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Abstract In this paper, synchronization of chaotic sys-

tems with unknown parameters and unmeasured states is

investigated. Two nonidentical chaotic systems in the

framework of a master and a slave are considered for

synchronization. It is assumed that both systems have

uncertain dynamics, and states of the slave system are not

measured. To tackle this challenging synchronization

problem, a novel neural network-based adaptive observer

and an adaptive controller have been designed. Moreover, a

neural network is utilized to approximate the unknown

dynamics of the slave system. The proposed method im-

poses neither restrictive assumption nor constraint on the

dynamics of the systems. Furthermore, the stability of the

entire closed-loop system in the presence of the observer

dynamics has been established. Finally, effectiveness of the

proposed scheme is demonstrated via computer simulation.

Keywords Chaos synchronization � Adaptive control �
Adaptive observer � Neural network

1 Introduction

Due to successful applications, the master–slave synchro-

nization introduced by Pecora and Carroll [1] has attracted

a great deal of attention recently [2, 3]. Secure

communication is considered as one of the most important

applications of chaos synchronization [4, 5]. For this pur-

pose, two chaotic systems are employed as transmitter and

receiver. The transmitter produces chaotic signals and

combines them with information signal. Then, the receiver,

which is also a chaotic system, is synchronized with the

transmitter and recovers the information signal [6]. Of all

previously utilized methods in synchronization, sliding

mode control [7, 8], impulsive control [9, 10], auxiliary

system approach [11], active control [12], and adaptive

passive method [13] can be mentioned. One of the chal-

lenges occurring in the synchronization problem is the fact

that the master and slave systems have mostly uncertain

dynamics. Such uncertainties can appear in the form of

unmodeled dynamics and/or unknown parameters. As a

result, adopting strategies to cope with such uncertainties is

of prime importance. Thus, the necessity and practicality of

adaptive methods for the synchronization of uncertain

chaotic systems are accentuated [14, 15].

Combination of chaotic behavior and uncertain dy-

namics makes the synchronization problem both interesting

and multifaceted. Therefore, the problem is divided into

several classifications, and researchers have contrived dif-

ferent methods to tackle these categories separately. As

examples of these cases, synchronization of nonidentical

chaotic systems [16], synchronization and anti-synchro-

nization of stochastic chaotic systems [17, 18], synchro-

nization of chaotic systems with time-varying parameters

[19], synchronization of growing chaotic network models

[20], and intelligent approaches to the synchronization

problem [21, 22] can be stated.

To simplify the challenging problem of synchronization, it

has been commonly assumed that all states of the systems are

measurable [23, 24]. Therefore, the need for designing ob-

servers is obviated. However, due to unavailability of all
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states in practical applications, observer design becomes

important in the synchronization problem. The complexity of

designing observers for the synchronization problem stems

from the fact that the master and slave systems are mostly

uncertain. Coupling unknown dynamics and unknown states

requires a combination of adaptive and/or robust controllers

and observers, which is still an open problem.

Several different observer-based strategies have been

proposed for the synchronization problem in the literature

[25, 26]. Nijmeijer and Mareels [27] have reviewed several

observer design methods, utilized for the synchronization

problem of chaotic systems. The nonlinear nature of

chaotic dynamics makes design of observers difficult for

such complex systems. There is no systematic approach for

designing nonlinear observers, as opposed to linear ones

[27]. In addition, existence of uncertainties in such systems

adds to the complication of observer design. Nevertheless,

to reduce the problem complexity, it is assumed in many

cases that uncertainties are not coupled with unmeasured

states [28]. However, such an assumption is not valid in

practical applications. Another approach to address the

complications of observer design for the synchronization

problem of uncertain chaotic systems is to impose some

structural assumptions on systems dynamics. Considering

merely parametric uncertainties, and requiring dynamic

equations of the systems to satisfy some specific conditions

are of main examples of such assumptions [29, 30].

Nonetheless, such assumptions are restrictive, and their

fulfillment cannot be always guaranteed.

When the systems have uncertain dynamics and all states

are not measured, the synchronization problem becomes

complicated. As mentioned earlier, the existing methods in

the literature impose restrictive assumptions on the dynamics

of the systems, in order to synchronize uncertain chaotic

systems with unknown parameters. The contribution of this

paper is proposing a novel synthesis of neural network-based

observer and adaptive controller to synchronize uncertain

chaotic systems with unknown states. The proposed scheme

relaxes the previously imposed assumptions on system dy-

namics. As a result, the proposed method can be applied to a

wider range of systems. Further, the proposed scheme can

cope with a more general form of uncertainties such as un-

modeled dynamics, and parametric and nonparametric

uncertainties, instead of merely parametric uncertainties. In

addition, we extended an existing observer design method

for linear systems [31] to nonlinear systems. In this study, an

adaptive neural network-based observer and an adaptive

controller are designed to tackle the synchronization prob-

lem of uncertain chaotic systems. Two chaotic systems are

considered as the master and slave. It is assumed that the

parameters of the master system are unknown. Furthermore,

a general form of uncertainty has been considered for the

slave system. It is also assumed that the slave system states

are not measured. Finally, the stability of the closed-loop

system in the presence of observer dynamics has been

established.

2 Problem statement

In this section, an adaptive controller along with an adaptive

neural network-based observer is designed to synchronize

two chaotic systems. One of the systems is considered as the

master, generating chaotic signals. The other one is consid-

ered as the slave system, which is forced to follow the master

signals. Both systems have uncertainties. In addition, it is

assumed that states of the slave system are not fully measured.

The equations governing the dynamics of the master and

slave systems are given below, respectively.

_x ¼ f ðxÞ þ FðxÞP ð1Þ

_y ¼ gðyÞ þ SðyÞbþ U

z ¼ Cy
ð2Þ

where x 2 R
n and y 2 R

n are the state vectors; f ðxÞ; gðyÞ :
R

n ! R
n are two known continuously differentiable non-

linear vector functions; FðxÞ : Rn ! R
n�n is a known

continuously differentiable nonlinear function; SðyÞ :
R

n ! R
n�n is an unknown nonlinear vector function; and

P; b 2 R
n are vectors of the master and slave parameters,

respectively, which are unknown. U 2 R
n is the input

vector, employed to synchronize the master and slave

systems; z 2 R
m is the output vector of the slave system;

and C 2 R
m�n is a constant matrix. It is assumed that all

the states of the master system are available, while the sates

of the slave system are not measured.

3 Observer and controller design

In this section, the equations of the master and slave sys-

tems given by (1–2) are used to design a controller and an

observer for the synchronization purpose. First, in

Sect. 3.1, an adaptive neural network-based observer and

controller are deigned, and their stabilities in the sense of

Lyapunov are established by the use of the Lyapunov

stability analysis. Next, in Sect. 3.2, the asymptotic sta-

bility of the tracking error for the designed controller is

demonstrated.

3.1 Designing adaptive neural network-based

observer and controller

Without the loss of generality, (2) can be rewritten as

_y ¼ Ayþ sðyÞ þ U

z ¼ Cy
ð3Þ
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where A 2 R
n�n is a constant matrix, and the pair (A, C) is

observable, that is, for a positive definite matrixL, there exists

a unique symmetric positive definite matrixH such that ðA�
KCÞT

H þ HðA� KCÞ ¼ �L: It is also assumed that sðyÞ :
R

n ! R
n is an unknown nonlinear vector function.

Unknown nonlinear function s(y) can be approximated

by a combination of some radial basis functions and un-

known parameters as

sðyÞ ¼ RðyÞ �Qþ �d ð4Þ

where RðyÞ : Rn ! R
n�np is a matrix of radial basis func-

tions of the form rijðyÞ ¼ e
�

y�cijk k
tij ; cij is the center of the

receptive field; tij is the width of the basis functions; and �d

is a bounded error where �d
�
�

�
� � �c; and :k k denotes the

Euclidean norm of a vector. �Q is the optimal vector of the

weight parameters, which minimizes �d:. As specified ear-

lier, it is assumed that the states of the slave system are not

available. Therefore, y cannot be used to approximate s(y).

Since it is assumed that the slave system is observable, its

states can be also recovered from the outputs. Thus, it is

proposed to use the outputs to approximate s(y) as

sðyÞ ¼ RðzÞQþ d ð5aÞ

where Q and d are similar to �Q and �d; which have been

previously defined; z represents the output vector of the

slave system. The proposed neural network which ap-

proximates the unknown dynamics of the slave system is

presented as

sðyÞ ¼

r1ðzÞ r2ðzÞ : : : 0

0 : r3ðzÞ r4ðzÞ : 0

: : : :
: : : :
: : :
0 : : : rn�p�1ðzÞ rn�pðzÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Q1

Q2

:
:
:

Qn�p

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

þ d

ð5bÞ

where n denotes the number of the slave system states;

p stands for the number of the basis functions. QT ¼
½Q1 Q2 . . . Qn�p �T is the vector of the weight

parameters.

Due to unavailability of the slave system states, the

following adaptive observer is proposed as

_̂y ¼ Aŷþ ŝðŷÞ þ U þ Kðz� ẑÞ
ẑ ¼ Cŷ

ð6Þ

where ŷ 2 R
n is the estimate of the state vector; ẑ 2 R

m is the

output vector of the observer; K is a gain matrix yet to be

determined. In addition, tracking error e, observation error e;

and parameters estimation error ~P are defined below

e ¼ ŷ� x ð7Þ

e ¼ y� ŷ ð8Þ
~P ¼ P̂� P ð9Þ

where P̂ 2 R
n is the parameters estimation vector.

In order to design an observer, the dynamic equation of

the slave system can be written as:

_y ¼ ðA� KCÞyþ Kzþ U þ sðyÞ ð10Þ

The above equation can be broken into two parts as [31]

_yu ¼ ðA� KCÞyu þ Kzþ U ð11Þ
_yQ ¼ ðA� KCÞyQ þ sðyÞ ð12Þ

y ¼ yu þ yQ ð13Þ

where (11) can be construed as the part of the slave system,

which does not contain any unknown dynamics. On the

other hand, (12) contains the unknown dynamics of the

slave system.

Similarly, the observer equation can be split as

_̂yu ¼ ðA� KCÞŷu þ Kzþ U ð14Þ
_̂yQ ¼ ðA� KCÞŷQ þ RðzÞQ̂þ wðtÞ ð15Þ

ŷ ¼ ŷu þ ŷQ ð16Þ

where w(t) is a compensating term to cope with the esti-

mation error, and Q̂ is the unknown vector of the weight

parameters.

An auxiliary matrix cðtÞ; which relates the observer

states to the unknown weight vector, is defined by the

following equation

ŷQ ¼ cQ̂ ð17Þ

It is worth mentioning that the main challenge of de-

signing adaptive observers is the coupling between un-

known dynamics and unknown states. To tackle this

problem, c is defined to relate these two unknown parts.

Moreover, the unknown dynamics and unknown sates have

time-varying natures. As a result, c becomes time-varying

as well. Thus, it is desired to obtain an adaptive law for

updating c such that (17) holds for all times. Taking time

derivative of (17) gives

_̂yQ ¼ _cQ̂þ c _̂Q ð18Þ

Using (15) in (18) gives

_cQ̂þ c _̂Q ¼ ðA� KCÞcQ̂þ RðzÞQ̂þ wðtÞ ð19Þ

By selecting wðtÞ ¼ c _̂Q; (19) becomes

_c ¼ ðA� KCÞcþ RðzÞ ð20Þ

The above equation is utilized to update c: As a result,

(17) can be used to link ŷQ to Q̂: Note that the final goal is

to prove the convergence of the tracking error to zero, as
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well as establishing the stability of the observer. To

demonstrate the stability of the observer, c is used in the

observer equations to compensate for the system uncer-

tainties. Selecting wðtÞ ¼ c _̂Q; (15) yields to

_̂yQ ¼ ðA� KCÞŷQ þ ŝðzÞQ̂þ c _̂Q ð21Þ

To establish the stability of the proposed observer, the

following vector is defined as

lðtÞ ¼ e� c ~Q ð22Þ

where ~Q is the estimation error of the weight parameters

vector, defined as ~Q ¼ Q� Q̂: Taking time derivative of

(22) results in

_lðtÞ ¼ _e� _c ~Q� c _~Q ð23Þ

Employing (5a), (8), (10), and (14–16), _e can be written

as

_e ¼ ðA� KCÞyþ RðzÞQ� ðA� KCÞŷ� RðzÞQ̂� wðtÞ þ d

ð24Þ

Employing w(t) which was defined earlier (i.e.,

wðtÞ ¼ c _̂Q), (24) becomes

_e ¼ ðA� KCÞeþ RðzÞ ~Q� c _̂Qþ d ð25Þ

Using (20) and (25) in (23) gives

_lðtÞ ¼ ðA� KCÞeþ RðzÞ ~Q� c _̂Q� ððA� KCÞc

þ RðzÞÞ ~Q� c _~Qþ d ð26Þ

Utilizing (22) in (26) and noting that ~Q ¼ Q� Q̂; (26)

can be written as

_lðtÞ ¼ ðA� KCÞlðtÞ þ d ð27Þ

Since d is a bounded vector and the pair (A, C) is ob-

servable, by appropriate selection of gain matrix K, vector

lðtÞ remains bounded.

The following Lyapunov function is proposed to obtain

the control law, required for the synchronization purpose,

and also to establish the stability of the proposed observer

V ¼ 1

2
eTeþ �eTH�eþ 1

2
~PT ~Pþ 1

2
lTl ð28Þ

where �e ¼ yu � ŷu: Using (7), (9), and (27), the time

derivative of (28) is obtained as

_V ¼ � P̂� ~P
� �T

FðxÞT � f ðxÞT þ UT þ ŷT AT � CTKT
� �h

þ zTKTþQ̂TRðzÞT þ wTðtÞ
i

eþ _~P
T ~Pþ �eTHðA� KCÞ�e

þ �eTðA� KCÞT
H�eþ lT _l ð29Þ

To make (29) negative semidefinite, the following

control and adaptive laws are proposed

_~P ¼ _̂
P ¼ �FðxÞT

e ð30Þ

U ¼ �K1eþ FðxÞP̂þ f ðxÞ � ðA� KCÞŷ� Kz� RðzÞQ̂
� wðtÞ

ð31Þ

where K1 is a symmetric positive definite matrix of ap-

propriate size.

Substituting (27), (30), and (31) into (29) results in

_V ¼ �eTK2e� �eTL�e

þ lT ðA� KCÞlðtÞ � wðtÞ � c _~Qþ d
h i

ð32Þ

where L is a symmetric positive definite matrix. Choosing

wðtÞ ¼ c _̂Q and recalling the definition of ~Q; (32) can be

written as

_V � � eTK2e� �eTL�eþ kmax ðA� KCÞð Þ lðtÞk k2þ lðtÞk kr
ð33Þ

where dk k� r; and r is unknown. kmaxð�Þ denotes the

maximum eigenvalue of a matrix. (33) can be rewritten as

_V � � eTK2e� �eTL�e
þ lðtÞk k kmax ðA� KCÞð Þ lðtÞk k þ r½ � ð34Þ

It follows directly that the first two elements of (34)

are negative. Additionally, for a region where

lðtÞk k� �r
kmax ðA�KCÞð Þ ; the last term becomes negative as

well. Therefore, the rate of the Lyapunov function is

negative inside this region. Thus, using the proposed

control and adaptive laws, the Lyapunov function re-

mains ultimately uniformly bounded. As a result, it im-

plies that signals e, �e, and l belong to L1 and are

bounded. In addition, it is concluded that the above

signals converge to a sphere-like region with the radius

of lðtÞk k ¼ �r
kmax ðA�KCÞð Þ : It is worth noting that the radius

of this region depends on the eigenvalues of the matrix

(A - KC), which can be determined by the designer as a

part of the observer design. Consequently, the radius can

be made arbitrarily small.

So far, a control law has been extracted to synchronize

the slave and master systems, as well as designing a stable

observer to estimate the states. However, the proposed

control law given by (31) employs the estimation of the

weight parameters of the neural network (i.e., Q̂). There-

fore, the next step is to provide an adaptive law to estimate

Q̂. In addition, such an adaptive law should be stable and

guarantee boundedness of Q̂:

Motivated by the chaotic nature of the systems, it is

postulated that the persistently exciting condition holds. It

means that there exist positive constants a; b; T , and a

bounded symmetric positive definite matrix S such that
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123



aI�
Z tþT

t

cTðsÞCTSCcðsÞds� bI ð35Þ

As mentioned earlier, the chaotic behavior of the sys-

tems makes sure that the richness condition is satisfied.

The following adaptive law is proposed as

_~Q ¼ �gcTCTS z� Cŷð Þ ð36Þ

Employing (8), (36) becomes

_~Q ¼ �gcTCTSCe ð37Þ

Substituting (22) into (37) leads to

_~Q ¼ �gcTCTSC lþ c ~Q
� �

ð38Þ

Or

_~Q ¼ �gcTCTSCc ~Q� gcTCTSCl ð39Þ

Lemma The differential equation given by (39) is stable

and has a bounded solution.

Proof It is concluded from the richness condition, given

by (35), that the first term on the right side of (39) is

negative definite. For notation convenience, (39) is

rewritten as

_~Q ¼ �M ~Q� a ð40Þ

where M ¼ gcTCTSCc, a ¼ gcTCTSCl; and are time-

varying. Considering the observability of the pair (A, C),

along with boundedness of R(z), it can be concluded from

(20) that c is bounded. Further, (27) implies that lðtÞ is also

bounded. Therefore, it is deduced that M and a are bounded

as well. To prove the stability of the differential equation

given by (40), the following Lyapunov function is pro-

posed as

V ¼ 1

2
~QT ~Q ð41Þ

Taking time derivative of (41) and using (40) lead to

_V ¼ ~QT _~Q

¼ ~QT �M ~Q� a
� �

¼ � ~QTM ~Q� ~QTa

ð42Þ

By definition, M is symmetric and positive definite, thus

_V ��kminðMÞ ~QT ~Q� ~QTa

��kminðMÞ ~Q
�
�

�
�

2þ ~Q
�
�

�
� ak k

�� ~Q
�
�

�
� kminðMÞ ~Q

�
�

�
�� ak k

� �

ð43Þ

It follows from (43) that in a region where ~Q[ ak k
kminðMÞ ;

_V becomes negative definite. Therefore, ~Q remains in a

sphere-like region with a radius of
ak k

kminðMÞ :As a result, it can be

deduced that ~Q is bounded, that is, ~Q 2 L1: Therefore, it is

learnt that using the derived control law (31) and adaptive

laws (30) and (36) guarantees the stability of the designed

observer and satisfies the synchronization purpose.

3.2 Asymptotic stability of the tracking error

So far, it has been demonstrated that all the signals, in-

cluding the tracking and observation errors, remain

bounded. However, to show the asymptotic stability of the

tracking error, the equation governing the dynamics of the

tracking error is investigated separately. Consider the fol-

lowing Lyapunov function

Ve ¼
1

2
eTeþ 1

2
~PT ~P ð44Þ

As observed from (44), the new Lyapunov function

merely contains the tracking and parameter estimation er-

rors. Taking time derivative of (44) and using (7) and (9)

lead to the following

_Ve ¼ � P̂� ~P
� �T

FðxÞT � f ðxÞT þ UT þ ŷT AT � CTKT
� �h

þzTKT þ Q̂TRðzÞT þ wTðtÞ
i

eþ _~P
T ~P ð45Þ

Using (30) and (31), (45) becomes

_Ve ¼ �eTK2e ð46Þ

where K2 is a symmetric positive definite matrix. Hence,
_Ve is negative semidefinite. Since K2 is symmetric, it is

concluded that _Ve ��kminðK2Þ ek k2; where kminð�Þ denotes

the minimum eigenvalue of a matrix. Taking integral from

both sides leads to kminðK2Þ
R1

0
ek k2

dt �Vð0Þ � Vð1Þ:
Since the Lyapunov function given by (44) is decreasing, it

Fig. 1 Phase plane of the master system
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is deduced that e 2 L2: Moreover, it follows from (35) that

_e 2 L1: Thus, according to Barbalat’s lemma

limt!1 eðtÞ ¼ 0: Hence, the proposed scheme guarantees

the asymptotic stability of the tracking error.

4 Simulation results

In this section, utilizing the proposed controller and ob-

server, a simulation is conducted to investigate the be-

havior of two chaotic systems as the master and slave. The

governing equations of the master and slaves systems are

as follows:

_x ¼
x2 � x1 0 0

�x1 0 x1 þ x2

0 �x3 0

2

4

3

5

p1

p2

p3

2

4

3

5þ
0

�x1x3

x1x2

2

4

3

5 ð47Þ

_y ¼
�10 10 0

28 �1 0

0 0 2:67

2

6
4

3

7
5

y1

y2

y3

2

6
4

3

7
5þ

0

�y1y3

y1y2

2

6
4

3

7
5þ

u1

u2

u3

2

6
4

3

7
5

z ¼ y1 þ y2 þ y3

ð48Þ

where pT ¼ ½ p1 p2 p3 �T is the unknown parameters

vector of the master system, and its actual values are

pT ¼ ½ 35 3 28 �T; z is the measurable output of the slave

system. It is assumed that the nonlinear part of the slave

system

0

�y1y3

y1y2

2

4

3

5 is unknown. Therefore, as explained in

the previous section in detail, a neural network is designed

Fig. 2 Phase plane of the observer

Fig. 3 Tracking errors. a First

state error, b second state error,

c third state error

Fig. 4 Observation errors. a First state error, b second state error,

c third state error
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to approximate it. The neural network uses six basis

functions for each element of the unknown nonlinear

vector function. The basis functions are as follows:

½ e� z�c1k k e� z�c2k k e� z�c3k k e� z�c4k k e� z�c5k k e� z�c6k k �
where c1 ¼ 0; c2 ¼ 5; c3 ¼ 10; c4 ¼ 15; c4 ¼ 25; c4 ¼
35: Using the designed controller and observer, the syn-

chronization results are shown in Figs. 1, 2, 3, 4, 5, and 6.

Figures 1 and 2 depict the phase plane plots of the master

and observer systems, respectively. As can be seen from

Figs. 1 and 2, the master and observer systems exhibit

chaotic behavior. As shown in Fig. 3, the synchronization

tracking errors converge to zero successfully. As demon-

strated analytically, the tracking error is expected to con-

verge to zero, which is also verified by Fig. 3. Figure 4

shows the observation errors. As proven analytically, the

observation errors remain bounded. Moreover, by adjusting

the observer gain, the observation errors can be made ar-

bitrarily small. However, the asymptotic convergence of

the observation error is not guaranteed, as it was expected.

The estimations of the unknown parameters of the master

system are depicted in Fig. 5. As shown in Fig. 5, the es-

timated values converge to their actual values. The con-

vergence of the estimated parameters of the master system

to their actual values indicates that the richness condition

has been satisfied, which stems from the chaotic nature of

the systems. Finally, Fig. 6 exhibits the weight parameter

estimates of the designed RBNN.

5 Future work

The proposed scheme guarantees the stability of the de-

signed observer in the sense of Lyapunov. Designing an

observer which can establish the asymptotic stability of the

observation error can be considered as a future work.

6 Conclusion

To address the challenging problem of designing adaptive

observers for uncertain chaotic systems, a novel synthesis

of neural network-based observer and an adaptive con-

troller was proposed. The goal was to synchronize two

chaotic master–slave systems, where the master system has

unknown parameters, and the slave system has unknown

nonlinear dynamics. In addition, it was assumed that the

states of the slave system were not measurable. A novel

neural network-based observer, employing the outputs of
Fig. 5 Parameter estimates of master system. a First parameter

estimate, b second parameter estimate, c third parameter estimate

Fig. 6 Weight parameter estimations of RBNN
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the slave system, was proposed to estimate the unavailable

states and approximate the unknown nonlinear dynamics of

the slave system. Moreover, an adaptive controller was

designed to satisfy the synchronization objective. It is

worth noting that the proposed scheme can relax some of

the assumptions, made in the existing methods in the lit-

erature. Further, a more general kind of uncertainty in the

master system was considered. Consequently, the proposed

method can be applied to a wider range of systems. Further,

an existing observer for linear systems was extended to

nonlinear systems. The extended observer can be used to

estimate states of a broad range of nonlinear systems with

uncertain dynamics of the form given by (2). Finally, the

stability of the entire closed-loop system was proven, and

the conducted simulation demonstrated the effectiveness of

the proposed scheme. It was shown both analytically and

numerically that the tracking error converges to zero, and

the observation error remains bounded. In addition, the

bound of observation error can be made arbitrarily small by

increasing the observer gain.
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