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Abstract This study, for the first time, developed an

adaptive neural networks (NNs) formulation for the two-

dimensional principal component analysis (2DPCA),

whose space complexity is far lower than that of its sta-

tistical version. Unlike the NNs formulation of principal

component analysis (PCA, i.e., 1DPCA), the solution with

lower iteration in nature aims to directly deal with original

image matrices. We also put forward the consistence in the

conceptions of ‘eigenfaces’ or ‘eigengaits’ in both 1DPCA

and 2DPCA neural networks. To evaluate the performance

of the proposed NN, the experiments were carried out on

AR face database and on 64 9 64 pixels gait energy im-

ages on CASIA(B) gait database. The less reconstruction

error was exploited using the proposed NN in the condition

of a large sample set compared to adaptive estimation of

learning algorithms for NNs of PCA. On the contrary, if the

sample set was small, the proposed NN could achieve a

higher residue error than PCA NNs. The amount of cal-

culation for the proposed NN here could be smaller than

that for the PCA NNs on the feature extraction of the same

image matrix, which represented an efficient solution to the

problem of training images directly. On face and gait

recognition tasks, a simple nearest neighbor classifier test

indicated a particular benefit of the neural network devel-

oped here which serves as an efficient alternative to con-

ventional PCA NNs.

Keywords Two-dimensional principal component

analysis (2DPCA) � Neural network (NN) � Neural
networks formulation � Eigenface � Eigengait

1 Introduction

Two-dimensional principal component analysis (2DPCA)

[1] is a state-of-the-art statistical technique developed for

image representation. As opposed to principal component

analysis (PCA, i.e., 1DPCA), 2DPCA is based on 2D ma-

trices rather than 1D vectors, making it unnecessary to

transform the image matrix into a vector for feature ex-

traction. Overall, the idea of 2-D method here originates

preliminarily from the direct construction of image scatter

matrices by using the original image matrices. Besides, the

image covariance matrix and image scatter matrices of

2DPCA can have a much smaller size in comparison with

its counterpart PCA method. Therefore, 2DPCA sig-

nificantly reduces the computational cost and avoids the

singularity problem [2]. For example, if the image size is

64 9 64 pixels, the image covariance matrix of 2DPCA is

still 64 9 64 pixels, regardless of the size of the training

sample. As a result, 2DPCA has a remarkable computa-

tional advantage over PCA. Its first principal component is

a 1D linear subspace where the variance of the data is

maximal, and the second principal component is the
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direction of maximal variance in the space orthogonal to

the first principal component. 1D principal components are

computed by PCA; likewise, 2D principal components are

computed by 2DPCA.

Research interest in 2DPCA has increased recently [3–

5]. 2DPCA is essentially working in the row direction of

images. Zhang and Zhou [6] proposed an alternative

2DPCA which worked in the column direction of images,

and developed the two-directional 2DPCA considering the

row and column directions simultaneously. Ye [7] pro-

posed another version of two-sided linear transformation

called generalized low-rank approximations of matrices

(GLRAM) as an extension to 2DPCA, but it is an iterative

approach. Liu and Chen [8] proposed a non-iterative

GLRAM (NIGLRAM) to overcome GLRAM’s shortcom-

ings such as lacking a criterion to automatically determine

the dimensionalities of the projected matrices. Lu et al. [9]

proposed a new simplified version of GLRAM with the

purpose of deriving the projection matrices for GLRAM.

Kim et al. [10] proposed a face recognition approach using

a fusion method based on bidirectional 2DPCA. Yang and

Liu [11] presented a bidirectional 2DPCA-based dis-

criminant analysis (HVDA) method for face verification.

Although 2D image matrices are used to directly construct

the image covariance matrix, these algorithms often run up

against computational limits due to the high space com-

plexity for dealing with large image matrices, especially

for images and videos. Taking 2DPCA for example, the

space complexity for computing the eigendecomposition of

an image scatter matrix with the size of n 9 n using Jacobi

method is Oðn3Þ. As the dimensionality n increases, the

fact cannot be ignored that it may outstrip the processing

capability of single-chip microcomputer or embedded

system. Consequently, the algorithmic solution of 2DPCA

based on statistics cannot be used effectively in performing

data processing for large-scale images, and other imple-

mentations are needed which are able to reduce the space

complexity.

During the last decade, a number of researchers have

proposed various neural networks (NNs) methods for sta-

tistical analysis and machine learning. Details about PCA

algorithms can be found in [12, 13]. All the presented

neural network approaches for PCA can be systematically

derived from the original formulation by Oja [14] of a

single neuron with the Hebbian learning principal compo-

nent analyzer. The single-neuron case then was extended to

estimation of several principal components. The single-

layer neural network architecture for multiple principal

eigenvector extraction was proposed by Oja and Karhunen

[15]. These PCA NNs can be described by stochastic dis-

crete-time (SDT) algorithms, and some invariant sets are

warranted to be non-divergence of these NNs by choosing

proper learning parameters [16]. The generalized Hebbian

algorithm (GHA) [17] and the stochastic gradient ascent

(SGA) algorithm [18] can be directly derived from a

symmetric subspace learning rule. An adaptive principal

component extraction algorithm was presented by Kung

et al. [19]. These five neural network approaches for PCA

can be classified into two categories: reestimation algo-

rithms and decorrelating algorithms [20]. Due to PCA’s

locality, it has been argued that these algorithms are

‘biologically plausible.’ Andreas and Kurt [21] proposed

the local PCA algorithms and fully described their

equivalence, where all lateral connections are set to zero

along with their local stability. Kong et al. [22] used a

deterministic discrete-time (DDT) system to analyze the

convergence of a unified PCA and minor component ana-

lysis (MDA) algorithm. Karhunen et al. [23] introduced

learning algorithms for each of the three layers of the

proposed independent component analysis (ICA) network

to be used for blind source separation. Gou and Jiao pre-

sented a method for texture image recognition using a

synergetic neural network (SNN) combined with immune

clonal strategy (ICS) and fuzzy clustering to train the

prototype vectors; this method was used to classify object

images into groups [24]. Training a radial basis function

(RBF) network consisting of three layers, input, hidden and

output layers, to be a classifier with computing efficiency

means optimizing the parameters of centers, widths and

weights in the network. For off-line training, the K-means,

the P-nearest neighbors and the batch least squares (BLS)

algorithms are used. When the classifier is used online, the

centers remain fixed, as they have been chosen to be dis-

tributed in the whole operating space, while the widths and

weights are adapted to minimize the classification error

caused by any time-varying dynamics and model uncer-

tainty. The widths are adapted using a gradient descent

algorithm, and the weights are adapted using the recursive

least squares (RLS) algorithm [25]. Tomenko [26] pro-

posed an online nonlinear dimensionality reduction using

competitive learning and RBF. In order to achieve scal-

ability, he used modified topology to represent networks

and geodesic distance and estimated sampled or streaming

data with a finite set of reference patterns. Kohonen net-

works are well known for unsupervised learning cluster

analysis. A fuzzy Kohonen clustering network was pro-

posed, which integrated the fuzzy c-means (FCM) model

into the learning rate and updating strategies of the Ko-

honen network. This yielded an optimization problem re-

lated to FCM [27]. Ceylan et al. [28] presented a

comparative study of four different structures: FCM NN,

PCA NN, FCM–PCA NN and WT NN (wavelet transform).

Huang et al. [29] designed the hybrid RBF NNs realized

with FCM and polynomial NN. FCM was employed to
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defeat a possible curse of dimensionality, and polynomial

NN was used to build local models. Alexandridis and

Zapranis [30] proposed a complete statistical model iden-

tification framework to apply wavelet NNs. Those issues

were soundly studied: their structures, training methods,

initialization algorithms, variable significance, variable

selection algorithms, model selection methods and con-

structing confidence and prediction intervals methods.

Zhang et al. [31] applied a symmetric NN to learn the

features of a data by minimizing the reconstruction error

between the encoder layer’s input data and the decoding

layer’s reconstruction data. Carvajal and Figueroa [32]

presented analog adaptive linear combiners and on-chip

learning for least mean square and generalized Hebbian

algorithm. Recent years have brought significant im-

provements in statistical analysis in real-world settings

[33–35]. The advantage of these aforementioned neural

networks (NNs) methods for statistical analysis and ma-

chine learning is online learning, which is necessary if not

all training patterns are available all the time. Besides,

time-varying delays systems often exist in the system

output of NN [36–38].

Motivated by the aforementioned neural network im-

plementation of statistical algorithms, especially Heb-

bian learning and adaptive principal component

extraction [14, 17, 19], we will investigate a more

challenging problem in this paper, namely an adaptive

neural networks formulation for the 2DPCA. It is also an

online learning implementation. This NN is based on

Hebbian learning and adaptive principal component ex-

traction; however, it deviates from the previous research.

Because the proposed NNs can directly deal with ori-

ginal image matrices, accomplished by several time-

varying delay units.

The two major difficulties lie in the fact of how to de-

sign the architecture of this NN and estimate several

principal components using this network. The main con-

tributions are as follows.

1. A new neuron model is introduced to solve the

problem of adaptively estimating the first principal

component in order to directly deal with original image

matrices. The attributes of its weight vector when the

network converges are discussed.

2. A new neuron model for adaptively estimating several

principal components is proposed. Learning steps of

estimation of several principal components are then

presented. Moreover, its space complexity is far lower

than that of standard 2DPCA based on statistics.

3. The conceptions of ‘eigenfaces’ for 2DPCA neural

network is put forward for the first time, and 2DPCA

‘eigenfaces’ have produced results essentially in

agreement with PCA ‘eigenfaces’.

The remainder of this paper is organized as follows.

Section 2 gives adaptive estimation of the first principal

component for 2DPCA. Section 3 describes adaptive esti-

mation of several principal components for 2DPCA. Per-

formance analysis and simulation results are given in

Sect. 4, and then, conclusions are provided in Sect. 5.

2 Adaptive estimation of the first principal
component

2.1 Neuron model

As shown in Fig. 1, the input to the synapses is a matrix

signal X 2 Rm�n, with the individual vector components

given as x1j, x2j, …, xmj, for j = 1, 2, …, n, and then, the

expression of X is:

X ¼
x11 � � � x1n

..

. . .
. ..

.

xm1 � � � xmn

2
64

3
75

Therefore, the number of times for inputting a matrix

signal is n. Namely, the first, second, etc., inputs are, re-

spectively, the first, second, etc., column vector of matrix

signal X. Each component xij, for i = 1, 2, …, m, is mul-

tiplied by the weight wi in the form of a linear activation

function. Thus, the output of the network is written as

D

D

D

1w

2w

mw

1 jx

2 jx

mjx

ny

1ny –

2ny –

1y

Input signal

Output signal

Delay element

Fig. 1 Neuron model for estimating the first principal component.

The delay element consists of n unit-delay sub-operators with the

function of the shift storage. It is also called an ordinary tapped delay

line memory of order n. The jth (j ¼ 1; . . .; n) column of the image

(matrix) is the input, and the output is a scalar yj. Similarly, the

(j ? 1)th column of the image (matrix) is the input, and yj?1 is the

corresponding output; at the same time, yj is shifted down to another

storage unit. Therefore, all columns of the image (matrix) are

regarded as its input, and the output is a vector ½y1; y2; . . .; yn�
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yj ¼
Xm
i¼1

wixij ¼ wTxj ð1Þ

where xj is the jth column vector of matrix signal X. Here,

yj, for j = 1, 2, …, n, is ordered as

y ¼ ½y1; y2; . . .; yn� ð2Þ

Now, after the network architecture is obtained, the

method of adjusting the weight vector w is discussed as

follows:

Define an objective function as

f ðwÞ ¼ EðyyTÞ
wTw

¼ E½ðwTXÞðwTXÞT�
wTw

¼ E½wTXXTw�
wTw

¼ wTE½XXT�w
wTw

¼ wTRw

wTw
ð3Þ

where R ¼ E[XXT� is termed as the covariance matrix,

and E[] denotes the operator expectation which means an

average over the ‘training set.’ It maximizes the de-

creasing rate of the covariance directly based on matrix

processing. Although the object function of 2DPCA is

very similar as that of PCA since they are both useful for

reducing the dimensionality of data with minimal loss of

information, there is a key difference in their covariance

matrices, respectively, constructed by matrix and vector

data. In addition, the output of PCA is a numerical value,

whereas the proposed 2DPCA neural network gives rise

to a vector result that is the feature extracted of the input

matrix data.

To obtain the weight vector w when f ðwÞ is maximized,

we can take its partial derivative with respect to w, namely

rf ¼ 2RwðwTwÞ�ðwTRwÞ2w
ðwTwÞ2

ð4Þ

Noting that the unit length of the vector w can be ex-

pressed through the L2 norm as wk k22 ¼ wTw ¼ 1, we can

write

rf ¼ 2Rw� ðwTRwÞ2w
¼ 2E[XXT�w� 2E(yyTÞw

ð5Þ

After replacing E[XXT� and E(yyTÞ with certain samples,

we can rewrite Eq. (5) as follows:

rf ¼ 2XXTw� 2yyTw

¼ 2XyT � 2yyTw
ð6Þ

The learning rule of 2DPCA is given as

Dw ¼ gðXyT � yyTwÞ ð7Þ

where g[ 0 is the learning rate parameter. Therefore, the

rule of adjusting the weight vector w of this network is

wðt þ 1Þ ¼ wðtÞ þ gðXðtÞyTðtÞ � yðtÞyTðtÞwðtÞÞ ð8Þ

where t denotes discrete time.

The network generally converges within several times as

the weight vector w is adjusted by Eq. (8).

In summary, differences can be found between the

proposed 2DPCA NN and the PCA NN and are as follows:

� different network structures; ` different learning rules

of weights and ´ different information processing char-

acteristics of neurons.

2.2 Properties of the weight vector

When converged, the 2DPCA network has the following

conclusions,

1. wk k2 ¼ 1.

The expectation of the adjusting value of the weight

vector w is assumed to be equal to zero when the network

has converged, that is,

0 ¼ EðDwÞ
g

¼ EðXyT � yyTwÞ

¼ EðXXTw� yyTwÞ ¼ Rw� ðwTRwÞw
ð9Þ

Thus,

Rw ¼ ðwTRwÞw ð10Þ

where wTRw is a numeric value, and it is the coefficient of

w. Let k ¼ wTRw, therefore, Rw ¼kw, where w denotes the

eigenvector of R, and k is the eigenvalue of R. Hence,

k ¼ wTRw ¼ wTkw ¼ k wk k2 ð11Þ

Thus, the weight vector w has a unit length, that is,

wk k2 ¼ 1:

2. w lies in the direction of the eigenvector corresponding

to the largest eigenvalue.

Let u1 denote one normalized eigenvector of the co-

variance matrix R, that is,

Ru1 ¼ k1u1 ð12Þ

where u1k k ¼ 1. When the network converges, w ap-

proached u1, namely:

w ¼ u1 þ d ð13Þ

where d is disturbing item.

Alternatively, (13) can be expressed by
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Dw ¼ Dd ð14Þ

where D indicates an increment, or

EðDdÞ ¼ EðDDwÞ ¼ gEðrf Þ ð15Þ

Because of g[ 0 which is not affect the direction of

eigenvector, g is omitted. Then, EðDdÞ can be evaluated by

EðDdÞ ¼ Rw� ðwTRwÞw
¼ Rðu1 þ dÞ � ðu1 þ dÞTRðu1 þ dÞðu1 þ dÞ
¼ Ru1 þ Rd� ðuT

1Ru1 þ dTRu1 þ uT
1Rdþ dTRdÞðu1 þ dÞ

ð16Þ

The quadratic of d is omitted, and then,

EðDdÞ ¼ Ru1 þ Rd� ðuT
1Ru1 þ dTRu1 þ uT

1RdÞðu1 þ dÞ
¼ Rd� k1d� 2k1½dTu1�u1

ð17Þ

Assume that it exists another normalized eigenvector u2

of R, u1 6¼ u2. Our idea is to project EðDdÞ onto u2 by the

following linear transformation

uT
2
EðDdÞ ¼ uT

2
ðRd� k1d� 2k1½dTu1�u1Þ

¼ uT
2
Rd� uT

2
k1d� uT

2
2k1½dTu1�u1

¼ k2u
T
2
d� k1u

T
2
d

¼ ðk2 � k1ÞuT
2
d

ð18Þ

Discussion:

The first case uT
2
d[ 0:

Namely, the direction where d is projected onto u
2
is

positive. It can be shown that uT
2
E½Dd�[ 0 if the eigen-

values k2 [ k1:.
The second case uT

2
d\ 0.

Namely, the direction where d is projected onto u
2
is

negative. It can be shown that uT
2
E½Dd�\0 if the eigen-

values k2 [ k1.
To sum up the two cases above, E½Dd� always changes

toward the positive direction of u
2
, which means that w

always changes toward the direction of the eigenvector

corresponding to the larger eigenvalue. Therefore, w lo-

cates the direction of the eigenvector of R corresponding to

the largest eigenvalue consequentially after convergence of

this network.

3. The weight vector w maximizes the variance of the

output y ¼ ½y1; y2; . . .; yn�, where yj ¼
Pm

i¼1 wixij ¼
wTxj. The covariance can be denoted by

E½yyT� ¼ wTRw ð19Þ

The unitary vector w that maximizes E½yyT� is called the

optimal projection axis. When w lies in the direction of the

eigenvector of R corresponding to the largest eigenvalue,

the quadratic form wTRw will be maximized.

Apparently, we can draw the conclusion that the weight

vector w converges to the normalized eigenvector of R

corresponding to the largest eigenvalue through iterative

learning in Eq. (8). Therefore, an m� n random matrix (or

image) is compressed into a vector with the dimension of

1� n. In addition, it is certain that mean square error of

compressed results is minimum.

3 Adaptive estimation of several principal
components

3.1 Neuron model

The neural network in Fig. 1 is able to obtain the first

principal component. In succession, several principal

components with a number of output nodes are taken into

account, which is illustrated in Fig. 2a.

D D D DDelay element

1y 2y 1r–y ry

1 jx 2 jx mjx
Input signal

Output signal

1s 2s
1rs –

(a) 

D D D DDelay element

1y 2y 1r–y ry

1 jx 2 jx mjx
Input signal

Output signal

rS

(b) 

Fig. 2 Neuron model for estimating several principal components

adaptively. a Unparallel model, b parallel model. When there is no

updating in this neural network, the output is a matrix ½y1; y2; . . .; yr �T
for an image (matrix), where the vector yk for k ¼ 1; . . .; r
corresponds to the output in Fig. 1
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Assume that the weight vectors of the first r - 1 output

neuron have converged to the eigenvectors of R corre-

sponding to the largest r - 1 eigenvalues. The weight

vector of the rth neuron can converge to the eigenvector of

R corresponding to the rth largest eigenvalue, subject to

being orthonormal with other r - 1 eigenvectors through

learning of this network.

An image X ¼ ðx1; x2; . . .; xj; . . .; xnÞ is input to the net-

work column by column, where xj ¼ ðx1j; x2j; . . .; xmjÞT.
Thus, we obtain an ðr � 1Þ � n-dimensional projected ma-

trix Y ¼ ½y1; y2; . . .; yr�1�T from the first r - 1 neuron out-

put. The feedforward connection weight matrix

W ¼ ðw1;w2; � � � ;wr�1Þ is constructed by theweight vectors
of the first r - 1 neuron. The weight vector of the rth neuron

which links the frontm - 1 neurons is s ¼ ðs1; s2; . . .; sr�1Þ,
which is called lateral connection weights.

Accordingly, the relationship between the input and

output of the network can be written as

YðtÞ ¼ WTðtÞXðtÞ ð20Þ

yrðtÞ ¼ wT
r ðtÞXðtÞ þ sðtÞYðtÞ ð21Þ

The feedforward connection weights and the lateral

connection weights are updated in accordance with the

standard Hebbian learning rule given as

wrðt þ 1Þ ¼ wrðtÞ þ b½XðtÞyTr ðtÞ � yrðtÞyTr ðtÞwrðtÞ� ð22Þ

sðt þ 1Þ ¼ sðtÞ þ c½YðtÞyTr ðtÞ � yrðtÞyTr ðtÞsðtÞ� ð23Þ

3.2 Convergence discussion

Assume that the weight vectors w1ðtÞ, w2ðtÞ, . . ., wr�1ðtÞ of
the first r - 1 neurons have converged, respectively, the

eigenvectors u1, u2, . . ., ur�1 of R corresponding to the

largest r - 1 eigenvalues, that is,

WðtÞ ¼ ðu1;u2; � � � ;ur�1Þ ð24Þ

wrðtÞ can be represented by the following linear

equation

wrðtÞ ¼
Xn
i¼1

hiðtÞui ð25Þ

From Eqs. (20) and (21), we may rewrite Eq. (22) as

wrðt þ 1Þ ¼ wrðtÞ þ b½wrðtÞXðtÞXTðtÞ
þ sðtÞWðtÞXðtÞXTðtÞ � yrðtÞyTr ðtÞwrðtÞ� ð26Þ

Therefore, the statistical average of wrðt þ 1Þ can be

written as

wrðt þ 1Þ ¼ wrðtÞ þ b½wrðtÞRþ sðtÞWðtÞR� E½yrðtÞyTr ðtÞ�wrðtÞ�
¼ wrðtÞ þ b½ðwrðtÞ þ sðtÞWðtÞÞR� rðtÞwrðtÞ�

ð27Þ

where rðtÞ ¼ E½yrðtÞyTr ðtÞ�, and R ¼E½XðtÞXTðtÞ�.
The learning rule of hi can also be written according to

Eqs. (25) and (27)

hiðt þ 1Þ ¼ hiðtÞ þ bkihiðtÞ þ bsiðtÞkihiðtÞ � brðtÞhiðtÞ
¼ ½1þ bðki � rðtÞÞ�hiðtÞ þ bkisiðtÞ

ð28Þ

where ki is the ith eigenvalue of R.

Similarly, the statistical average in Eq. (23) can be

written as

siðt þ 1Þ ¼ ckihiðtÞ þ ½1þ cðki � rðtÞÞ�siðtÞ ð29Þ

Equations (28) and (29) can be written as follows

hiðt þ 1Þ
siðt þ 1Þ

� �
¼

1þ bðki � rðtÞÞ bki
cki 1þ cðki � rðtÞÞ

� �
hiðtÞ
siðtÞ

� �

ð30Þ

when i � r, siðtÞ ¼ 0. We rewrite hiðt þ 1Þ in Eq. (29)

hiðt þ 1Þ ¼ ½1þ bðki � rðtÞÞ�hiðtÞ ð31Þ

Rewrite rðtÞ:

rðtÞ ¼ E½yrðtÞyTr ðtÞ�
¼ E½wrðtÞXðtÞXTðtÞwT

r ðtÞ�
¼ wrðtÞRwT

r ðtÞ

¼
Xn
i¼1

hiðtÞui

 !
R
Xn
i¼1

hiðtÞuT
i

 !

¼
Xn
i¼1

kih
2
i ðtÞ

ð32Þ

When t ! 1,

rðtÞ ¼
Xn
i¼m

kih
2
i ðtÞ ð33Þ

Suppose hrðtÞ 6¼ 0, and let

aiðtÞ ¼
hiðtÞ
hrðtÞ

; r ¼ r þ 1; r þ 2; . . .; n ð34Þ

From Eq. (31), we can obtain

aiðt þ 1Þ ¼ 1þ bðki � rðtÞÞ
1þ bðkr � rðtÞÞ aiðtÞ ð35Þ

Because of the eigenvalues k1 [ k2 [ � � � [ kr [ � � �
[ kn [ 0 of R,

1þ bðki � rðtÞÞ
1þ bðkr � rðtÞÞ\1 ð36Þ

Thus,

lim
t!1

aiðtÞ ¼ 0; i ¼ mþ 1;mþ 2; . . .; n ð37Þ
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As hrðtÞ has boundary,
lim
t!1

hiðtÞ ¼ 0; i ¼ mþ 1;mþ 2; . . .; n ð38Þ

Thus, Eq. (33) is transformed into

r ¼ krh
2
r ðtÞ ð39Þ

Substitute the preceding equation into Eq. (31),

hrðt þ 1Þ ¼ ½1þ bkrð1� h2r ðtÞÞ�hrðtÞ ð40Þ

From Eq. (40), we can see that

lim
t!1

hrðtÞ ¼ 1 ð41Þ

Therefore,

lim
t!1

wrðtÞ ¼ ur ð42Þ

So when the weight vectors of the r - 1 neurons converge

to the eigenvectors of R corresponding to the first r - 1

largest eigenvalues u1;u2; . . .;ur�1, the weight vector of

the rth neuron wrðtÞ will converge to the eigenvector of

R corresponding to the rth eigenvalue ur. Particularly,

when r ¼ 1, the aforementioned algorithm will be just an

estimation of the first principal component, and its weight

vector will converge to the eigenvector of R corresponding

to the largest eigenvalue.

3.3 Components estimation learning steps

Equations (22) and (23) are the kernel of the components

estimation learning algorithm. The feedforward and lateral

connection weights should be updated according to

Eqs. (22) and (23). Therefore, the stepwise process pro-

ceeds as follows:

Step (1): Set r ¼ 1 and pre-assign the number of

neurons.

Step (2): Initialize wrð0Þ to some random values and

initialize sð0Þ to an all-zero matrix;

Step (3): Select the learning rate parameters b andc;
Step (4): Compute the update for the feedforward con-

nection weights according to Eq. (22) and compute the up-

date for the lateral connection weights according to Eq. (23);

Step (5): Compute the errors wrðt þ 1Þ � wrðtÞk kF and

sðt þ 1Þ � sðtÞk kF , where kkF denotes the Frobenius norm,

and if either of the errors is larger than the set value, then

go to the step (4); else, r ¼ r þ 1, if r\ p (p denotes the

number of principal components needed), then go to the

step (2), otherwise stop.

3.4 Parallel version

Since each neuron should be added after the convergence

of the previous ones in the model shown in Fig. 2a, each

node does not get affected by any nodes following it.

However, perhaps the simplest way to implement the

adaptive estimation of several principal components is to

follow the parallel version that will extract the principal

components in parallel rather than one after the other. The

first component can be extracted by the model shown in

Fig. 1; therefore, the first component is unaffected by other

nodes since it has no prior nodes. And the second neuron

can begin converging to the second component no later

than the first one converges. Similarly, the rth neuron can

begin converging to the rth component no later than the

(r - 1)th neuron has converged. The network for the par-

allel version is shown in Fig. 2b. The stepwise process

proceeds for all neurons in parallel as follows: (1) Initialize

wrð0Þ to some random values; initialize sð0Þ to an all-zero

matrix; pre-assign the number of neurons. (2) Select the

learning rate parameters b and c; (3) Update for the feed-

forward connection weights and the lateral connection

weights according to Eqs. (22) and (23), until the stopping

criterion is satisfied, that is, the Frobenius norm of the

difference between weight vectors of two consecutive it-

erations is little enough.

The space complexity of this proposed 2DPCA NN

implementation is OðnÞ in Eqs. (22) and (23) for the step

(3), which is much inferior to Oðn3Þ—the complexity of

standard 2DPCA based on statistics using Jacobian

method. The Jacobian method’s space complexity will be

analyzed together with time complexity in Sect. 4.6.

3.5 Convergence property test

We selected a set of close data with the size of 16 9 512.

Each datum sample is represented as a vector, and a col-

lection of data is represented as a single large matrix,

where each row of the data matrix corresponds to a data

point and each column corresponds to a feature. These

data, which mean 512 samples of dimension 16, are used to

test the iteration of original NNs adaptive estimation of

PCA (called 1D NN for short). From the view of compu-

tation model of the proposed NN, we reshaped these data

into 16 9 16 9 32. Under this new model, each datum is a

matrix with the size of 16 9 32, and the collection of data

is represented as 16 matrices. When testing with the pro-

posed NN, we import the first, second, third, etc., column

of the first matrix and then do the same thing to the second,

third, etc., matrix.

For our algorithm, the approximate average error

(AARðtÞ) of the t iterations is defined as

AARðtÞ ¼ 1

t

X
i;j

Aj �WðiÞ½WTðiÞAj�
�� ��2

F
ð43Þ

where t denotes the total number of iterations; WðiÞ is a

feedforward connection weight matrix for the ith iteration;
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Aj and WðiÞ½WTðiÞAj� are the jth original image and its

estimated image. Similarly, the AARðtÞ for 1D NN can be

formulated in the following way

AARðtÞ ¼ 1

t

Xt
i¼1

X�WðiÞ½WTðiÞX�
�� ��2

F
ð44Þ

where X is the set of input vectors, and each column of X is

one sample.

The AAR brought in by the proposed adaptive neural

networks formulation for the 2DPCA with the increasing

iteration times is plotted in Fig. 3a which shows that the

AAR decreases as the number of feedforward connection

weights r increases at rate = 0.01. This rate refers to the

learning rate b. The observation can be summarized that

the plots of AAR for each variable r are all very low at the

first iteration, then quickly rise and finally stabilize after a

certain number of iterations. It is because wrð0Þ is initial-
ized to some random values before iterations and its cor-

responding AAR is also some random value; and system

response requires a process, but WTðiÞ is changed toward

the true value with its standard learning rule. Finally, the

low AAR after several iterations never improves upon the

result of the convergence of this NN. This NN almost

converges after 80 iterations. The higher the number of

feedforward connection weights is, the lower the AAR is.

Similarly, Fig. 3b shows the convergence of AAR at dif-

ferent rates {0.0001, 0.001, 0.01, 0.02, 0.05} with the in-

creasing iteration times when the number of feedforward

connection weights is equal to 5. Here, the suitable values

the learning rate parameters b and c are 0.05 and 5 through

experiments. The conclusion drawn here is that the pro-

posed NN achieves a shorter time of iteration when a

suitable value of the learning rate is chosen.

Figure 4 shows the fluctuations and slow convergence of

AAR of original neural networks adaptive estimation of

PCA as iteration gradually increases. Figure 4a, b corre-

sponds to Fig. 3a, b, respectively, and they have the same

parameters. It is found that this NN needs a larger number

of iterations for convergence, but achieves a lower AAR

than the proposed NN. The value of AAR is related to the

number of samples and the distribution of the eigenvalue.

Generally speaking, the larger the proportion of the sum of

the eigenvalues corresponding to the selected eigenvectors

to the summation of all eigenvalues is, the lower the AAR

is, vice versa. In addition, the number of samples exerts

some influence on the distribution of eigenvalue. The de-

tailed discussion about the error problem is given in

Sect. 4.3, and we will divide the instances of sample vol-

ume into two different cases, i.e., a large-sample test and a

small-sample test.

Comparisons between the local enlarged plot of Fig. 4b

and the AAR under that the learning rate is equal to 0.05 of

the proposed NN are shown in Fig. 5. It reveals that the

AAR of 1D NN fluctuates acutely under different pa-

rameters during the range [1160] of iteration, and the

proposed NN is superior to the 1D NN when a small

number of iterations are concerned.

4 Performance analysis and simulation results

In this section, computer simulations are conducted to

assess the performance of the proposed adaptive neural

networks formulation for the 2DPCA in support of the

following three objectives:

1. Investigation of the properties of eigenfaces and

eigengaits computed by the proposed adaptive neural

networks formulation algorithm;
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Fig. 3 Approximate average error of the proposed NN. a Under

different values of r (rate = 0.01); b under different values of rate

(r = 5)
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2. Evaluation of the proposed adaptive neural networks

formulation on such problems as reconstruction error,

generalization capability and classification.

3. Comparison between the proposed adaptive neural

networks formulation and its statistical version.

Before presenting the experimental results, the ex-

perimental data are described first.

4.1 Experimental data

Dataset A AR [39] is a well-known database for face

recognition. It contains 120 persons participated in differ-

ent facial expressions and variations over time, for a total

of 1680 cropped images of 50 9 40 pixels. The images for

one person are shown in Fig. 6a.

Dataset B CASIA(B) gait database [40] includes a total

of 124 persons, and each person has 10 sequences which

are six normal gaits, two gaits with a bag and two gaits

with a coat. We choose the normal ones who walk on a

straight-line path at natural cadences in a viewing angle

with respect to the image plane, namely a 90 degree as the

evaluation samples. We use a dual-ellipse fitting approach

for robust gait periodicity detection [41]. The gait energy

images (GEIs) have already been extracted as the gait

characteristic for each gait sequence by us [4]. In order to

eliminate the influence of the image size on performance

accuracy, the size of all images has been unified into

64 9 64 pixels with each silhouette centralized as in

Fig. 6b.

4.2 Eigenfaces for weight vectors

PCA has generated a set of eigenfaces by performing a

mathematical process on a large set of images depicting

different human faces. These eigenfaces can be considered

as a set of standardized face ingredients derived from sta-

tistical analysis of many pictures of faces. Any human face

can be regarded as a combination of these standard faces.

Every face image can be projected into the subspace

spanned by all the eigenvectors. Therefore, each face im-

age corresponds to a point in the subspace. Likewise, every

point in the subspace also denotes a certain image in cor-

respondence. Eigenfaces obtained from a neural network

adaptive estimation algorithm of PCA are shown in

Fig. 7a.

Furthermore, the proposed NN is applied to solve 2D

eigenface problem. 2D eigenface is expressed like a facial

image. Denote n to be the number of columns in an image,

and then, an outline of the 2D eigenface procedure can be

illustrated as follows.
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Fig. 4 Approximate average error of neural networks adaptive

estimation of PCA. a Under different values of r (rate = 0.01);

b under different values of rate (r = 5)
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for i=1:n

t is a spliced matrix by putting transposed i-th column of all the samples from up to down 

base{i} = tT * [ 1 ( )tw , 2 ( )tw , , 15 ( )tw ] 

end

for k=1:15 

 for j=1:n

2DEigenface(k) =[ base{1}(:,k), ,base{j}(:,k), , base{n}(:,k)];

end

save 2DEigenface(k) 

end

. . .

... ...

The weight vectors w1ðtÞ, w2ðtÞ, …, w15ðtÞ, whose

corresponding eigenfaces are shown in Fig. 7b, are the first

15 feedforward connection weights obtained from this NN.

Compared with the results in Fig. 7a, it can be inferred that

both eigenfaces for the neural networks formulation algo-

rithm of 1DPCA and 2DPCA are the same. The concep-

tions of eigenfaces in both 1DPCA and 2DPCA NNs are

uniform. This pattern of eigenfaces is how different fea-

tures of a face are singled out to be evaluated and scored.

In the eigengaits experiments, as shown in Fig. 8a, b,

respectively, neural networks of 1DPCA and 2DPCA can

Fig. 6 a Face images for one subject from AR database. b GEIs of different gait sequences

Fig. 7 Eigenfaces. a From neural network adaptive estimation

algorithm of PCA; b the proposed NN
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also get the same specific pattern. Although 1D and 2D

principal components are computed by PCA and 2DPCA

NNs separately, their eigenfaces (or eigengaits) are

uniform.

4.3 Reconstruction error discussion

This subsection aims to compare the reconstruction error of

neural networks of 1DPCA with 2DPCA under the condi-

tion of equal number of dominant principal components.

This implies approximately the same computational cost.

Most researchers usually only focus on a large-sample test

and ignore a case of a small sample. However, it is nec-

essary that the instances of sample volume are separated

into two species which will be widely divergent, namely

large sample and small sample.

4.3.1 Large-sample test

In our experiments, we use the whole database, so the

dataset A has 1680 samples and the dataset B has 744

samples totally.

4.3.1.1 Dataset A experiments Carried out by simply

performing an ‘inverse vec’ operation of Eq. (20), the

image must be reconstructed. See Fig. 9a for an example of

the reconstructed face image—from the former to the latter

sub-image—using first 5, 10, …, 40 feedforward connec-

tion weights for the first person. Comparison among the

eight reconstructed face images in Fig. 9a reveals a very

distinct image for different numbers of feedforward con-

nection weights. The neural network architecture with 25-

neuron can reconstruct a clear and distinguishable face

image. In contrast, Fig. 9b shows eight reconstructed im-

ages from an equal number of feedforward connection

Fig. 8 Eigengaits. a From neural network adaptive estimation algorithm of PCA; b the proposed NN

Fig. 9 Reconstruction. a The proposed NN; b neural network

adaptive estimation algorithm of PCA
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weights using a neural network adaptive estimation algo-

rithm of PCA, from which we can see that these recon-

structed results are far more blurred than the proposed NN.

Figure 10a shows the reconstruction errors over the var-

iation of the number r of feedforward connection weights

for the two above-mentioned NNs. The reconstruction error

here is computed by root mean square error (RMSE).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Ai � Âi

�� ��2
F

s
ð45Þ

where Ai and Âi ði ¼ 1; 2; . . .; nÞ are an original and re-

constructed images. n denotes the total number of samples.

4.3.1.2 Dataset B experiments The reconstruction results

of neural networks of 2DPCA and 1DPCA are shown in

Fig. 11a, b, respectively. Similarly, the first sub-images in

the two figures are corresponding to the original GEI, and

the second to the last sub-images in them are the

reconstructed GEIs by the 10, 20, …, 60 feedforward

connection weights. Since it is difficult for us to tell the

difference between them, we have evaluated the problem

of the reconstruction error as the number of feedforward

connection weights increases gradually, which is shown in

Fig. 10b.

From Fig. 10, we can have the following observation:

The adaptive neural networks formulation for the 2DPCA

achieves a lower residue error than that for the 1DPCA

when the training sample set is large.

4.3.2 Small-sample test

The reconstruction error problem is examined on the small

sample only from a single person; namely, the numbers of

samples selected from the dataset A and B are 14 and 6,

respectively.

4.3.2.1 Dataset A experiments We have also tested two

neural networks for both 2DPCA and 1DPCA, and the

reconstruction results are shown in Fig. 12a, b. They cor-

respond to the face images reconstructed by the 1, 2, …, 8

feedforward connection weights (i.e., feature dimension).

We can clearly see blurred results of the proposed method,

but it is inferior to the reconstruction results of NN for

PCA, whose neural network architecture with 5-neuron can

reconstruct a clear and distinguishable face image. The

reason for this is twofold: firstly, the top eigenvectors in

NN for PCA reflect the reconstruction information; and

secondly, there are 13 eigenvectors in total, the top 5 of

which have occupied majority energy. In contrary, the

number of eigenvectors in the proposed NN is large, and it

is not enough to select a few eigenvectors to reconstruct

human faces. Figure 13a displays the reconstruction errors

of using these two NNs for a single person’s samples from

the dataset A.

4.3.2.2 Dataset B experiments The reconstruction results

of neural network algorithms of 2DPCA and 1DPCA are

shown in Fig. 14a, b, respectively. Similarly, the first sub-

images in the two figures are corresponding to the original

GEIs, and the second to the last sub-images in them are the

reconstructed GEIs by the 1, 2, …, 5 feedforward con-

nection weights. Figure 13b displays the reconstruction

errors of using these two NNs for a single person’s samples

from the dataset B.

From the results of reconstruction errors in Fig. 13, it

should be pointed out that the adaptive neural networks

formulation for the 2DPCA achieves a higher residue error

than that for the 1DPCA, when the training sample set is

small.

Comparisons between Case 1 and Case 2.

5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

r

R
ec

on
st

ru
ct

io
n 

er
ro

r

NN adaptive estimation of 1D principal components

The proposed NN

(a)

10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

r

R
ec

on
st

ru
ct

io
n 

er
ro

r

NN adaptive estimation of 1D principal components 

The proposed NN

(b)

Fig. 10 Reconstruction error. a In the whole dataset A; b in the

whole dataset B
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Obviously, the above experiments for large sample and

small sample differ significantly. We can take the dataset B

for example, and there are 744 and 6 samples in total with

the size of 64 9 64 pixels for large and small sample set,

respectively.

For a large sample set, 1DPCA has 743 nonzero

eigenvalues at most, while 2DPCA has 64 ones at the

maximum. If we select the same number of feedforward

connection weights, which correspond to different eigen-

values, 1DPCA achieves a smaller proportion of the sum of

the eigenvalues corresponding to the selected eigenvectors

to the summation of all eigenvalues which means a lower

energy. On the contrary, 2DPCA gains a larger proportion

and a higher energy. Therefore, 2DPCA attains a lower

error than 1DPCA.

Conversely, for a small sample set, 1DPCA has five

nonzero eigenvalues at most, while 2DPCA has 64 at the

maximum. When we also pick out the same number of

Fig. 11 Reconstruction. a The proposed NN; b neural network adaptive estimation algorithm of PCA

Fig. 12 Reconstruction. a The proposed NN; b neural network

adaptive estimation algorithm of PCA

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

r

R
ec

on
st

ru
ct

io
n 

er
ro

r

NN adaptive estimation of 1D principal components

The proposed NN

(a)

1 2 3 4 5
0

100

200

300

400

500

600

r

R
ec

on
st

ru
ct

io
n 

er
ro

r

NN adaptive estimation of 1D principal components

The proposed NN

(b)

Fig. 13 Reconstruction error. a A single person’s samples from

dataset A; b a single person’s samples from dataset B
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feedforward connection weights, 1DPCA comes through a

larger proportion of the sum of the eigenvalues corre-

sponding to the selected eigenvectors to the summation of

all eigenvalues, in other words a higher energy than

2DPCA. As a result, 2DPCA acquires a larger error than

1DPCA. Although the performance of 2DPCA is expected

to be better with the augmentation of dimensionality, the

complexity will rise. The motivation of this subsection is to

test reconstruction error ensuring approximate complexity

in the utmost small-sample situation.

4.4 Generalization capability discussion

To illustrate the generalization capability of the proposed

NN, we test the reconstruction of another face image which

is collected from the Internet. The results are shown in

Fig. 15, where the first sub-image shows the original girl

face image and others are reconstructed faces coded using

the subspace learning rule with 5, 10, …, 40 feedforward

connection weights, respectively, just like the experiment

in the Sect. 4.3-Case 1-(1). Apparently, the girl face image

and the man’s face image in Fig. 9a are statistically similar

because of the relatively good coding performance that is

evident in Fig. 15 when the whole dataset A is used to

obtain the feedforward connection weights. The more the

number of feedforward connection weights is, the better the

reconstruction result will be. However, a high number of

feedforward connection weights is still the number one

cause of computational effort. It is clear that the recon-

structed image has a good visual quality when using only

the top 25 feedforward connection weights.

4.5 Classification

Besides the experiments on reconstruction, we will com-

pare the proposed NN with the NN of 1DPCA on classi-

fication. It does not make sense to conduct experiments in a

small sample set. Accordingly, several experiments for a

large sample set are carried out to show the effectiveness of

the proposed NN for face and gait recognition.

For each person in the dataset A, for example, we use the

first column in Fig. 6a as two samples for training and the rest

of eight samples (as shown in the second to the fourth column

in Fig. 6a) with varying facial expressions for testing. The

first half samples of each person are used for training, and the

remainders are used for testing for the dataset B. The nearest

neighbor classifier is employed for classification, and the

recognition performance is measured in accuracy.

4.5.1 Dataset A experiments

The accuracy of the proposed NN and NN adaptive esti-

mation of 1DPCA over the variation of number of the

feedforward connection weights is plotted in Fig. 16a. The

proposed NN achieves its maximal accuracy of 95.83 %

using only 10 feedforward connection weights. In addition,

Fig. 16a shows the proposed NN consistently outperform-

ing NN adaptive estimation of 1DPCA irrespective of the

variation in number of weights.

4.5.2 Dataset B experiments

Figure 16b also shows a plot of accuracy versus the

number of the feedforward connection weights. As can be

Fig. 14 Reconstruction. a The proposed NN; b neural network adaptive estimation algorithm of PCA

Fig. 15 Reconstruction for the proposed neural network
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seen, the proposed NN achieves 93.55 % accuracy with 35

feedforward connection weights, compared with 90.86 %

accuracy with 60 feedforward connection weights. For NN

adaptive estimation of 1DPCA, when more than 120

feedforward connection weights are used to constitute the

network, the accuracy then improves only slightly. Even if

the number of feedforward connection weights increases to

190, this NN reaches a 93.55 % accuracy rate.

The above comparative evaluations demonstrate that the

proposed NN is more effective with fewer feedforward

connection weights, which suggests less computational

complexity than NN adaptive estimation of 1DPCA.

4.5.3 Discussion

The reason why the experiment validation considers cases

where reduced dimension is limited to a few is that much

empirical work has been done to determine how many

components should be computed to adequately represent

data. Generally, an appropriate value for components is

desirable as small as possible while achieving a reasonably

high value on a percentage basis. For example, the cumu-

lative energy is higher than a certain threshold, say 90 %.

Eigenvalues and eigenvectors always appear in pairs, and

the feedforward connection weights (i.e., eigenvectors

corresponding to eigenvalues) are automatically arranged

in a descending order. It turns out that the eigenvector with

the largest eigenvalue represents the principle component.

The significant information mainly centralizes a few

components. The components of less significance can be

ignored. Some information may be definitely lost but not

that much if the eigenvalues can be small.

4.6 Comparison with statistical 2DPCA method

Suppose we need to calculate the eigenvectors for a n 9 n

Matrix A with our proposed neutral network, the Jacobian

method can be broken into five steps: First, a nonzero and

non-diagonal element with max absolute value aij is se-

lected; for this step, the time complexity is O(1); second,

we calculate h from tan 2h ¼ 2aij
aii�aij

; here, we look up the

inverse trigonometric table for h value, and thus, planar

rotation matrix P1 can be get. During this process, if n is

not relatively big, the time complexity for computing the h
and the subsequent Matrix A1 can be considered as O(1);

third, we calculate each element in Matrix A1 from

A1 ¼ PT
1AP1, due to the fact that P1 is a sparse matrix with

finite ones in diagonal while more zeros in other position,

this P1 can be split into two matrices, and the final amount

of calculation is O(n); fourth, we substitute A with A1,

repeat Steps 1, 2 and 3 to calculate A2 and P2 and continue

this process till the elements in diagonal of Am are small

enough (i.e., smaller than the allowed errors). This step’s

time complexity is Oðn2Þ; The last step is that diagonal

elements of Am are approximation for all eigenvalues of

matrix A, and the jth column of P ¼ P1P2 � � �Pm is corre-

sponding to the eigenvector of eigenvalue kj (the jth ele-

ment in Am diagonal). In summary, the total time

complexity of this method is Oðn2Þ. Computing P needs

Oðn3Þ space complexity.

In this section, we compare the complexity and perfor-

mances of our adaptive NN formulation with the statistical

2DPCA method tested on computer with In-

tel(R) Core(TM)2 Duo T8300@2.40GHZ CPU and 1G

RAM. In addition to the superiority of space complexity,

the NN formulation has comparative time complexity in

terms of the number of elementary operations to the sta-

tistical version. Not only does Table 1 provide space

complexity, time complexity, but also reconstruction error,

accuracy and time-consumed during the whole training and

testing processing for both dataset A and B experiments.

0 10 20 30 40 50 60 70 80 90
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Number of the feedforward connection weights

A
cc

ur
ac

y

The proposed NN

NN adaptive estimation of 1D principal components

(a)

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

ur
ac

y

Number of the feedforward connection weights

The proposed NN 

NN adaptive estimation of 1D principal components

(b)

Fig. 16 Accuracy. a Dataset A; b dataset B

Neural Comput & Applic (2016) 27:1245–1261 1259

123



For the statistical 2DPCA method, the Jacobi algorithm is

employed to obtain eigenvalues and eigenvectors. More-

over, it is kept equal for the number of the feedforward

connection weights of adaptive NN formulation and the

eigenvectors number of the statistical version. It is ob-

served that the adaptive NN formulation method performs

quite well, and it can yield comparative accuracy, running

time and reconstruction results to the statistical version.

The proposed NNs method can be a neuro-computing al-

gorithm to realize 2DPCA, and it possesses very attractive

in the potential applications on hardware platforms like

single-chip computer and embedded systems to overcome

the disadvantages of low cache and memory.

5 Conclusions

In this paper, a new technique for image feature extraction

and representation using NN—adaptive neural networks

formulation for the 2DPCA—was developed. It was also

the first time for the uniform conceptions of ‘eigenfaces’ in

both 1DPCA and 2DPCA neural networks to be put for-

ward. A comparative assessment of the performance of the

proposed NN and 1D NN shows that the adaptive neural

networks formulation for the 2DPCA achieves a lower

residue error than that for the 1DPCA when the training

sample set is large. On the contrary, when the training

sample set is small, the adaptive neural networks formu-

lation for the 2DPCA achieves a higher residue error than

that for the 1DPCA. On face and gait recognition tasks, a

simple nearest neighbor classifier test indicated a particular

benefit of the neural network developed here serving as an

efficient alternative to conventional 1D NN. The proposed

NN has a lower computation than a 1D NN on the feature

extraction of the same image matrix. Other learning rules

for adaptive estimation of neural networks of 2DPCA will

be tested in the future work.
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Appendix

Here, we provide a proof of Eq. (29).

sðt þ 1Þ ¼ sðtÞ þ c½yrðtÞYTðtÞ � yrðtÞyTr ðtÞsðtÞ�
¼ sðtÞ þ c½wrðtÞXðtÞXTðtÞWTðtÞ
þ sðtÞWðtÞXðtÞXTðtÞWTðtÞ � yrðtÞyTr ðtÞsðtÞ�

The statistical average of sðt þ 1Þ can be written as

sðt þ 1Þ ¼ sðtÞ þ c½wrðtÞRWTðtÞ
þ sðtÞWðtÞRWTðtÞ � rðtÞsðtÞ�

Therefore,

siðt þ 1Þ ¼ siðtÞ þ chiðtÞki þ csiðtÞki � crðtÞsiðtÞ
¼ chiðtÞki þ ð1þ cki � crðtÞÞsiðtÞ
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