Configuration of filter-emulating input constraints, where wi is

the bandwidth parameter
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To facilitate the description of the auxiliary system, two

sets of time sequences T1 and T2 are defined depending on

knðtÞk, e1 and e2. If knk\e1 holds for all t, then T1 ¼ ; and

T2 ¼ ;. If knk ¼ e1 occurs for some t, then T1 ¼
ft11; t12; . . .g is the set contains all the time instants when

knk ¼ e1, where t1iði ¼ 1; 2; . . .Þ denotes the time instant

when knk ¼ e1 for the ith time, and T2 ¼ ft21; t22; . . .g,

where each element t2i (i ¼ 1; 2; . . .) uniquely corresponds

to the element t1i in T1 in the following way: t2i denotes the

time instant when knk ¼ e2 occurs for the first time after

t1i. Notice that t1i and t2i exist in pair since knk only

decreases when n is driven by v2 (i.e., t1i � t � t2i). The

number of the elements of T1 and T2 is denoted as M,

which depends on both the system and the design of the

auxiliary system. It is noted that M can be 0 (i.e.,

T1 ¼ T2 ¼ ;).

Define

Xt ,
;; if M ¼ 0

ft j t1i � t� t2i; i ¼ 1; . . .;Mg; if M	 1

�

ð11Þ

The auxiliary system is designed as:

_nðtÞ ¼
v1 n; h0g; u;UðuÞ
� �

; if t 62 Xt

v2 n; e; h0g; u;UðuÞ
� �

; if t 2 Xt:

8
><

>:
ð12Þ

where

v1 ¼ � K1nþ h0g Zg
� �

ðUðuÞ � uÞ

v2 ¼ � K1n� v20 e; h0g; u;UðuÞ
� �

þ h0g Zg
� �

ðu� UðuÞÞ

v20 e; h0g; u;UðuÞ
� �

¼ v21 e; h0g; u;UðuÞ
� �

n=knk2

v21 e; h0g; u;UðuÞ
� �

¼ 1

2
keTK1k2 þ jeTh0gDuj þ jeT#UðuÞj

þ 1

2
kek2kUðuÞk2 þ 1

2
kh0gDuk

2

with K1 ¼ KT
1 [ 0 and h0g 2 R

n�n a designed function

matrix satisfying

i: h0g is nonsingular ð13Þ

ii: k#k� m; #, ŴT
g Sg Zg

� �
� h0g ð14Þ

where m is any bounded time-varying positive scalar, i.e.,

0� m� mm. The entity h0g is introduced to overcome the

singularity problem of the estimated input coupling matrix

hgðZgÞ (i.e., G(x)). Noting that h0g is not required to be

continuous, it can be simply designed as

h0g ¼
ĥg; if ĥg is nonsingular

ĥg þ D; if ĥg is singular

(

where D is any scalar matrix to render ĥg þ D nonsingular.

Moreover, D satisfying kDk� m can be different for each

singular ĥg. The merit of introducing h0g is to introduce

more freedom in designing the control, since any h0g sat-

isfying (13) and (14) can be chosen even though it is

preferable to choose it close to ĥg.

Remark 1 Let Vn ¼ 1
2
nTn. Provided K1 � 1

2
In [ 0; it is

easy to deduce from (12) that

_Vn � � K1 �
1

2
In

� �

nTn for t 2 ½t1i; t2i� ð15Þ

Equation (15) indicates that knk decreases when

t 2 ½t1i; t2i�. In the case of no input saturation (i.e., Du ¼ 0),

n will remain at zero if nð0Þ ¼ 0. If nð0Þ 6¼ 0, n will con-

verge exponentially to zero and remain at zero afterward.

The designed control input u is given by:

u ¼ h0�1
g ðZgÞu0

u0 ¼
�ŴT

f Sf ðZf Þ � K1eþ _xd; if t 62 Xt

�ŴT
f Sf ðZf Þ � K1ðe� nÞ þ _xd; if t 2 Xt

(

ð16Þ

Note that u may not be continuous. This is acceptable since

the issue of input limitation on rate has been considered.

Define e1 , e� n. The adaptive control laws for Ŵf and

Ŵg are designed as

_̂Wf ¼
Kf Sf ðZf ÞeT1 � bf Ŵf

� �
; if t 62 Xt

Kf Sf ðZf ÞeT � bf Ŵf

� �
; if t 2 Xt

(

ð17Þ

_̂
Wg ¼

Kg SgðZgÞUðuÞeT1 � bgŴg

� �
; if t 62 Xt

Kg SgðZgÞUðuÞeT � bgŴg

� �
; if t 2 Xt

(

ð18Þ

where Kf ¼ KT
f [ 0, Kg ¼ KT

g [ 0, bf [ 0, bg [ 0.

Algorithm 1 Design of ξ

Initialization: Design ξ(0) and two positive constant ε1 and ε2 satisfying ε1 ξ(0) and ε2 < ε1.

(1): Set ξ̇ = χ1;
(2): If ξ(t) = ε1, then let ξ̇ = χ2;
(3): When ξ(t) = ε2, let ξ̇ = χ1 and go to (2).

1320 Neural Comput & Applic (2016) 27:1317–1325
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3.3 Stability analysis

The control law (i.e., (16)) and the adaptive control laws (i.e.,

(17) and (18)) for t 2 Xt resemble the control techniques

proposed in [30] and [31], while those for t 62 Xt are moti-

vated by the control scheme proposed in [26–29]. With the

proposed switching structure, the auxiliary system for t 2
½t1i; t2i� will have an initial condition with relatively large

norm (i.e., e1), which is desirable in [30] and [31]. Moreover,

when the norm of the auxiliary signal decreases to a small

constant (i.e., e2) before the input saturation disappears, it is

not necessary to reset the auxiliary system with a new initial

condition. The integration of the direct learning control

scheme proposed in [26] serves to protect the learning

capability under input saturation. By properly selecting the

design parameters (e1, e2 and nð0Þ), the proposed switching

scheme is able to preserve the advantages of both control

strategies. The performance of the system under the proposed

control scheme is summarized in the following theorem.

Theorem Consider the nonlinear MIMO uncertain sys-

tem (1) with input constraints on magnitude and rates

satisfying Assumption 1. Provided bounded initial condi-

tions, under the control law (16) and parameter update

laws (17) and (18), there exist control parameters

K1 ¼ KT
1 [ 0, Kf ¼ KT

f [ 0, Kg ¼ KT
g [ 0, bf [ 0 and

bg [ 0 such that the following statements hold: (i) A bound

of the transient tracking error can be established as indi-

cated in (39); (ii) during each time period when t 2 Xt (i.e.,

t1i � t� t2i), tracking error e exponentially converges to a

compact set as indicated in (40); (iii) during each time

period when t 62 Xt, modified tracking error e1 exponen-

tially converges to a compact set as indicated in (48).

Proof To establish the bound of the transient tracking

error, we consider the following Lyapunov candidate

V�
1 ¼ 1

2
eTeþ 1

2
nTn ð19Þ

Define ~W1 , Ŵ1 �W�
1 and ~W2 , Ŵ2 �W�

2 . By utilizing

(3)–(8), the time derivative of V�
1 can be expressed as

_V�
1 ¼ eTŴT

f Sf ðZf Þ þ eTh0gðZgÞUðuÞ � eT ~WT
f Sf ðZf Þ

� eT ~WT
g SgðZgÞUðuÞ þ eT�f þ eT�gUðuÞ � eT _xd

þ eT#UðuÞ þ nT _n

ð20Þ

The rest of the proof for statement (i) is presented by

considering the two cases of _n as follows.

Case 1: _n ¼ v1. Substituting (12) (16) into (20) yields

_V�
1 ¼� eTK1e� nTK1nþ eT�f þ eT�gUðuÞ þ eT#UðuÞ

eTh0gDuþ nTh0gDu� eT ~WT
f Sf ðZf Þ � eT ~WT

g SgðZgÞ
ð21Þ

From Eqs. (2) and (14), it follows that

eT�gUðuÞ�
1

2r0

kek2 þ r0u
2
m

2
k�gk2 ð22Þ

eT�f �
1

2r1

kek2 þ r1

2
k�f k2 ð23Þ

eT#UðuÞ� 1

2r2

kek2 þ r2u
2
mm

2
m

2
ð24Þ

eTh0gðUðuÞ � uÞ� 1

2
kek2 þ 1

2
kh0gDuk

2 ð25Þ

nTh0gðUðuÞ � uÞ� 1

2
knk2 þ 1

2
kh0gDuk

2 ð26Þ

where r0, r1 and r2 are designed positive constants.

With above inequalities, _V�
1 can be upper-bounded as

_V�
1 � � eTK11e� nTK12nþ

r1

2
k�f k2 þ r0u

2
m

2
k�gk2

þ r2u
2
mm

2
m

2
þ kh0gDuk

2 � eT ~WT
f Sf ðZf Þ

� eT ~WT
g SgðZgÞ

ð27Þ

where K11 ¼ K1 � ð 1
2r0

þ 1
2r1

þ 1
2r2

þ 1
2
ÞIn and K12 ¼

K1 � 1
2
In.

Considering the NN weight error signals ~Wf and ~Wg, an

augmented Lyapunov function candidate is chosen as

V1 ¼ V�
1 þ 1

2
tr ~WT

f K
�1
f

~Wf

� �
þ 1

2
tr ~WT

g K
�1
g

~Wg

� �
ð28Þ

Substituting (17) and (18) into (28) and noting the facts

�tr ~WT
f Ŵf

� �
¼� k ~Wf k2

2
� kŴf k2

2
þ
kW�

f k
2

2
ð29Þ

� tr ~WT
g Ŵg

� �
¼� k ~Wgk2

2
� kŴgk2

2
þ
kW�

gk
2

2
ð30Þ

�nT ~WT
f Sf ðZf Þ�

1

2r3

knk2 þ
r3ff

2
k ~Wf k2 ð31Þ

�nT ~WT
g SgðZgÞ�

1

2r4

knk2 þ
r4fg

2
k ~Wgk2 ð32Þ

the upper bound of _V1 can be rewritten as
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_V1 � � eTK11e� nTK13n� kf k ~Wf k2 � kgk ~Wgk2

þ r1

2
k�f k2 þ r0u

2
m

2
k�gk2 þ r2u

2
mm

2
m

2
þ
bf kW�

f k
2

2

bgkW�
gk

2

2
þ kh0gDuk

2

� � k11V1 þ c11 þ kh0gDuk
2

ð33Þ

where r3, r4 [ 0, K13 ¼ K1 � ð1
2
þ 1

2r3
þ 1

2r4
ÞIn,

kf ¼ 1
2
ðbf � r3ff Þ, kg ¼ 1

2
ðbg � r4fgÞ, k11 ¼

min f2kminðK11Þ; 2kminðK13Þ; kf

kmaxðK�1
f Þ ;

kg

kmaxðK�1
g Þg and c11 ¼

1
2
ðr1k�f k2 þ r0u

2
mk�gk

2 þr2u
2
mm

2
m þ bf kW�

f k
2 þ bgkW�

gk
2Þ.

Case 2: _n ¼ v2.

Substituting (12) into (20) and considering (16), (20),

(23) and the following facts:

eTK1n�
1

2
keTK1k2 þ 1

2
knk2 ð34Þ

eT�gUðuÞ�
1

2
k�gk2 þ 1

2
kek2kUðuÞk2 ð35Þ

it yields

_V�
1 � � eTK14e� nTK15n� eT ~WT

f Sf ðZf Þ

� eT ~WT
g SgðZgÞUðuÞ þ

r1

2
k�f k2 þ 1

2
k�gk2

ð36Þ

where K14 ¼ K1 � 1
2r1

In and K15 ¼ K1 � In.

Substituting (17), (18), (29), (30) and (36) into the

augmented Lyapunov function (28), _V1 can be upper-

bounded as

_V1 � � k12V1 þ c12 ð37Þ

where k12 ¼ min 2kminðK14Þ; 2kminðK15Þ;
bf

kmaxðK�1
f Þ ;

�

bg
kmaxðK�1

g Þ

	

and c12 ¼ 1
2
ðr1k�f k2 þ k�gk2 þ bf kW�

f k
2þ

bgkW�
gk

2Þ:
For t 2 ½0;þ1�, to ensure k11, k12, c11and c12 [ 0, the

sufficient gain conditions are

K1 � ð1
2
þ 1

2r0
þ 1

2r1
þ 1

2r2
þ 1

2r3
þ 1

2r4
Þ[ 0, bf � r3ff [ 0,

bg � r4fg [ 0. r0 is chosen such that
r0u

2
m

2
	 1. Thus,

k11 � k12 and c11 	 c12. Subsequently,

_V1 � � k11V1 þ c11 þ kh0gDuk
2

for t 2 ½0; þ1�
ð38Þ

According to Lemma 1.2 in [1], (38) indicates that a

transient bound of e can be established as

keðtÞk�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðV1ð0Þ þ
c11

k11

þ 1

k11

sup
s2½0;t�

½kh0gDuðsÞk
2

s

�Þ ð39Þ

where V1ð0Þ ¼ ð1=2ÞeTð0Þeð0Þþ ð1=2ÞnTð0Þnð0Þþ
ð1=2Þ ~WT

f ð0ÞK�1
f

~Wf ð0Þ þð1=2Þ ~WT
g ð0ÞK�1

g
~Wgð0Þ. This con-

cludes the proof of statement (i).

Note that the analysis for case 2 applies for t 2 ½t1i; t2i�,
i.e.,

_V1 � � k12V1 þ c12 for t 2 ½t1i; t2i� ð40Þ

(40) indicates that tracking error e exponentially converges

to a compact set and the transient error bound is given by

kek�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 V1ðt1iÞ þ c12=k12ð Þ

p
ð41Þ

Noting that k12 	 k11 and c12 � c11, if the time period

½t1i; t2i� is long enough, it is possible that a good tracking

performance is achieved. This concludes the proof of

statement (ii).

The control performance for t 62 Xt is further discussed

by considering the following Lyapunov function

V�
2 ¼ 1

2
eT1 e1 ð42Þ

Without loss of generality, we assume that M	 2 and

nð0Þ\e1. In this case, noting (2)–(6), (14) and following

facts

eT1 �f �
1

2r1

ke1k2 þ r1

2
k�f k2 ð43Þ

eT1 �gUðuÞ�
u2
m

2
k�gk2 þ 1

2
ke1k2 ð44Þ

eT1#UðuÞ�
r2u

2
mm

2
m

2
þ 1

2r2

ke1k2 ð45Þ

the time derivative of V�
2 for t 2 ½0; t11� can be expressed

as

_V�
2 � � eT1K16e1 � eT1

~WT
f Sf ðZf Þ � eT1

~WT
g SgðZgÞUðuÞ

þ r2u
2
mm

2
m

2
þ r1

2
k�f k2 þ u2

m

2
k�gk2

ð46Þ

where K16 ¼ K1 � ð 1
2r1

þ 1
2r2

þ 1
2
ÞIn [ 0.

Considering the augmented Lyapunov function

V2 ¼ V�
2 þ 1

2
tr ~WT

f K
�1
f

~Wf

� �
þ 1

2
tr ~WT

g K
�1
g

~Wg

� �
ð47Þ

Substituting (17), (18), (29), (30) and (46) into (47) yields

_V2 � � k2V2 þ c2 ð48Þ

where k2 ¼ min 2kminðK16Þ;
bf

kmaxðK�1
f Þ ;

bg
kmaxðK�1

g Þ

� 	

and

c2 ¼ 1
2
ðr2u

2
mm

2
m þ r1k�f k2 þ u2

mk�gk
2 þ bf kW�

f k
2Þ.

Provided bounded initial condition, (48) indicates

ke1k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV2ð0Þ þ c2=k2Þ

p
ð49Þ
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Furthermore, noticing that the analysis is conducted under

the condition that knk\ e1, we obtain

kek�ke1k þ knk\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 V2ð0Þ þ c2=k2ð Þ

p
þ e1 ð50Þ

The analysis for t 2 ½t2i; t1ðiþ1Þ� [ ½t2M; þ1�ði ¼
1; . . .;M � 1Þ is similar as above. Moreover, if M is

assumed to satisfy M� d\þ1 where d is any positive

integer, an explicit bound of tracking error e during t 2
½t2i; t1ðiþ1Þ� can be found by repeating the above analysis.

This concludes the proof of statement (iii). h

Remark 2 Proper selection of nð0Þ, e1 and e2 may further

improve the control performance in the presence of input

saturations. For NN-based adaptive controllers, input satu-

ration may only occur in the initial stage of control when the

NN weights have not been well tuned. As such, if choosing

nð0Þ ¼ e1 (i.e., t11 ¼ 0) with suitable e1 and e2, it is possible

that input saturation disappears before t21 and does not

occur afterward. In this case, as indicated in Eq. (37), the

tracking error converges exponentially to a compact set.

Moreover, during the entire process (i.e., t 2 ½0;þ1�), the

tracking performance is guaranteed despite the uncertainties

and input saturation. It is worth pointing out that requiring

knð0Þk� e1 is not necessary. In fact, knð0Þk[ e1 can be

chosen and it can be treated in the same way as knð0Þk ¼ e1.

Notice that in this case t11 is defined as 0 instead of the time

instant when knk ¼ e1 for the first time.

4 Numerical simulation

To verify the effectiveness of the proposed adaptive neural

network controller, the following uncertain MIMO non-

linear system is considered for numerical simulations:

_x1 ¼� x1 þ x2
2

� �
þ 2Uðu1Þ þ 2 þ sinðx2Þð ÞUðu2Þ

_x2 ¼� x2
1x2 þ sinðx1Þ cosðx2ÞUðu1Þ þ Uðu2Þ

y1 ¼ x1 y2 ¼ x2

x1ð0Þ ¼ 0:2 x2ð0Þ ¼ �0:2

ð51Þ

where uiði ¼ 1; 2Þ is the input to be designed and UðuiÞði ¼
1; 2Þ is the known function of input saturation. The control

objective is to design u1 and u2 for system (51) such that y1

and y2 follow x1d ¼ 0:5½sinðtÞ þ sinð2tÞ� and

x2d ¼ 0:7 sinðtÞ þ 0:3 sinð0:5tÞ, respectively. The input

saturations are defined as jUðuiÞj� 1:5, and j _UðuiÞj � 15

(i ¼ 1; 2). The design parameters are chosen as

K1 ¼ diag f20; 20g, e1 ¼ 0:5, e2 ¼ 0:05 and nð0Þ ¼ 0.

The dimensions of the NNs are chosen as Lf ¼ Lg ¼ 50.

The other parameters are designed as m ¼ 0:05 and

x1 ¼ x2 ¼ 20.

Fig. 2 Output follows reference signal a x1 (solid blue line) tracks x1d

(dashed red line) b x2 (solid blue line) tracks x2d (dashed red line)

(color figure online)

Fig. 3 Magnitude of control input signal
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Simulation results are presented in Figs. 2, 3 and 4.

Figure 2 indicates that x1 and x2 follow closely the refer-

ence trajectories x1d and x2d, respectively. Figure 3 shows

the trajectories of input signals Uðu1Þ and Uðu2Þ. The input

saturation in magnitude is observed in the transient phase

of the control process. Figure 4 shows the rate of the input

signals _Uðu1Þ and _Uðu2Þ. Similar as the control input, the

rate saturation only occurs in the transient phase. The

auxiliary system signal n is shown in terms of its norm in

Fig. 5. It can be concluded that n works as desired in the

presence of input saturation.

5 Conclusions

We have developed a novel adaptive neural network

tracking controller for a class of uncertain nonlinear MIMO

systems with the objective of guaranteeing control perfor-

mance in the presence of input saturation in both magni-

tude and rate. The development of the adaptive control is

based on a designed auxiliary system endowed with a

switching structure. Results from numerical simulations

have demonstrated the effectiveness of the proposed con-

trol scheme. Our proposed approach extends the existing

control techniques based on auxiliary system design by

removing a key assumption that restricts the selection of

initial conditions for the designed auxiliary system.

Specifically, the introduction of e1 and e2 enables more

freedom in designing a proper controller since their values

(which characterize the switching conditions) can be

adjusted according to the desired control performance. The

future direction of this work is to incorporate the proposed

adaptive neural network tracking controller with nonlinear

MIMO systems of more general form. In particular, to

further extend the practical applicability of the proposed

control strategy, the external disturbance in the system and

the application on a practical system will be investigated.
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