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Abstract In image processing and computer vision, the

denoising process is an important step before several pro-

cessing tasks. This paper presents a new adaptive noise-

reducing anisotropic diffusion (ANRAD) method to

improve the image quality, which can be considered as a

modified version of a speckle-reducing anisotropic diffu-

sion (SRAD) filter. The SRAD works very well for

monochrome images with speckle noise. However, in the

case of images corrupted with other types of noise, it

cannot provide optimal image quality due to the inaccurate

noise model. The ANRAD method introduces an automatic

RGB noise model estimator in a partial differential equa-

tion system similar to the SRAD diffusion, which estimates

at each iteration an upper bound of the real noise level

function by fitting a lower envelope to the standard

deviations of pre-segment image variances. Compared to

the conventional SRAD filter, the proposed filter has the

advantage of being adapted to the color noise produced by

today’s CCD digital camera. The simulation results show

that the ANRAD filter can reduce the noise while pre-

serving image edges and fine details very well. Also, it is

favorably compared to the fast non-local means filter,

showing an improvement in the quality of the restored

image. A quantitative comparison measure is given by the

parameters like the mean structural similarity index and the

peak signal-to-noise ratio.

Keywords CCD cameras � Anisotropic diffusion �
Filtering � Noise estimation

1 Introduction

As it is well known, machine vision cameras capture the

spatial distribution of a light incident on a light-sensitive

device and they produce, therefore, bidimensional

descriptions of this distribution, known as images. Charge-

coupled devices (CCD) were suggested and experimentally

verified in the 1970s as image sensors. They have become

the major piece of imaging technology and have been

included in a lot of current cameras. CCD-based digital

cameras are commonly used in a variety of commercial,

medical, scientific, and military applications. In its acqui-

sition and transmission, an image is often corrupted by

different sources of noise. As a result, an image, degraded

by noise, may lead to a significant reduction in its quality.

Thus, a pre-processing step (or denoising) is required for

the noisy image before it can be used in various applica-

tions, for example edge detection and compression. The

goal of image denoising is to estimate the unknown signal
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of interest from the available noisy data. There have been

many powerful denoising algorithms proposed over the

past few years. Most of them often require their parameters

to be adjusted according to the noise level (or noise vari-

ance) parameter [1–4]. In this case, it is desirable to know

the noise type and its statistical characteristics (variance,

probability density function). In some works, the noise type

and characteristics are assumed to be known in advance,

which is not actually valid in practical circumstances.

However, in current studies, the noise characteristics are

usually provided manually, which is a good manner to

estimate a reliable noise level, but it becomes tedious and it

increases the execution time of the algorithms. As a con-

sequence, several automatic noise estimators for a gray-

level image have been suggested such as the algorithms

proposed in [5–7]. The problem of such methods is that

they often assume the noise model to be white, signal

independent, and with a constant variance over the whole

image and to be either pure additive or pure multiplicative.

Recently, it has been clearly demonstrated that this noise

model is not adequate enough for images captured from the

CCD digital cameras [8–10]. Hence, these approaches

cannot fully fit the noise level from the CCD cameras.

Consequently, the denoising algorithms with a given poor

noise level estimation does not give an optimal image

quality. This means that it is necessary to correctly estimate

the noise level to improve the effectiveness of the

denoising algorithms. In the recent years, particular atten-

tion has been given to denoise ultrasound images by the

method proposed by Yu and Acton [11], named the

speckle-reducing anisotropic diffusion (SRAD). The

SRAD filter is very commonly used to reduce, specially,

speckle noise. The speckle noise is a type of granular noise

which can be found in several kinds of coherent imaging

systems like the synthetic aperture radar (SAR), ultrasound,

or laser-illuminated images. Regardless of the theoretical

goodness of the SRAD to restore an ultrasound image, the

key point is the accurate estimation of such a noise

parameter. Indeed, they used some assumptions to consider

the noise characteristics to be white and signal indepen-

dent, and purely multiplicative [12]. Unfortunately, the

aforementioned assumptions are not always true for a wide

range of the images formed by the CCD digital cameras.

Specifically, unprocessed raw data produced straightly

from the CCD image sensors contain white noise. How-

ever, the raw image goes through various image processing

steps such as demosaicing, color correction, gamma cor-

rection, color transformation, and JPEG compression. As a

consequence, the noise characteristics in the final output

image deviate significantly from the used noise model (i.e.,

white multiplicative) [8, 13]. From this fact, it becomes

clear that the demand for color image denoising exceeds

widely the white noise case [14, 15]. Hence, the main

interest of this study is to put forward a new image filtering

technique, called the adaptive noise-reducing anisotropic

diffusion (ANRAD) filter, using the SRAD filter and a

more general automatic noise estimator from a single

image in order to better remove the color noise produced

by a CCD digital camera. The noise level that will be used

is colored, mixed, and modeled as signal-dependent noise

whose standard deviation is represented by a function of

pixel intensity and is called the noise level function (NLF).

That allows to reduce noise to a minimum, in order to

achieve good image quality as that of photography and

obtain more information from CCD image data. The

strength of the proposed filter is that it can therefore be

used for images corrupted with any kind of noise, whether

multiplicative, additive, or mixed. The amount of denois-

ing is controlled locally by the values of the noise variances

correspondent to each intensities of the whole image

allowing a better job of a denoising image. In addition, the

ANRAD allows denoising to be different along different

directions, i.e., denoising on both sides of an edge can be

prevented while enabling the denoising along the edge.

The rest of this paper is organized as follows. In Sect. 2,

a survey of related works is given. Section 3 bears on the

strategy for deriving ANRAD filter. The experimental

evaluations and the comparative analysis are presented and

discussed in Sect. 4. The advantages and limitations of the

ANRAD are presented in Sect. 5. Section 6 is dedicated to

the conclusion and future directions.

2 Related work

In image analysis, the goal of image restoration is to relieve

human observers from this task (and perhaps even to

improve their abilities) by reconstructing a plausible esti-

mate of the original image from the distorted or noisy

observation. For several years, a lot of studies have been

done on the improvement of the digital images to increase

the quality of visual rendering and to enhance contrast and

sharpness of the image in order to facilitate a later analysis.

Most of these ‘‘filtering’’ methods are:

Bilateral filter: It was developed by Tomasi and Manduchi

[16]. It smoothes flat surfaces as the Gaussian filter, while

preserving sharp edges in the image. The idea underlying

bilateral filtering is to compute the weight of each pixel

using a spatial kernel and multiply it by an influence

function in the intensity domain (range kernel) that

decreases the weight of pixels with large intensity differ-

ences. However, the bilateral filter in its direct form cannot

handle speckle noise, and it has the tendency to over-

smooth edges. Also, it is slow when the kernel is large.

Nonetheless, several solutions have been proposed to
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accelerate the evaluation of the bilateral filter such as

[17–21]. Unfortunately, most of these approaches rely on

approximations that are not based on firm theoretical

foundations, and it is hard to evaluate their accuracy. The

essential link between bilateral filtering and anisotropic

diffusion is examined in [22]. In more recent years,

adaptive bilateral filters are proposed in [23–25]. These

filters retain the general form of the bilateral filter, but

differ when introducing an offset in the range of the filter.

Both the offset and the width of the range change locally

in the image. These locally adaptive approaches require a

complicated training-based method and are especially

used for image enhancement. In [26], a recursive imple-

mentation of the bilateral filter is suggested, where com-

putational and memory complexities are linear in both

image size and dimensionality. However, its range filter

kernel uses the pixel connectivity and thus cannot be

directly employed for applications ignoring the spatial

relationships.

Wavelet transforms: Signals are always the input for

wavelet transforms, where a signal can be decomposed

into several scales that represent different frequency

bands. At each scale, the position of the signal’s instan-

taneous structures can be determined approximately. Such

a property can be manipulated in many ways to achieve

certain results. These include denoising [27–29], com-

pression [30–32], feature detection [33–35], etc. Several

noise reduction techniques based on the approaches of

wavelet have been proposed in the literature [36–38]. In

[39], Yansun et al. developed a denoising method based

on the direct spatial correlation between the wavelet

transforms over adjacent scales. Threshold-based denois-

ing is another powerful approach based on wavelet

transforms to noise reduction. It was first suggested by

Donoho [40, 41], which transformed the noisy signal into

wavelet coefficients, then employed a hard or soft

threshold at each scale, and finally transformed the result

back to the original domain and got the estimated signal.

In [42], Chang et al. put forward a spatially adaptive

wavelet thresholding method based on a context modeling

technique. Context modeling is used to estimate the local

variance for each wavelet coefficient and then is used to

adapt the thresholding strategy. Li and Wang in their work

[43] proposed a wavelet-based method, where they

decomposed the noisy image in order to get a different

sub-band image. They maintain low-frequency wavelet

coefficients unchanged, and then, taking into account the

relation of horizontal, vertical, and diagonal high-fre-

quency wavelet coefficients, they compare them with the

Donoho threshold to achieve image denoising. In [29],

image denoising using a wavelet-based fractal method is

implemented. In [27, 36], wavelet filters were used for

denoising the speckle noise in optical coherence tomog-

raphy data. Wavelets may be a good tool for denoising

images because of their energy compactness, sparseness,

and correlation properties, but they are still inadequate in

their denoising performance due to the simple thresholding

methods.

Non-Local Means (NLM) filter: Buades et al. introduced

the NLM filter [44], which assumed that similar patches

could be found in the image. The used patch similarity

was estimated by a statistically grounded similarity crite-

rion which it derived from the noise distribution model.

This filter offers a good performance to reduce the addi-

tive white noise Gaussian. However, the NLM filter has a

complexity that is quadratic in the number of pixels in the

image, which makes the technique computationally

intensive and even impractical in real applications. For

this reason, a number of NLM methods have been

developed such as the fast non-local image denoising

algorithm [45], which proposes an algorithmic accelera-

tion technique based on neighborhood pre-classification.

In [46], authors gave a comprehensive survey of patch-

based non-local filtering of radar imaging data. In [47], the

authors implemented an image denoising method that used

the principal component analysis (PCA) in conjunction

with the NLM image denoising. Wua et al. suggested a

version of NLM filter [48], where firstly the curvelet

transform was used to produce reconstructed images.

Then, the similarity of two pixels in the noisy image was

computed. Finally, the pixel similarity and the noisy image

were utilized to obtain the final denoised result using the

non-local means method.

Anisotropic diffusion: Perona and Malik anisotropic dif-

fusion (PMAD) filtering, being the most common nonlinear

technique [49], was inspired from the heat diffusion

equation by introducing a diffusion function that was

dependent on the norm of the gradient of the image. The

diffusion function, therefore, had the effect of reducing the

diffusion for high gradients. It has been widely used for

various applications such as satellite images [11, 50, 51],

astronomical images [52, 53], medical images [54–56], and

forensic images [57, 58]. However, the PMAD filter has

had two limitations up to now. First, it smoothes the

information identically in all directions (isotropic). Second,

the choice of the threshold on the norm of the gradient

needed for the diffusion function is not evident, which

makes the technique not truly automatic and cannot

effectively remove noise. For this reason, some improve-

ments have been proposed by different researchers. In [59],

Weickert suggested a diffusion matrix instead of a scalar.

Karl et al. proposed a version of anisotropic diffusion,

where diffusion was controlled by the local orientation of
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the structures in the image [60]. Yu and Acton [11]

developed a version of the PMAD filter, called the SRAD,

based on the speckle noise model, where the diffusion was

controlled by the local statistics of the image. To adopt

correctly the SRAD for multiplicative noise, Aja-Fernán-

dez and Alberola-López [61] suggested a detail preserving

anisotropic diffusion (DPAD) filter, which estimated the

noise using the mode of the distributions of local statistics

of the whole image [61, 62]. In the recent years, other

studies have been developed on new well posed equations

such as [63–68]. In [63], the authors implemented a ramp

preserving PMAD model based on an edge indicator, a

difference curvature, which can distinguish edges from flat

and ramp regions. Since the anisotropic diffusion is an

iterative process, the problem of choosing the optimal

stopping time and preventing an over smoothed result is

crucial. Therefore, various methods estimating this

parameter were proposed [69–71]. For instance, Tsiotsios

and Petrou, in their work [69], have been proposed a ver-

sion of anisotropic diffusion filter where an automatic

stopping criterion is used which takes into consideration

the quality of the preserved edges. More recently, a

modified diffusion scheme, suitable for textured images has

been described in [72].

3 Proposed method

3.1 Camera noise model

3.1.1 Signal-dependent noise model

In the CCD-based digital cameras, the photons transmitted

through the lens system are converted to charge in the CCD

sensor. Then, the charge is amplified, sampled, and digi-

tally enhanced to become an image (bits). The typical

imaging pipeline of the CCD camera is shown in Fig. 1.

The image provided by the CCD imaging system is char-

acterized by high quality; however, it is not completely free

from different types of distortions and artifacts. There exist

mainly five noise sources, as mentioned in [73, 74]: fixed

pattern noise (FPN), dark current noise, thermal noise (Nc),

shot noise (Ns), and amplifier and quantization noise

(Nq)—which is negligible in this work [15].

Fig. 1 CCD camera imaging

pipeline

Fig. 2 Effect of demosaicing. Noisy image: left without demosaicing, right with demosaicing
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The final brightness IN produced by a real CCD imaging

system is related to the scene radiance L via the camera

response function f (nonlinear imaging system) and is

given as [75, 76]:

IN ¼ f ðLþ Ns þ NcÞ ð1Þ

Similarly, for an ideal system, if it is necessary to find L,

the inverse function g is required, where g ¼ f�1, and then

L ¼ gðIÞ. Thus, (1) can be modeled as:

IN ¼ f ðf�1ðIÞ þ Ns þ NcÞ ð2Þ

Here, I denotes the noise-free image, Ns defines a multi-

plicative noise component modeled as a Gaussian distri-

bution with a zero mean and the relative variance I � r2s ,
and Nc describes an additive noise component with a zero-

mean Gaussian distribution with the variance r2c [10, 77]. It
can be noted that the multiplicative component of the noise

directly depends on the image brightness.

To obtain unknown color information at each pixel

location from the CCD image sensor, some interpolation

forms (called demosaicing) are carried out to get the full-

resolution color image [78]. Accordingly, the noise vari-

ance of the interpolated pixels tends to become smaller

than that of the directly observed pixels [79]. As a conse-

quence, this process introduces spatial correlations [80] to

the noise characteristics in the demosaiced image (see

Fig. 2). Thus, the noise becomes colored instead of being

white.

3.1.2 Noise model estimation

Let R2ðu; f ; rs; rcÞ be a correlated NLF to estimate, which

depends on the local intensity u and on a set of parameters

f, rs and rc that are determined by the image acquisition

protocol [10, 15, 81]. To compute it, an iterative noise level

estimation process is presented in Fig. 3. There are three

basic stages we should perform to conduct the noise level

function R2 effectively:

• Theoretical model of NLF

• NLF from a single image

• Maximum likelihood estimation

(a) Theoretical model of NLF

The variance of the generalized noise model term of

Eq. 2 is written as [15, 81]:

Fig. 3 Noise estimation process

Fig. 4 Test pattern image

Fig. 5 Some camera response functions (f ð�Þ)
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Fig. 6 Red and blue curves correspond to f(60) and some NLFs estimated at different values of rs and rc (color figure online)

Fig. 7 Pre-segmentation. a Original image, b segmented image
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R2ðu; f ; rs; rcÞ ¼ E unðf ; f�1; rs; rcÞ � u
� �2h i

ð3Þ

where E :½ � is the expected value of the random variable, un
is the synthesized noisy pixel value, and u is the noise-free

pixel value. By changing the three NLF parameters, f ; rs
and rc, Eq. (3) can represent the whole space of the NLFs,

named the noise level functions database (NLFD). To do

that, it is necessary to have a test pattern image u con-

taining 256 gray scale levels (Fig. 4) as well as 201 camera

response functions f, which are downloaded from [82],

where some are shown in Fig. 5 and where rs is from 0 to

0.16 and rc is from 0.01 to 0.06 [15]. For instance, Fig. 6

presents f(60) and some of its NLFs estimated at different

values of rc and rs.
The NLFD is a matrix (C) that consists of all the

existing NLFs. Each column in C represents an NLF for a

given f ; rc and rs. Also, the column indexes refer to 256

intensity values ranging from 0 to 1. Applying the PCA on

C, a general form of the approximation model of the NLFs

for each red, green, and blue channel is given by [15]:

R2ðuÞ ¼ R2 þ
Xm

i¼1

kiVi ð4Þ

where Vi and R2 2 R
d (d ¼ 256) are, respectively, the

eigenvectors and the mean of the NLF obtained by the

PCA, and where k1; . . .; km are the unknown parameters of

the model with the number of retained principal compo-

nents m ¼ 6 [15].

(b) NLF From a single image

Basically, one-channel images are considered, assuming

that similar operations are performed for each component

image of multichannel data. This process is based on the

next four steps:

Step 1: Pre-segmentation (see Fig. 7): Firstly, smooth

out noisy image by convolving it with a low-pass filter

and then partition the smoothed image into homoge-

neous regions with both similar spatial coordinates and

RGB pixel values [10, 83, 84].

Step 2: Estimate the noise-free signal and the noise

variance for each region as follows:

ûl ¼
1

gl

Xgl

j¼1

u j
n ð5Þ

r̂2l ¼ 1

gl

Xgl

j¼1

ðu j
n � ûlÞ2 ð6Þ

where ûl is the estimation of the noise-free signal, u j
n is

the jth pixel value in the observed region, gl is the

number of pixels in the observed region, r̂2l is the esti-

mated noise variance, l ¼ 1; . . .;Nbl, and Nbl is the

number of regions that depends upon the image.

Step 3: Form scatter plots of samples of noise variances

on the estimated noise-free signals of each RGB channel.

An example of the obtained scatter plot is represented in

Fig. 8a. The points in the scatter plot have the coordi-

nates r̂2l for the vertical axis and ûl for the horizontal

axis [85].

Step 4: Select the weak textured regions by discretizing

of the range of image intensity into j uniform intervalsFig. 8 Forming scatter plots on one single channel of a color image

Fig. 9 a Green vector indicates

v1, and red vector indicates v2.

b Planar neighborhood. c Linear
neighborhood (color figure

online)
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and then finding at each interval the region with the

minimum variance. Consequently, the lower envelope

strictly and tightly below the sample points is the

estimated NLF curve (the blue dots in Fig. 8).

However, the estimated variance of each region is an

overestimate of the noise level because it may contain the

signal, so the obtained lower envelope is an upper bound

estimate of the NLF.

(c) Maximum likelihood estimator

In this subsection, an accuracy model of the NLF is

presented which combines the general form of the approx-

imation model of Eq. 4 with the selected weak textured

regions [85]. The goal is to infer the accurate NLF model

from the lower envelope of the samples. To solve that, an

inference problem in a probabilistic framework was for-

mulated in [15]. Mathematically, the likelihood function is:

LðR2ðuÞÞ ¼ Pj
t¼1U

ffiffiffiffi
gt

p ðr̂2t � R2ðûtÞÞ
r̂2t

� �

exp �ðR2ðûtÞ � r̂2t Þ
2

e2

( ) ð7Þ

where j is the number of selected weak textured patches,

gt; ût and r̂2t are, respectively, the number of pixels, the

mean pixel value, and the estimated variance of the tth

weak textured region, e controls how the function should

approach the samples, exp �f g is the exponential function,

and Uð�Þ is the cumulative distribution function of the

standard normal distribution. The cost function to be

minimized can be obtained from the negative log-likeli-

hood function as:

E ¼ �logðLðR2ðuÞÞÞ ð8Þ

To minimize the cost function, the MATLAB standard

nonlinear constrained optimization function ‘‘fmincon’’ is

used.

Based on the effect of the correlation between the RGB

channels and using the maximum likelihood estimator

(MLE), the best approximation of R2ðuÞ for the RGB

channels can be given. For more details, the reader can

refer to [15, 85].

3.2 Adaptive noise-reducing anisotropic diffusion

In this section, a new version of the SRAD filter is pro-

posed, called the ANRAD, to enhance the images cor-

rupted by color noise whose general model is in Eq. 2. The

conventional SRAD filter is presented in the context of

ultrasound images corrupted by speckle noise, where it

could be written as [11]:

Fig. 10 Synthesized noisy image and its corresponding NLF model

noise. a Original image. b Synthesized noisy image. Model noise on

the blue (c), green (d), and red (e) channels (color figure online)
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ui;j;tþDt ¼ ui;j;t þ
Dt
jwi;jj

div½cðqi;j;tÞrui;j;t� ð9Þ

Here, ru is the gradient operator, div is the divergence

operator, Dt is the step time, ui;j;t is the sampled discrete

image, i, j denotes the spatial coordinates of a pixel x on a

2D discrete grid (observed image), wi;j represents the

spatial neighbors centered at the current pixel, jwi;jj is the
size of the four direct neighborhood (4DN) which is equal

to 4, and cð. . .Þ is the diffusion function determined by

cðqi;j;tÞ ¼
1

1þ q2i;j;t � q2nðtÞ
h i�

q2nðtÞð1þ q2nðtÞÞ
� 	 ð10Þ

with

q2i;j;t ¼
Varðui;j;tÞ

u2i;j;t
ð11Þ

and

q2nðtÞ ¼
VarðareaÞ
area2

ð12Þ

where qi;j;t is the instantaneous coefficient of variation of

the image, which allows distinguishing homogeneous

regions from edges in bright and dark areas and qnðtÞ is the
speckle NLF at the time t which controls the amount of

smoothing applied to the image. Also, Var(area) and area

Fig. 11 Model noise of synthetic pure additive Gaussian noise with noise level 5 %. a Noisy image, b NLF of red, c green, and d blue channels

(color figure online)
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are, respectively, the variance and the mean values of

intensities under a homogeneous image area, and Varðui;j;tÞ
and u2i;j;t are, respectively, the local variance and mean

values at each pixel in the image. The SRAD noise esti-

mation scheme has some disadvantages. It admits the

speckle noise with some hypotheses like being: purely

multiplicative, uncorrelated, equal variance, signal inde-

pendent, and produced by a linear imaging system. In

addition, it needs to know a homogeneous region within the

processed image. Although it is not difficult for a user to

select a homogeneous region in the image, it is non-trivial

for a machine to do that. With these assumptions, the

algorithm is not so practical for images captured from CCD

digital cameras because, as noted above, the noise is

essentially random and strongly dependent on the image

intensity level. Also, there are spatial correlations intro-

duced by the effect of demosaicing (color noise). Never-

theless, this filter is not adequate enough for CCD images

and accordingly cannot fully fit the noise characteristics

and give an optimal image quality. To overcome the dis-

advantages of the SRAD [recall (9)–(12)] and to have an

improved restoration result, Eq. (12) is replaced by a non-

stationary scale factor noise Q2
nði; j; tÞ ¼ R2ðui;j;tÞ=u2i;j;t,

where its parameters will be estimated automatically, as

Fig. 12 Model noise of synthetic pure additive Gaussian noise with noise level 5 %. a Noisy image, b NLF of red, c green, and d blue channels

(color figure online)
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Fig. 13 Model noise of

synthetic pure additive Gaussian

noise with 5 % noise level.

a Noisy image, b NLF of red,

c green, and d blue channels

(color figure online)
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described in Sect. 3.1.2, after introducing it in (Eq. 10) to

obtain the new diffusion function cðqi;j;t;Qnði; j; tÞÞ. Hence,
the ANRAD is adopted. As it is noticeable, the filter is

based on the estimation of the local coefficients of variation

of the image q2i;j;t and of the noise Q
2
nði; j; tÞ. The better they

are estimated, the better the filter performance is. More-

over, the choice of the window size greatly affects the

quality of the processed images. If the window is too small,

the noise filtering algorithm will not be effective and the

filter will become very sensitive to noise. If the window is

too large, subtle details of the image will be lost in the

filtering process. In our experiments, a 5� 5 window is

used as a fairly good choice [62].

Let F ¼ c:ru be the flow diffusion and x ¼ ðx1; . . .; xNÞ
be the current pixel in N-dimensional. The one-dimensional

discrete implementation of the divergence term in Eq. (9)

is given by:

divðcðx; tÞruÞ ¼ o

ox
ðcðx; tÞ:ruðx; tÞÞ

� o

ox
cðx; tÞ: 1

dx
u xþ dx

2
; t

� �
� u x� dx

2
; t

� �� �� �

� 1

dx2
c xþ dx

2
; t

� �
:ðuðxþ dx; tÞ � uðx; tÞÞ




�c x� dx

2
; t

� �
:ðuðx; tÞ � uðx� dx; tÞÞ

�

� Fxþ � Fx� if dx ¼ 1

where Fxþ ¼ Fðxþ dx
2
; tÞ and Fx� ¼ Fðx� dx

2
; tÞ.

For an image in N-dimensional, the divergence term is

generalized as:

divðFÞ �
XN

i¼1

oFxi

oxi
ð13Þ

where F is expressed by the vector ðFx1 ; . . .;FxN Þ.
The flow F is estimated between two neighboring pixels,

and the following discretization of Eq. 13 can be written

as:

divðFÞðxÞ �
XN

i¼1

Fxþ
i
� Fx�

i

dxi
ð14Þ

with 8 i; dxi ¼ 1;Fxþ
i
¼ Fxiðxþ dxi

2
; tÞ and

Fx�
i
¼ Fxiðx� dxi

2
; tÞ. The focus of the present work is on

dealing with a two-dimensional (2D) images; thus, N is

equal to 2.

Up to this level, the algorithm cleans up the image noise

in the homogeneous areas, but it is not efficient near or on

Table 1 Parameters and results of the different filters for the syn-

thetic 2D image

Filter Dt iter gx Thres SNR MSSIM

PMAD 0.5 200 – 15 73.9360 0.9532

FBAD 0.05 180 – 2 75.3674 0.9197

SRAD 0.02 350 4DN – 72.0460 0.9481

Bilateral – – 5� 5 – 56.9052 0.6522

ANRAD 0.2 100 5� 5&7 – 76.7737 0.9831

Fig. 14 Filtered images using different filters. a Original synthetic 2D image. b Original image with a Gaussian white noise with a 0 mean and

standard deviation 0.1. c Result of PMAD. d DPAD. e Bilateral filter. f FBAD. g ANRAD
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the edges (it does not enhance edges—it only inhibits

smoothing near edges). To improve more the robustness of

the proposed algorithm, a matrix diffusion D is introduced

in Eq. (9) instead of the scalar diffusion c. D is a positive

definite symmetry matrix, which can be written in terms of

its eigenvectors and eigenvalues. Therefore, the divergence

term in Eq. (9) becomes:

divðD � ruÞ ð15Þ

Following the chosen eigenvalues and eigenvectors, dif-

ferent matrix diffusions can be obtained [60]. The diffusion

matrix proposed by Weickert [59, 86] has the same

eigenvectors as the structure tensor, with eigenvalues that

are a function of the norm of the gradient. This allows the

smoothing effect to be different along various directions.

Focusing on edge-enhancing diffusion, the chosen eigen-

vectors are defined as follows [60, 87]:

v1krur ð16Þ

v2 ? rur ð17Þ

where rur is the gradient of the regularized (or smoothed)

version of the image using a Gaussian filter of a standard

deviation r.
Similarly, the diffusion flux F ¼ D � ru can be

decomposed as a sum of diffusions in each direction of the

orthogonal basis B = v1; v2ð Þ, and the divergence term

becomes [60, 88]:

divðFÞ ¼ divð/1 � v1 þ /2 � v2Þ ¼ divð/1 � v1Þ þ divð/2 � v2Þ
ð18Þ

where /1 ¼ cðhuðxÞiv1 ;VarðuðxÞÞv1Þ � uv1 is the diffusion

function in a local isotropic neighborhood and /2 ¼
cðhuðxÞiv2 ;VarðuðxÞÞv2Þ � uv2 is the diffusion function in a

local linear neighborhood oriented by the vectors v2. uvi ¼
Ou � vi;VarðuðxÞÞvi and huðxÞivi are, respectively, the first

order derivative, the local variance and the local mean of

the intensity u at the current point x, estimated in a pro-

posed direction vi; i 2 1; 2f g. In all the experiments, the

local scalar mean and variance are used, respectively, as:

huðxÞiv1 ¼
1

jgxj
X

p2gx
uðpÞ ð19Þ

and

VarðuðxÞÞv1 ¼
1

jgxj
X

p2gx
ðuðpÞ � huðxÞiv1Þ

2
ð20Þ

Table 2 Simulation results of the different filters for the multi-

plicative noise

Filter Dt iter gx SNR MSSIM

SRAD 0.02 200 4DN 56.4128 0.8441

DPAD 0.02 200 5� 5 57.3503 0.9001

ANRAD 0.2 150 5� 5&7 57.1214 0.8842

Fig. 15 From left to right—first line red, green and blue NLFs.

Second line denoising experimental results: noisy sub-image; sub-

image results obtained by: SRAD SNR ¼ 56.4128, iter ¼ 200),

DPAD (SNR ¼ 57.3503, iter ¼ 200) and ANRAD (SNR ¼ 57.1214,

iter ¼ 150) (color figure online)

Neural Comput & Applic (2016) 27:1273–1300 1285

123



where p is the neighbor pixel, gx ¼ 5� 5 is the neigh-

borhood centered at the current pixel x , and jgxj is the size
of the neighborhood. Also, a linear neighborhood size is

chosen subsequently to 7 [88] (see Fig. 9). Thus, the local

linear mean and variance values are computed at the pixel

x as follows:

huðxÞiv2 ¼
1

7

X3

p¼�3

ðuðxþ pv2ÞÞ ð21Þ

Fig. 16 a Original image; noisy image, segmented image. b The corresponding NLFs (red, green and blue curves). c Variance noise maps of

each of red, green and blue channels (color figure online)
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and

VarðuðxÞÞv2 ¼
1

7

X3

p¼�3

ðuðxþ pv2Þ � huðxÞiv2Þ
2 ð22Þ

4 Results

This paper aims to improve the quality of the image using

an iterative anisotropic diffusion technique based on the

noise level. The implementation of the filter has been done

in MATLAB, on a personal computer with a 2.13-GHz

Intel Core Duo processor and 4 GB of memory and has

achieved a processing rate of 1.1615 s/iteration for a

321 � 481 � 3 image. In this section, the experiments

have been performed on both synthetic and real medical

images.

4.1 Noise estimation

Natural images from the Berkeley segmentation data set

[89] are used, and synthetic mixed (additive and multi-

plicative) noise, according to the general noise model in

Eq. 2, is generated to test the proposed algorithm.

To illustrate the model noise estimation, an example

(Fig. 10) of the scatter plots obtained for the test image

is considered, with a great amount of uniform areas

(Fig. 10), corrupted by CCD noise (f ð60Þ; rc ¼ 0:06 and

rs ¼ 0:16). In Fig. 10, the red, green, and blue curves

represent the estimated NLFs in each corresponding

color band, whereas the ground truth NLF (in black) is

produced using the training database in Sect 3.1.2. Fig-

ure 10 shows that the noise level (or noise variance)

depends on the mean local intensity, so there is a good

agreement between the training data and the predictions

of the model. It can be seen that the NLF curves are

found just below the lower envelope of the samples

(blue dots). To further verify the ability of the noise

level estimation, similar experiments are carried out

using additive noise. Three natural images are selected

with different color ranges and luminosity and are syn-

thetically degraded by additive Gaussian noise with a

5 % noise level (Figs. 11, 12, 13). It is noted that the

noise level is proportional to the intensity throughout the

picture. The results presented in Figs. 12 and 13 indicate

that the estimated NLFs are significantly modeled even

though the color distribution does not span the full

intensity range, showing the ability of the method to

explore the NLF beyond observed image intensities.

From these experiments, it is noticeable that the noise

level estimation process is reliable and there is a very

good agreement between the NLFs in each color

component.

4.2 Filtering of synthetic images

To illustrate the ANRAD filtering behavior, some experi-

ments have been done. First, the proposed algorithm is

tested in the event of pure additive noise and then in case of

Fig. 17 Result of our filter on loaded image from Berkeley database.

The first row original image; image corrupted with color noise

(f ð30Þ;rc ¼ 0:04, and rs ¼ 0:10), result of our filter

(SNR ¼ 48.1295, iter ¼ 30), DPAD filter (SNR ¼ 38.6194,

iter ¼ 300), and SRAD filter (SNR ¼ 36.7871, iter ¼ 150). Second

row corresponding zoomed images
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Fig. 18 First line original image; noisy image; segmented image. Second line three NLFs (red, green, and blue curves) (color figure online)

Fig. 19 Result of our filter on loaded image from Berkeley database

(12003.jpg). The first row original image; image corrupted with color

noise (f ð30Þ;rc ¼ 0:06, and rs ¼ 0:16), result of: ANRAD

(SNR ¼ 48.3407, iter ¼ 40); DPAD (SNR ¼ 41.1171, iter ¼ 400)

and SRAD (SNR ¼ 39.5224, iter ¼ 600). Second row corresponding

zoomed images

Fig. 20 Denoising experimental results—from left to right noisy

image by color noise ((f ð60Þ; rc ¼ 0:06, and rs ¼ 0:16)); noisy sub-

image; sub-image results obtained by: SRAD (SNR ¼ 31.8152,

iter ¼ 250), DPAD (SNR ¼ 39.4481, iter ¼ 600) and ANRAD

(SNR ¼ 40.8260, iter ¼ 60)
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pure multiplicative noise before testing its efficacy for the

mixed signal-dependent noise [90]. To evaluate the

numerical accuracy, two quality indexes are used: the

signal-to-noise ratio (SNR) rate [91], where the higher the

SNR is the better the result is, and the Mean Structural

Similarity Index Measure (MSSIM) [61]. The later index is

used to measure the similarity between the noise-free

image and the denoised one, which is between 0 and 1.

4.2.1 Pure additive noise

In the first experiment, a synthetic image (Fig. 14a) is used,

which is artificially corrupted with additive Gaussian noise

having a 0 mean and standard deviation 0.1 (Fig. 14b).

Figure 14 presents the filtering results using three aniso-

tropic diffusion versions (Perona and Malik anisotropic

diffusion (PMAD) [49], flux-based anisotropic diffusion

(FBAD) [60], and the detail preserving anisotropic diffu-

sion (DPAD) [61]), the proposed filter (ANRAD), and the

Bilateral filter [21]. The parameters of each filter are

mentioned in Table 1, where the step time is denoted by

Table 3 Simulation results of different filters for mixed signal-de-

pendent noise

Noise parameters Filter Dt iter SNR

Image Peppers

f(30), rc ¼ 0:04;rs ¼ 0:10 SRAD 0.02 150 36.7871

DPAD 0.02 300 38.6194

ANRAD 0.2 30 48.1295

Image Starfish

f(30), rc ¼ 0:06;rs ¼ 0:16 SRAD 0.02 600 39.5224

DPAD 0.02 400 41.1171

ANRAD 0.2 40 48.3407

Image Firefighters

f(60), rc ¼ 0:06; rs ¼ 0:16 SRAD 0.02 250 31.8152

DPAD 0.02 600 39.4481

ANRAD 0.2 60 40.8260

Table 4 Simulation results of the different filters for the multi-

plicative noise

Filter Dt iter gx PSH WSH R2 SNR.

Noisy

image

– – – – – – 62.4295

FNLM

[92]

– – – 5 3 0.07 63.6967

ANRAD 0.02 100 5� 5&7 – – NLFs 66.3848

PSH, an integer indicating the neighborhood size; WSH, an integer

indicating the size of searching region [92] Fig. 21 Estimated NLF for a red, b green, and c blue channels
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Dt, the number of iterations is denoted by itr, the window

size is denoted by gx, and Thres is a constant threshold on

the norm of the gradient on the image. In the suggested

algorithm, the smoothing step time is set to 0.2 and the

denoising process runs adaptively with 100 iterations. The

ANRAD shows better results for both SNR and MSSIM, as

shown in Table 1, where it has a good performance with

the greatest SNR value, which is equal to 76.7737, and the

highest MSSIM score which is equal to 0.9831 (close to 1).

This means that the denoised image is close to the original

one. Figure 14 shows that the recovered image by applying

the proposed method (Fig. 14g) has also a better visual

quality in comparison with the other methods. Clearly, the

ANRAD performs better and produces smoother results,

whereas the edges are well preserved and the contrast is

improved better.

4.2.2 Pure multiplicative noise

To better evaluate the efficiency of the proposed algorithm,

simulation studies have been carried out using a synthetic

image downloaded from [89] and synthetically corrupted

with pure multiplicative noise (see Fig. 15). In this case,

the noise level has been taken as 10 %. In Fig. 15, it can be

seen that the estimated NLFs are found just below the

lower envelop of the distribution samples, where there is a

very good agreement between each color band. Figure 15a

shows the noisy image, whereas Fig. 15b–d show the

image processed by the SRAD, the DPAD filter, and the

ANRAD, respectively. In the SRAD method, the smooth-

ing time step is set to 0.02 and the denoising process ran

adaptively with 200 iterations. In the DPAD method, the

filtering time step is set to 0.02 and the smoothing process

ran adaptively with 200 iterations. In the suggested algo-

rithm, the step time is set to 0.2 and the denoising process

ran adaptively with 150 iterations. The performance quality

of experiments, in terms of SNR and MSSIM, is listed in

Table 2. Comparing the denoising results (Fig. 15b–d), it is

noted that the three denoising methods can eliminate pure

multiplicative noise in most homogeneous regions. In

Table 2, it may be qualitatively observed that a very good

restoration result for the DPAD filter compared to the

Fig. 22 a Clean image, b noisy

image, c denoised image by

FNLM, and d denoised image

by ANRAD
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others is obtained. It can be seen that the DPAD filter has a

better behavior for both SNR and MSSIM measures. A

justification of this behavior is that the DPAD filter has

used the mode of the distribution of all the CVs of the noise

over the whole of the image as an estimator of the NLF

value, which is the best among the other estimators in the

case of this kind of noise. Also as noticed before, the use of

a 5� 5 neighborhood in the DPAD filter instead of the four

direct neighbors, like the original SRAD, to compute the

local coefficients of variation is more accurate and thus

allows obtaining better results.

4.2.3 Mixed signal-dependent noise

It is interesting in this phase to denoise the images cor-

rupted with mixed color signal-dependent noise according

to the general noise model in Eq. 2. Some color test ima-

ges, namely Peppers, Starfish, and Firefighters, have been

used as a ground truth, which are artificially corrupted by

mixed color signal-dependent noise according the follow-

ing parameters: (f ð30Þ; rc ¼ 0:04; rs ¼ 0:10), (f ð30Þ; rc ¼
0:06, and rs ¼ 0:16) and (f ð60Þ; rc ¼ 0:06, and rs ¼ 0:16)

given, respectively, in (Figs. 16, 18, and 20). Figure 16c

shows the noise variance maps of each of the red, green,

and blue channels of Fig. 16a. It is noticeable that the

variance noise varies locally in the image, depending also

on each color components. These experiments confirm that

noise in photography images is not white and is signal

dependent. The proposed filter used the noise variance

maps as a common diffusion controlling term for noise

filtering of a color image implying a more effective

denoising than the traditional SRAD filter. In other words,

the amount of noise reducing is not uniform over the whole

image. Consequently, an adaptive denoising is treated. The

noisy images shown in Figs. 16, 18, and 20 are filtered

using the ANRAD, the SRAD, and the DPAD methods,

and the results are presented in Figs. 17, 19, and 20. The

performance quality of the experiments, in terms of SNR,

is presented in Table 3. As indicated in Figs. 17, 19, and

20, the suggested method has achieved better noise

removal in most homogeneous regions and structure

preservation than the SRAD and DPAD methods. Fig-

ure 17 shows the image denoised with the proposed

method, the DPAD, and the SRAD. It is observed that the

ANRAD reduces color noise and improves the image

quality. It can also be seen that there is an improvement in

preserving the image structure. Based on the SNR in

Table 3, it is also noticeable that the proposed method

performs better than the other two methods.

Based on the experiments in Fig. 20, some observations

can be drawn. The ANRAD filter can effectively improve

the quality of the noisy image and also enhance better

edges and preserve more details than the other filters. In

contrast with the DPAD filter, the result shows that it blurs

the image and causes a loss of information regarding the

fine structures of the image and edges.

The denoising method in [92], called the fast non-local

means (FNLM), is used to show the effectiveness of the

proposed method, which outperforms the methods in [93–

95] and can be considered as the state of the art in image

denoising. To the test Lena image in Fig. 22a (size, 512 �
512), the synthesized noise with the following parameters:

f ð60Þ; rc ¼ 0:01 and rs ¼ 0:02 is added. The noisy image

is filtered using the FNLM with a fixed NLF as an input

value (equal to 0.07, see Table 4). However, the ANRAD

uses three estimated NLFs. Figure 21 shows the results of

the three estimated NLFs for each component (red, green,

and blue). The simulation results are shown in Fig. 22 of

both filters. Zoomed restored images are displayed in

Fig. 23 a Original sub-image, b noisy sub-image, c denoised sub-

image by FNLM, and d denoised sub-image by ANRAD
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Figs. 23, 24, and 25 to show more details for small objects

after denoising. It can be seen that the proposed method

preserves image structures much better than the FNLM

filter. The ANRAD algorithm outperforms the FNLM filter

and its images get denoised well and the edges and fine

details are preserved. For instance, in Fig. 24, the line

patterns on the hat of Lena are prominent and with sharp

edges in the ANRAD restored image as compared to that of

the FNLM restored one. The ANRAD filter seems to have

better visual quality than the other filter. The qualitative

results are shown in Table 4. It shows a significant rise in the

SNR value for the proposed algorithm (SNR ¼ 66.3848) in

comparison with the FNLM filter (SNR ¼ 63.6967).

4.2.4 Real image results

For decades, the automatic methods for extracting and

measuring the vessels in retinal images have been

required to save the workload of ophthalmologists and to

assist in characterizing the detected lesions and identify-

ing the false positives [87, 96–101]. However, the use of

Fig. 24 a Original sub-image, b noisy sub-image, c denoised sub-

image by FNLM, and d denoised sub-image by ANRAD
Fig. 25 a Original sub-image, b noisy sub-image, c denoised sub-

image by FNLM, and d denoised sub-image by ANRAD
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rough images is not desirable, if one wishes to detect

automatically the vessels of the vascular network.

Therefore, an image pre-processing is required before any

treatment. To reduce image noise, most of algorithms

assume the noise to be additive, uniform, and independent

of the RGB image data [102–108]. Afterward, these

approaches cannot effectively recover the ‘‘true’’ signal

(or its best approximation) from these noisy acquired

observations. In this section, the improvement in the

quality of visual rendering of the retinal images using the

ANRAD algorithm is focused on in order to facilitate a

later analysis. A real retinal image of a human is shown in

Fig. 27a. The data have been downloaded from a publicly

available database named the STARE Project database

[109], which was acquired using a Topcon TRV-50 fun-

dus camera at a 35 field of view (FOV), which was dig-

itized with a 24-bit gray-scale resolution and a size of

700 � 605 pixels. The green scale is considered as the

natural basis for vessel segmentation because it normally

presents a higher contrast between the vessels and the

retinal background (Fig. 26a) [110–116]. Figure 26c–f

shows the zoomed smoothed images processed by the four

filters (the proposed filter, the PMAD, the SRAD, and the

DPAD) tested on the gray scale of a real picture (im0077)

Fig. 26 a Real noisy retinal image (green channel); b sub-image of original image (a); c PMAD diffusion result (Thres ¼ 15, iter ¼ 30,

dt ¼ 0:05); d ANRAD result (iter ¼ 30, Dt ¼ 0:2); e SRAD (iter ¼ 50, Dt ¼ 0:2); f DPAD (iter ¼ 50, Dt ¼ 0:2) (color figure online)
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Fig. 27 Real retinal noisy images and their corresponding NLFs

model noise. a Original image. Model noise on the blue (b), green (c),
and red (d) channels (color figure online)

Fig. 28 Real retinal noisy images and their corresponding NLFs

model noise. a Original image. Model noise on the blue (b), green (c),
and red (d) channels (color figure online)
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Fig. 29 Real retinal noisy images and their corresponding NLFs

model noise. a Original image. Model noise on the blue (b), green (c),
and red (d) channels (color figure online)

Fig. 30 Real retinal noisy images and their corresponding NLFs

model noise. a Original image. Model noise on the blue (b), green (c),
and red (d) channels (color figure online)
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taken from the Stare Project database. Figure 27 presents

the results of the three corresponding model noise (red,

green, and blue channels). The figure shows that the

estimated curves of the noise function are found just

below the lower envelope of the samples. Some other

NLF are displayed in Figs. 28, 29, 30, and 31. According

to these results, it has been found that the retinal fundus

images do not contain uniform, white and additive noise

because it can be seen that each estimated curve of the

NLF is a nonlinear function describing the variance noise

as a function of local intensity throughout the image.

Also, it is different from one color channel to another. For

the results shown in Fig. 26c, e, f (except d), it appears

that the fine vessel at the bottom-right of the image in

Fig. 26b has been markedly degraded or lost. Neverthe-

less, from Fig. 26d, it is seen that the proposed method is

much more able to smooth out flat regions and to keep

thin vessels than the other methods. The major region

boundaries are preserved, especially by the ANRAD

technique. Although this processed result is purely qual-

itative, it shows promise for the ANRAD as a general

purpose CCD noise-reducing filter for retinal images.

5 Advantages and limitations

The SRAD method has been developed to remove the

speckle noise, a form of multiplicative noise, in imagery

by utilizing a variance noise as an input value which is

usually done from a selected region from the background

pixels. The SRAD assumes noise to be multiplicative,

uniform and uncolored. This assumption simplifies image

filtering. The proposed denoising method is developed for

color signal-dependent noise by using a general NLF as an

input value. The estimated noise level is a continuous

function describing the variance noise as a function of

local intensity throughout the image. Consequently, the

current denoising algorithm is truly automatic and can

Fig. 31 Real retinal noisy images and their corresponding NLFs model noise. a Original image. Model noise on the blue (b), green (c), and red

(d) channels (color figure online)
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effectively remove various types of image noise. As the

SRAD filtering near an edge is very weak, the noise

reducing near the edge is also small. The ANRAD allows

the filtering to be different along various directions

defined by the gradient direction and its orthogonal. Thus,

the filtering on both sides of an edge can be prevented

while permitting the filtering along the edge. This pre-

vents the edge from being smoothed and then being

removed during denoising. As shown in Sect. 4, the

experimental results have been conducted, with both

quantitatively convincing and visually pleasing results.

Some image tests are shown with zoomed zones to vali-

date the efficiency of this approach.

The proposed filter shows a very good behavior both in

edge preservation and noise cleaning. However, it does not

prevent some limitations from existing: This approach does

not work well for images with textures, specially those with

great variability, because textures usually contain high

frequencies and greatly affect the estimated noise variance.

The used size and shape of the window to compute the

coefficients of variation may affect the quality of pro-

cessing images, like eliminating some of the details in the

original image and blurring it a little. A more significant

limitation is in the computation time. It has an additional

expensive step of noise estimation, which makes it slower

than the DPAD and SRAD algorithms.

6 Conclusion

In this paper, a new version of the SRAD technique has

been developed, named the ANRAD, to remove various

types of color image noise produced by today’s CCD

digital cameras. Unlike the SRAD technique that processes

a known type of noise and with some assumptions, such as

a linear system and uncorrelated, white, and purely multi-

plicative noise, the proposed technique processes the data

adaptively with an instantaneous RGB noise level. The

adopted noise level is a nonlinear function of the image

intensity depending on the external parameters related to

the image acquisition system. In all our experiments, the

proposed ANRAD method has exhibited better perfor-

mances than the conventional SRAD technique, in terms of

smoothing uniform regions and preserving edges and fea-

tures. Its performance is directly related to the goodness of

the employed noise estimation process. Choosing a good

dynamic estimator beside, combined with the iterative

process of the ANRAD, shows a very good performance of

noise cleaning. This new technique shows the importance

of a careful selection of a noise estimator in the SRAD

method. The method presented in this study has several

possible applications, and a future work will focus on the

fact that the filter can be generalized to 3D images and can

improve the performances of 2D and 3D segmentation

approaches for the reconstruction of image regions.
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