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Abstract Grey Wolf Optimizer (GWO) is a recently

developed meta-heuristic search algorithm inspired by grey

wolves (Canis lupus), which simulate the social stratum

and hunting mechanism of grey wolves in nature and based

on three main steps of hunting: searching for prey, encir-

cling prey and attacking prey. This paper presents the

application of GWO algorithm for the solution of non-

convex and dynamic economic load dispatch problem

(ELDP) of electric power system. The performance of

GWO is tested for ELDP of small-, medium- and large-

scale power systems, and the results are verified by a

comparative study with lambda iteration method, Particle

Swarm Optimization algorithm, Genetic Algorithm, Bio-

geography-Based Optimization, Differential Evolution

algorithm, pattern search algorithm, NN-EPSO, FEP, CEP,

IFEP and MFEP. Comparative results show that the GWO

algorithm is able to provide very competitive results

compared to other well-known conventional, heuristics and

meta-heuristics search algorithms.

Keywords Biogeography-Based Optimization (BBO) �
Differential Evolution algorithm (DEA) � Economic load

dispatch problem (ELDP) � Grey Wolf Optimizer (GWO) �
Unit commitment problem (UCP)

1 Introduction

In the recent power system networks, there are various

generating resources like thermal, hydro, nuclear etc. Also,

the load demand varies during a day and attains different

peak values. Thus, it is required to decide which generating

unit to turn on and at what time it is needed in the power

system network and also the sequence in which the units

must be shut down keeping in mind the cost-effectiveness

of turning on and shutting down of respective units. The

entire process of computing and making these decisions is

known as unit commitment (UC). The unit which is deci-

ded or scheduled to be connected to the power system

network, as and when required, is known to be committed

unit. Unit commitment in power systems refers to the

problem of determining the on/off states of generating units

that minimize the operating cost for a given time horizon.

Electrical power plays a pivotal role in the modern

world to satisfy various needs. It is therefore very impor-

tant that the electrical power generated is transmitted and

distributed efficiently in order to satisfy the power

requirement. Electrical power is generated in several ways.

The most significant crisis in the planning and operation of

electric power generation system is the effective schedul-

ing of all generators in a system to meet the required

demand. The economic load dispatch (ELD) problem is the

most important optimization problem in scheduling the

generation among thermal generating units in power

system.
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Economic dispatch in electric power system refers to the

short-term discernment of the optimal generation output of

various electric utilities, to meet the system load demand,

at the minimum possible cost, subject to various system

and operating constraints viz. operational and transmission

constraints. The economic load dispatch problem (ELDP)

means that the electric utilities (i.e. generators) real and

reactive power are allowed to vary within certain limits so

as to meet a particular load demand within lowest fuel cost.

The ultimate aim of the ELD problem is to minimize the

operation cost of the power generation system, while sup-

plying the required power demanded. In addition to this,

the various operational constraints of the system should

also be satisfied.

The problem of ELD is usually multimodal, discontin-

uous and highly nonlinear. Although the cost curve of

thermal generating units is generally modelled as a smooth

curve, the input–output characteristics are nonlinear by

nature because of valve-point loading effects, Prohibited

Operating Zones (POZ), ramp rate limits etc.

In recent years, various evolutionary, heuristic and

meta-heuristics optimization algorithms have been devel-

oped simulating natural phenomena such as: Genetic

Algorithm (GA) [1], Ant Colony Optimization (ACO) [2],

Particle Swarm Optimization [3], Simulating Annealing

(SA) [4], Gravitational Local Search (GLSA) [5], Big-

Bang Big-Crunch (BBBC) [6], Gravitational Search

Algorithm (GSA) [7], Curved Space Optimization (CSO)

[8], Charged System Search (CSS) [9], Central Force

Optimization (CFO) [10], Artificial Chemical Reaction

Optimization Algorithm (ACROA) [11], Black Hole (BH)

[12] algorithm, Ray Optimization Algorithm (ROA) [13],

Small-World Optimization Algorithm (SWOA) [14],

Galaxy-based Search Algorithm (GbSA) [15], Shuffled

Frog Leaping Algorithm (SFLA) [16], Snake Algorithm

[17], Biogeography-Based Optimization [18], Marriage in

Honey Bees Optimization algorithm (MBO) [19], Artificial

Fish-Swarm Algorithm (AFSA) [20], Termite Algorithm

(TA) [21], Wasp Swarm Algorithm (WSA) [22], Monkey

Search Algorithm (MSA) [23], Bee Collecting Pollen

Algorithm (BCPA) [24], Cuckoo Search Algorithm (CSA)

[25], Dolphin Partner Optimization (DPO) [26], Firefly

Algorithm [27], Krill Herd (KH) algorithm [28], Fruit fly

Optimization Algorithm (FOA) [29] and Distributed BBO

[30]. Out of these heuristics evolutionary search algorithm,

some of these are used to solve ELDP, Combined Eco-

nomic Load Dispatch Problem (CELDP), Dynamic Eco-

nomic Dispatch Problem (DEDP) and Combined Economic

Emission Dispatch (CEED) and are reported in numerous

literatures as: Evolutionary Programming [31], Particle

Swarm Optimization [32], Genetic Algorithm [32, 33],

Improved Genetic Algorithm [34], Adaptive PSO and

Chaotic PSO [35], Cardinal Priority Ranking-based

Decision-making [36], Gravitational Search Algorithm [37,

42, 45], Biogeography-based Optimization [38, 39, 44],

Intelligent Water Drop Algorithm [40], Hybrid Harmony

Search Algorithm [41], Firefly Algorithm [43], Cuckoo

Search Algorithm [46, 54], Biogeography-based Opti-

mization [44], Differential harmony Search [47], Hybrid

Particle Swarm Optimization and Gravitational Search

Algorithm [48], Differential Evolution [49], Modified Ant

Colony Optimization [50], Modified Harmony Search [51],

Hybrid GA-MGA [52] and Artificial Bee Colony [53].

Although no optimization algorithm can perform general

enough to solve all optimizations problems, each opti-

mization algorithm have their own advantages and disad-

vantages. The limitations of some of these well-known

optimization algorithms are listed below.

The major limitations of the numerical techniques and

dynamic programming method are the size or dimensions

of the problem, large computational time and complexity in

programming. The mixed integer programming methods

for solving the ELDP fails when the participation of

number of units increases because they require a large

memory and suffer from great computational delay. Gra-

dient descent method is distracted for non-differentiable

search spaces.

The Lagrangian relaxation (LR) approach fails to obtain

solution feasibility and solution quality of problems and

becomes complex if the number of units is more. The

Branch and Bound (BB) method employs a linear function

to represent fuel cost, start-up cost and obtains a lower and

upper bounds. The difficulty of this method is the expo-

nential growth in the execution time for systems of a large

practical size. An Expert System (ES) algorithm rectifies

the complexity in calculations and saving in computation

time. But it faces the problem if the new schedule is dif-

fering from schedule in database. The fuzzy theory method

using fuzzy set solves the forecasted load schedules error,

but it suffers from complexity.

The Hopfield neural network technique considers more

constraints, but it may suffer from numerical convergence

due to its training process. The Simulated Annealing (SA)

and Tabu Search (TS) are powerful, general-purpose

stochastic optimization technique, which can theoretically

converge asymptotically to a global optimum solution with

probability one. But it takes much time to reach the near-

global minimum. Particle Swarm Optimization (PSO) has

simple concept, easy implementation, relative robustness to

control parameters and computational efficiency [55],

although it has numerous advantages, it get trapped in a

local minimum, when handling heavily constrained prob-

lems due to the limited local/global searching capabilities

[56, 57]. Differential Evolution (DE) algorithm has the

ability to find the true global minimum regardless of the

initial parameters values and requires few control
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parameters. It has parallel processing nature and fast

convergence as compared to conventional optimization

algorithm. Although it does not always give an exact

global optimum due to premature convergence and may

require tremendously high computation time because of a

large number of fitness evaluations, the Biogeography-

Based Optimization (BBO) is an efficient algorithm for

power system optimization, which does not take unnec-

essary computational time and is good for exploiting the

solutions. The solutions obtained by BBO algorithm do

not die at the end of each generation like the other opti-

mization algorithm, but the convergence becomes slow

for medium- and large-scale systems. Gravitational

Search Algorithm has the advantages to explore better

optimized results, but due to the cumulative effect of the

fitness function on mass, masses get heavier and heavier

over the course of iteration. This causes masses to remain

in close proximity and neutralize the gravitational forces

of each other in later iterations, preventing them from

rapidly exploiting the optimum [55]. Therefore, increas-

ing effect of the cost function on mass, masses get greater

over the course of iteration and search process and con-

vergence becomes slow. To overcome the limitation of

GSA, Mirjalili [55] proposed an Adaptive gbest-Guided

Gravitational Search Algorithm (AgGGSA), in which the

best mass is archived and utilized to accelerate the

exploitation phase, enriching the weakness of GSA. Grey

Wolf Optimizer (GWO) is a recently developed powerful

evolutionary algorithm proposed by Seyedali Mirjalili

[57] and has the ability to converge to a better quality

near-optimal solution and possesses better convergence

characteristics than other prevailing techniques reported

in the recent literatures. Also, GWO has a good balance

between exploration and exploitation that result in high

local optima avoidance. Ghazzai et al. [62, 63] applied

GWO for cell planning problem for the fourth-generation

(4G) LTE cellular networks. Muangkote et al. [64] pro-

posed Improved Grey Wolf Optimizer for evaluated by

adopting the IGWO to training q-Gaussian Radial Basis

Functional-link nets (qRBFLNs) neural networks.

2 Economic load dispatch problem formulation

The scheduling of electric utilities along with the distribu-

tion of the generation power which must be planned to meet

the load demand for a specific time period represents the

unit commitment problem (UCP). ELDP refers the optimal

generation schedule for the generation system to deliver the

required load demand plus transmission loss with the opti-

mal generation fuel cost. Noteworthy economical benefits

can be achieved by searching a better solution to the ELDP.

The economic dispatch problem is defined so as to optimize

the total operational cost of an electric power system while

meeting the total load demand plus transmission losses

within utilities generating limits [56].

The overall objective of ELDP of electric power system

is to plan the devoted (Committed) electric utilities outputs

so as to congregate the load demand at optimal operating

cost while satisfying all generating utilities constraints and

various operational constraints of the electric utilities. The

ELDP is a constrained optimization problem, and it can be

mathematically expressed as follows [56]:

min½FCðPnÞ� ¼
XNEU

n¼1

anP
2
n þ bnPn þ cn

� �
$=Hour ð1Þ

subject to:

(i) The energy balance equation:

XNEU

n¼1

Pn ¼ PDemand þ PLoss: ð2Þ

(ii) The inequality constraints:

Pmin
n �Pn �Pmax

n ðn ¼ 1; 2; 3; . . .;NEUÞ: ð3Þ

where, an, bn and cn are cost coefficients. PDemand is load

demand. PLoss is power transmission loss. NEU is the

number of electric generating units. Pn is real power gen-

eration and will act as decision variable.

The most simple and approximate method of expressing

power transmission loss, PLoss as a function of generator

powers is through George’s Formula using B-coefficients

and mathematically can be expressed as [56]:

PLoss ¼
XNEU

n¼1

XNEU

m¼1

PgnBnmPgm MW: ð4Þ

where Pgn and Pgm are the real power generations at the nth

and mth buses, respectively.

Bnm is the loss coefficients which are constant under

certain assumed conditions and NEU is the number of

electric generating units.

The constrained ELDP can be converted to uncon-

strained ELD problem using penalty of definite value,

which can be mathematically expressed as:

min½FCðPnÞ� ¼
XNEU

n¼1

FnðPnÞ þ 1000

� abs
XNEU

n¼1

Pn � PDemand �
XNEU

n¼1

XNEU

m¼1

BnmPnPm

 !

ð5Þ

The Eq. (5) represents the unconstrained ELDP includ-

ing penalty factor of
PNEU

n¼1

PNEU
m¼1 BnmPnPm.
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The complete unconstrained ELDP having (NEU-1)

variables can be represented as:

min½FCðPnÞ� ¼
XNEU

n¼1

ðanP2
n þ bnPn þ cnÞ þ 1000

� abs
XNEU

n¼1

Pn � PDemand �
XNEU

n¼1

XNEU

m¼1

BnmPnPm

 !

ð6Þ

3 Grey Wolf Optimizer (GWO)

Grey Wolf Optimizer is a recently developed powerful

evolutionary algorithm proposed by Mirjalili [57], to solve

non-convex engineering optimization problem. Grey wolf

(Canis lupus) belongs to Canidae family. Grey wolves are

referred as pinnacle predators, meaning that they are at the

top of the victuals sequence. Grey wolves mostly prefer to

live in a group. The group size is 5–12 on average. One of

the most particular interests in grey wolves is that they have

a very strict social dominant hierarchy as shown in Fig. 1.

The privileged wolves are both male and female, named

as alpha (a) wolves. The alpha wolves are most responsible

for making decisions about quiescent place, hunting, time

to arouse and all other activities. The alpha’s decisions are

dictated to the group. On the other hand, some kind of

democratic behaviour has also been pragmatic, in which

alpha wolves obey the other wolves in the group. In

gatherings, the entire group acknowledges the alpha wolves

by holding their tails down. As order of alpha wolves are

followed by other wolves, they are named as leading

wolves [58]. The alpha wolves are only permitted to

companion in the group. Fascinatingly, the alpha wolves

are not necessarily the strongest associate of the group but

the best in terms of supervision the group. This shows that

the association and regulation of a group is much more

important than its power.

The next level in the chain of command of grey wolves

is beta (b) wolves. The beta wolves are secondary wolves

that help the alpha wolves in supervisory or other group

actions. The beta wolves may be female or male and are

possibly the best candidate to be the alpha in case any of

the alpha wolf die or becomes aged. The beta wolf should

reverence the alpha wolf, but orders the other wolves which

are low in the hierarchy level. They play the responsibility

of a consultant to the alpha wolves and discipliner for the

group. The beta wolves support the alpha’s wolves domi-

nation right through the group and gives response to the

alpha wolves.

The lowest ranking grey wolves are delta (d) wolves.

The delta wolves theatre the character of scapegoat. Delta

wolves forever have to put forward to other overriding

wolves in the hierarchy chain. They are preceding wolves,

which are permissible for scoff. It may appear that delta

wolves are not much vital entity in the whole group, but

whole group face internal warfare and tribulations in case

of losing the delta wolves. This is due to frustration and

venting of violence of all wolves by the delta(s). This

assists gratifying the intact group and maintaining the

ascendancy configuration.

In some cases, the delta wolves are also the governess

(i.e. babysitters) in the group.

If a wolf is not an alpha, beta or delta, they are called

inferior [or named as be omega (x) wolf]. Omega wolves

have to submit to alpha and beta wolves, but they direct the

kappa (j) wolves and lambda (k) wolves of lowest hier-

archy levels. Elders, scouts, hunters, caretakers and sen-

tinels fit in this class.

Escort is accountable for inspection of restrictions of the

province and caveat the group in case of danger. Sentinels

guard and pledge the protection of the group. Elder wolves

are veteran wolves, who second hand to be alpha or beta.

Hunters assist the alphas and betas when hunting quarry

and providing food for the group. At last, the caretakers are

responsible for thoughtful for the ill, weak and injured

wolves in the group.

Besides social hierarchy of wolves, group hunting is

another interesting societal behaviour of grey wolves.

According to Muro et al. [59], the main phases of grey wolf

hunting are as follows:

• Tracking, chasing and approaching the prey

• Pursuing, encircling and harassing the prey until it stops

moving

• Attack towards the prey

The steps for tracking, chasing and approaching towards

the prey are show in Fig. 2a–c. The process of pursuing,

encircling and harassing the prey is shown in Fig. 2d–f and

attack towards the prey are shown in Fig. 2g–i.Fig. 1 Hierarchy levels of grey wolves
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3.1 Mathematical formulation of social behaviour

of grey wolves

In order to mathematically model the social governance of

wolves when designing Grey Wold Optimizer (GWO),

assume the fittest solution as the alpha (a). Consequently,
the second and third best solutions are named beta (b) and
delta (d), respectively. The rest of the candidate solutions

are assumed to be omega (x), kappa (j) and lambda (k). In
the GWO algorithm, the optimization (i.e. hunting) is

guided by a, b and d. The x, j and k wolves trail these

three wolves.

3.2 Encircling or trapping prey

As mentioned above, grey wolves encircle prey during the

hunt. In order to mathematically model encircling beha-

viour, the following equations are proposed:

D
!¼ C

!� X!PreyðtÞ � X~GWolfðtÞ
���

��� ð7Þ

X
!

GWolfðt þ 1Þ ¼ X
!

PreyðtÞ � A~ � D~ ð8Þ

where t indicates the current iteration, A
!

and C
!

are

coefficient vectors, X
!

Prey is the position vector of the prey,

and X
!

GWolf indicates the position vector of a grey wolf.

Fig. 2 a–c Tracking, chasing and approaching towards the prey; d–f Pursuing, encircling and harassing the prey; g–i attack towards the prey
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The vectors A
!

and C
!

are calculated as follows:

A
!¼ 2 a!� r1!� a! ð9Þ

C
!¼ 2 � r2! ð10Þ

where components of a! are linearly decreased from 2 to 0

over the course of iterations, and r~1 and r~2 are random

vectors between 0 and 1.

The effect of Eqs. (7) and (8) as 2D positions vector and

possible neighbours are illustrated in Fig. 3a. According to

Fig. 3a, a grey wolf in the position of (X, Y) can update its

position according to the position of the prey (X*, Y*).

Different places around the best agent can be reached with

respect to the current position by adjusting the value of A~

and C~ vectors.

The possible updated positions of a grey wolf in three-

dimensional space are shown in Fig. 3b.

The random positions vectors, which allow grey wolves

to reach any position between the points, are shown in

Fig. 4.

Therefore, a grey wolf can update its position inside the

space around the prey in any random location by using

Eqs. (7) and (8) (Fig. 5).

3.3 Hunting of prey

Grey wolves have the ability to recognize the location of

prey and enclose or trap them. The hunt is usually guided

by the alpha. The beta and delta might also participate in

hunting occasionally. However, in an abstract search space,

we have no idea about the location of the optimum (prey).

In order to mathematically simulate the hunting behaviour

of grey wolves, we suppose that the alpha (best candidate

solution) beta and delta have better knowledge about the

potential location of prey. Therefore, we save the first three

best solutions obtained so far and oblige the other search

agents (including the delta, kappa and lambda) to update

their positions according to the position of the best search

agent. The score and positions of first three search agents

(i.e. alpha, beta and delta) can be updated using the

Eqs. (11), (12) and (13), respectively.

D~Alpha ¼ C~1 � X~Alpha � X~
���

��� ð11Þ

D~Beta ¼ C~2 � X~Beta � X~
���

��� ð12Þ

D~Delta ¼ C~3 � X~Delta � X~
���

��� ð13Þ

The position vector of prey with respect to alpha, beta and

delta wolves can be calculated using the following math-

ematical formulation:

X~1 ¼ X~Alpha � A~1 � ðD~AlphaÞ ð14Þ

X~2 ¼ X~Beta � A~2 � ðD~BetaÞ ð15Þ

X~3 ¼ X~Delta � A~3 � ðD~DeltaÞ ð16Þ

The best position can be calculated taking average of alpha,

beta and delta wolves as depicted below in Eq. (17)

X~ðt þ 1Þ ¼ X~1 þ X~2 þ X~3

3
ð17Þ

Figure 3a, b shows how a search agent updates its

position according to alpha, beta and delta in a 2D and 3D

search space, respectively. It can be observed that the final

position would be in a random place within a circle, which

is defined by the positions of alpha, beta and delta in the

search space. In other words, alpha, beta and delta wolves

estimate the position of the prey, and other wolves update

their positions randomly around the prey.

3.4 Flow chart for economic load dispatch

using GWO

Initialize a set of candidate for solution X. This solution

comprises of the number of generations of the system that

will be optimized, which resulted a minimum cost by

Fig. 3 a Two-dimensional position vectors and possible next location

w.r.t. prey [57]. b Three-dimensional position vectors and possible

next location w.r.t. prey [57]
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fulfilling all the constraints. The variables of the optimal

ELDP are expressed as follows:

X ¼
x1 x2 x3 . . . xNEU
. . . . . . . . . . . . . . .
xSA . . . . . . . . . xSA�NEU

2
4

3
5

SA�NEU

ð18Þ

where NEU is the number of generating units and SA is

the number of search agents, which is generated randomly

for initialization. Equation (6) was applied in the perfor-

mance evaluation of the ELDP until the optimum cost is

achieved. For inequality constraints, similar to any other

techniques, when the solutions obtained for any iteration

are out of boundaries, GWO chooses the boundaries

values, while for equality constraint, when it is violated,

the penalty factor of 1000 is implemented and embedded

in the cost function as per Eq. (5). The algorithm will

continue until the maximum iteration is met, and the

optimum results are obtained. The flow chart of GWO

algorithm is given below in Fig. 6.

4 Test systems, results and discussion

In order to show the effectiveness of the GWO algorithm

for economic load dispatch problem, benchmark test sys-

tem of small-, medium- and large-scale power systems

having standard IEEE bus systems have been taken into

consideration.

4.1 Test system-I: small-scale power system

For small-scale power plants, three different cases are

taken into consideration:

Case-I The first test system consists of 3-generating units

with a load demand of 150 MW [60]. Test data of 3-gen-

erating-unit system are taken from [60], loss coefficient

matrices are used to calculate the corresponding transmis-

sion. The corresponding results are compared with lambda

iteration method [60] and Particle Swarm Optimization

Fig. 4 Updating of position of alpha, beta and delta grey wolves in GWO

Fig. 5 a Searching for prey,

b attacking for prey
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(PSO) [60]. Table 1 shows that total fuel cost for 3-unit

generating model for 150 MW load demand using GWO

algorithm is 1597.4815 Rs./Hour and power loss is

2.344 MW, which is less than lambda iteration method and

PSO.

Case-II The second test system also consisting of 3-gen-

erating-unit system [61] is tested for two different load

demands of 850 and 1050 MW including transmission los-

ses. The corresponding results are compared with lambda

iterationmethod [61], Genetic Algorithm (GA) [61], Particle

Fig. 6 Flow chart of GWO for ELD problem
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Swarm Optimization (PSO) [61] and Artificial Bee Colony

(ABC) [61]. Tables 2 and 3 show the comparison of results

with different methodologies, and it is found that optimal

value of fuel cost obtained by GWO cost is much less that

lambda iteration, GA, PSO and ABC. The convergence

curve of test case-I and case-II is shown in Fig. 7a–d.

Case-III The third test case consists of 6-generating-unit

system without valve-point loading [60]. The results of

6-generating-unit systems are tested for load demands of

600, 700, 800, 900 and 1000 MW and are shown in

Table 4, and effectiveness of GWO for 6-generating-unit

system is compared with lambda iteration method [60] and

Particle Swarm Optimization (PSO) [60]. Corresponding

analysis of results (Table 5) shows that GWO algorithm

yields better fuel cost and power loss as compared to

lambda iteration method and Particle Swarm Optimization

algorithm. Also, the convergence of algorithm is much

better than these algorithms.

4.2 Test system-II: medium-scale power system

Medium-scale power systems are tested for two different

benchmark systems.

Case-I 13-Generating-unit system [65] considering

valve-point effect for load demand of 1800 MW. The

performance of GWO for 13-unit test system is compared

with NN-EPSO [66] (Table 6), CEP [65], FEP [65], MFEP

[65], IFEP [65] (Tables 7, 8), and it is found that the

convergence of GWO is very fast as compared to NN-

EPSO, CEP, FEP, MFEP and IFEP. Convergence curve for

13-generating-unit system is shown in Fig. 8a.

Case-II 20-Generating-unit system [67] without valve-

point loading considering transmission losses is tested for

convergence parameters, and it is found that optimization

converges up to 193 iterations. The convergence curve for

the same is depicted in Fig. 8b.

Table 1 Economic load dispatch for 3-generating-unit system [case-I] (Load demand = 150 MW)

Method Load demand (MW) P1 (MW) P2 (MW) P3 (MW) Fuel cost

(Rs./h)

Ploss

(MW)

No. of

iteration

Elapsed time

(s)

Lambda iteration [60] 150 33.4401 64.0974 55.1011 1599.9 2.66 250 NA

PSO [60] 150 33.0858 64.4545 54.8325 1598.79 2.37 250 NA

GWO 150 30.4998 64.6208 54.8994 1597.4815 2.3444 250 4.761541

The bold results show the superiority of Grey Wolf Optimizer over other well known algorithms

Table 2 Economic load dispatch for 3-generating-unit system [case-II] (Load demand = 850 MW)

Method Load demand (MW) Generation scheduling Fuel cost (Rs./h) Best cost Average cost Worst cost

U1 U2 U3

Lambda Iteration 850 382.258 127.419 340.323 8575.68 NA NA NA

GA 850 382.255 127.418 340.3202 8575.64 NA NA NA

PSO 850 394.524 200 255.4756 8280.81 NA NA NA

ABC 850 300.266 149.733 400 8253.1 NA NA NA

GWO 850 300.51 149.81 399.6777 8253.1053 8253.1053 8253.10558 8253.1061

The bold results show the superiority of Grey Wolf Optimizer over other well known algorithms

Table 3 Economic load dispatch for 3-generating-unit system [case-II] (Load demand = 1050 MW)

Method Load demand (MW) Generation scheduling Cost (Rs./h) Best cost Average cost Worst cost

U1 U2 U3

Lambda iteration 1050 487.5 162.5 400 10212.459 NA NA NA

GA 1050 487.498 162.499 400 10212.44 NA NA NA

PSO 1050 492.699 157.3 400 10123.73 NA NA NA

ABC 1050 492.699 157.301 400 10123.73 NA NA NA

GWO 1050 492.847 157.393 399.7609 10123.7196 10123.72 10123.7347 10123.7392

The bold results show the superiority of Grey Wolf Optimizer over other well known algorithms
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4.3 Test system-III: large-scale power system

Large-scale power systems are tested for three different

benchmark systems.

Case-I 38-Generating-unit system [68] without valve-

point loading is tested for load demand of 6000 MW and

performance of proposed algorithm is compared with

Biogeography-Based Optimization, pattern search method

and k-logic-based method [69]. Best, mean and average

cost and time (in seconds) are depicted in Table 9, corre-

sponding generation scheduling is shown in Fig. 9, and

from comparative analysis, it has been found that perfor-

mance of proposed method is much better than BBO, PS,

DE and k-logic-based method.

Case-II Korean power system consisting of 140-gener-

ating-unit system [70] without valve-point effect is tested
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Fig. 7 Convergence of GWO algorithm for ELDP [3-generating-unit system (case-I and case-II)]

Table 4 Economic load dispatch for 6-generating units

Method No. of

iterations

Load demand

(MW)

Generation scheduling Fuel cost

(Rs./h)

PLoss

(MW)

Elapsed

time (s)
P1 P2 P3 P4 P5 P6

GWO 1000 600 23.7823 10.0026 95.6928 100.6695 203.1324 180.954 32,091.5107 14.2377 5.560456

1000 700 28.2962 10.0027 118.8999 118.8304 230.7961 212.6049 36,908.451 19.4303 7.032372

1000 800 32.0952 14.6235 141.4852 136.1825 257.8341 243.1175 41,892.3867 25.3379 7.035746

1000 900 36.9656 21.196 163.7997 153.1386 284.1867 272.697 47,040.3513 31.9837 6.942486

1000 1000 41.1915 27.88 186.4387 170.5973 310.6946 302.6778 52,355.7728 39.4798 6.960886
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for load demand of 49,342 MW, and it is found that

elapsed time is 28,052.541250 s, which is very large. It had

been observed that algorithm does not converge to optimal

value up to 100,000 iterations. The convergence curve for

140-unit test system is shown in Fig. 10.

Case-III Third large-scale test system is tested for

520-generating-unit system. The test data for 520-unit

system were obtained by adding the units of test systems of

140-units [70] three times-generating unit system, and it is

found that system goes out of memory.

Table 5 Comparison of results for 6-generating-unit system

Load demand

(MW)

Methods P1

(MW)

P2

(MW)

P3

(MW)

P4

(MW)

P5

(MW)

P6

(MW)

Fuel cost

(Rs./h)

PLoss Iteration

time (s)

600 Lambda iteration 23.7909 10.22 95.25 10.12309 202.967 181.34 32132.29 14.7988 NA

PSO 23.8602 10 95.6394 100.7081 202.8315 181.1978 32094.72 14.2373 NA

GWO 23.7823 10.0026 95.6928 100.6695 203.1324 180.954 32091.5107 14.2377 5.560456

700 Lambda iteration 28.29 10.0901 118.9873 118 230.2372 213.9068 36912.32 19.5114 NA

PSO 28.29 10 118.9583 118.6747 230.763 212.7449 36912.22 19.43 NA

GWO 28.2962 10.0027 118.8999 118.8304 230.7961 212.6049 36908.451 19.4303 7.032372

800 Lambda iteration 32.9521 14.7126 141.5988 136.0345 258.1009 243.8011 41897.25 27.5 NA

PSO 32.586 14.4839 141.5475 136.0435 257.6624 243.0073 41896.7 25.33 NA

GWO 32.0952 14.6235 141.4852 136.1825 257.8341 243.1175 41892.3867 25.3379 7.035746

900 Lambda iteration 36.9889 22.1821 163.01 153.2168 284.1482 273.0581 47045.32 32.6131 NA

PSO 36.848 21.0774 163.9304 153.263 284.1696 272.7301 47045.25 31.98 NA

GWO 36.9656 21.196 163.7997 153.1386 284.1867 272.697 47040.3513 31.9837 6.942486

1000 Lambda iteration 40.3969 28.1002 187 171.2136 310.721 303.1006 52362.07 40.5323 NA

PSO 41.1657 27.7786 186.5604 170.5795 310.8297 302.568 52361.65 39.4821 NA

GWO 41.1915 27.88 186.4387 170.5973 310.6946 302.6778 52355.7728 39.4798 6.960886

The bold results show the superiority of Grey Wolf Optimizer over other well known algorithms

Table 6 Comparison of results for medium-scale power systems

Comparison of results for 13-generating-unit system [Load demand = 1800 MW]

Method P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

NN-EPSO 490 189 214 160 90 120 103 88 104 13 58 66 55

GWO 807.1247 144.869 297.9434 60 60 60 60 60 60.0362 40 40.0267 55 55

Table 7 Comparison of results for medium-scale power systems [13-unit benchmark system]

Comparison of results for 13-generating-unit system [Load demand = 1800 MW]

Method P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

NN-EPSO 490 189 214 160 90 120 103 88 104 13 58 66 55

GWO 807.1247 144.869 297.9434 60 60 60 60 60 60.0362 40 40.0267 55 55

NN-EPSO Grey Wolf Optimizer (proposed method)

Load demand (MW) 1800 MW Load demand (MW) 1800 MW

Fuel cost ($) 18442.59 Fuel cost ($) 18051.11

Iteration time (s) NA Iteration time (s) 3.116071

Table 8 Comparison of results for medium-scale power systems

Comparison of convergence time for 13-generating-unit system

Method Best time (s) Mean time (s) Worst time (s)

CEP [65] 293.41 294.96 NA

FEP [65] 166.43 168.11 NA

MFEP [65] 315.98 317.12 NA

IFEP [65] 156.81 157.43 NA

GWO 3.116071 3.182163 3.228003

The bold results show the superiority of Grey Wolf Optimizer over

other well known algorithms
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Fig. 8 Convergence of GWO for medium-scale power system (13 and 20-unit system)

Table 9 Comparative analysis of results for 38-generating-unit system

38-Generating-unit system characteristics and results

Generating unit characteristics Comparison of results

a ($/MW2) b ($/MW) c ($) Pmin Pmax Biogeography-Based

optimization (BBO)

k-logic-based
method

Pattern

search (PS)

Grey Wolf

Optimizer (GWO)

0.3133 796.9 64,782 220 550 550 426.6061 258.3397 429.7056

0.3133 796.9 64,782 220 550 550 426.6061 258.3397 416.2439

0.3127 795.5 64,670 200 500 500 429.6633 238.3397 408.4052

0.3127 795.5 64,670 200 500 500 429.6633 238.3397 412.4527

0.3127 795.5 64,670 200 500 375.6216 429.6633 238.3397 433.6422

0.3127 795.5 64,670 200 500 200 429.6633 238.3397 425.6522

0.3127 795.5 64,670 200 500 200 429.6633 238.3397 435.6207

0.3127 795.5 64,670 200 500 200 429.6633 238.3397 437.6536

0.7075 915.7 172,832 114 500 114 114 196.2345 115.2751

0.7075 915.7 172,832 114 500 114.6486 114 196.2345 116.883

0.7515 884.2 176,003 114 500 162.1622 119.7681 196.2345 130.7939

0.7083 884.2 173,028 114 500 114 127.0729 196.2345 153.2393

0.4211 1250.1 91,340 110 500 129.2432 110 196.2345 110

0.5145 1298.6 63,440 90 365 90 90 196.2345 90.028

0.5691 1298.6 65,468 82 365 153.2432 82 196.2345 82.0111

0.5691 1290.8 77,282 120 325 120 120 196.2345 120

2.5881 238.1 190,928 65 315 204.3243 159.5981 196.2345 157.1682

3.8734 1149.5 285,372 65 315 65 65 196.2345 65

3.6842 1269.1 271,676 65 315 65 65 196.2345 65.0326

0.4921 696.1 39,197 120 272 120 272 196.2345 271.9524

0.5728 660.2 45,576 120 272 182.4324 272 196.2345 271.959

0.3572 803.2 28,770 110 260 110 160 196.2345 259.81

0.9415 818.2 36,902 80 190 187.2973 130.6487 190 120.8832

52.123 33.5 105,510 10 150 27.027 10 150 12.3567

1.1421 805.4 22,233 60 125 125 113.3051 125 107.634

2.0275 707.1 30,953 55 110 110 88.0669 110 92.4117
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Fig. 9 Generation scheduling of 38-generating-unit system

Table 9 continued

38-Generating-unit system characteristics and results

Generating unit characteristics Comparison of results

a ($/MW2) b ($/MW) c ($) Pmin Pmax Biogeography-Based

optimization (BBO)

k-logic-based
method

Pattern

search (PS)

Grey Wolf

Optimizer (GWO)

3.0744 833.6 17,044 35 75 75 37.5051 75 39.6668

16.765 2188.7 81,079 20 70 70 20 70 20.005

26.355 1024.4 125,767 20 70 70 20 70 20.0014

30.575 837.1 121,915 20 70 70 20 70 20.0302

25.098 1305.2 120,780 20 70 70 20 70 20.013

33.722 716.6 104,441 20 60 60 20 60 20.007

23.915 1633.9 83,224 25 60 60 35 60 25.0032

32.562 969.6 111,281 18 60 60 18 60 18.008

18.362 2625.8 64,142 8 60 60 8 60 8.006

23.915 1633.9 103,519 25 60 60 25 60 25.002

8.482 694.7 13,547 20 38 38 21 38 22.4379

9.693 655.9 13,518 20 38 38 21 38 20.0048

Results obtained by Grey Wolf Optimizer

Best, mean and worst fuel cost Best, mean and worst time (s)

Best fuel cost 9419270.188 Best time 9.457007

Mean fuel cost 9419978.978 Mean time 9.668424333

Worst fuel cost 9421100 Worst time 9.973747
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5 Conclusions

In this research paper, application of GWO algorithm is

presented for the solution of non-convex and dynamic

ELDP of electric power system. Performance of GWO

algorithm is tested for small-, medium- and large-scale

power plants. The effectiveness of proposed GWO algo-

rithm is tested with the standard IEEE bus system con-

sisting of 3-, 6-, 13-, 20-, 38-, 140- and 520-generating-unit

model.

The results obtained show that GWO has been suc-

cessfully implemented to solve different ELD problems;

moreover, GWO is able to provide very spirited results in

terms of minimizing total fuel cost and lower transmission

loss. Also, convergence of GWO is very fast as compared

to lambda iteration method, Particle Swarm Optimization

(PSO) algorithm, Genetic Algorithm (GA), Biogeography-

Based Optimization (BBO), Differential Evolution (DE)

algorithm, pattern search algorithm, NN-EPSO, FEP, CEP,

IFEP and MFEP for small- and medium-scale power

systems

Also, it has been observed that the GWO has the ability

to converge to a better quality near-optimal solution and

possesses better convergence characteristics than other

widespread techniques reported in the recent literatures. It

is also clear from the results obtained by different trials that

the GWO shows a good balance between exploration and

exploitation that result in high local optima avoidance. This

superior capability is due to the adaptive value of A. It is

because half of the iterations are devoted to exploration, A~

[1 and the rest to exploitation A~\1. Thus, this algorithm

may become very promising for solving some more com-

plex power system optimization problems such as: eco-

nomic load dispatch for quadratic and cubical cost

function, Single and Multi-objective economic load dis-

patch including valve-point effect, Economic Load Dis-

patch incorporating wind Power, Economic Load Dispatch

incorporating Solar Power, Hydro-Thermal and Wind-

Thermal Scheduling of electric power system. Thermal

Scheduling incorporating Smart Grids, Hydro-Thermal

Scheduling incorporating Smart Grids, Single and Multi-

Objective Unit Commitment Problem formulation, Multi-

Objective and Multi-Area Unit Commitment Problem.

6 Future scope

Recently developed algorithms like Ant Lion Optimizer

(ALO), Multi Verse Optimizer (MVO), Dragonfly Algo-

rithm (DA), and Ions Motion Optimization algorithm

(IMO) proposed by Seyedali Mirjalili can be applied for

the solution of non-convex ELDP for improved

performance.
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