
ORIGINAL ARTICLE

Single-machine scheduling with truncated sum-of-processing-
times-based learning effect including proportional delivery times

Yu-Bin Wu1 • Jian-Jun Wang2

Received: 4 August 2014 / Accepted: 7 April 2015 / Published online: 3 May 2015

� The Natural Computing Applications Forum 2015

Abstract The single-machine scheduling problem with

truncated sum-of-processing-times-based learning effect

and past-sequence-dependent job delivery times is con-

sidered. Each job’s delivery time depends on its waiting

time of processing. For some regular objective functions, it

is proved that the problems can be solved by the smallest

processing time first rule. For some special cases of the

total weighted completion time and the maximum lateness

objective functions, the thesis shows that the problems can

be solved in polynomial time.

Keywords Scheduling � Delivery times � Learning

effect � Single machine

1 Introduction

In traditional scheduling problems, job processing times

are assumed as having fixed and constant values. How-

ever, in many real-life situations, it is not scarce that the

actual processing time of a job is shorter if it is scheduled

in the later sequence (for example, the machines and

workers’ performance can be improved by repeating the

production operations), and this phenomenon is known as

the ‘‘learning effect’’ [1]. An extensive survey of

scheduling problems concerning learning effects is pro-

vided by Biskup [2]. More recently, Cheng et al. [3]

considered scheduling problems with deteriorating jobs

and learning effects, and the setup times are assumed to

be proportional to the actual processing times of the al-

ready scheduled jobs. For some single-machine problems,

they derived polynomial-time optimal solutions. Cheng

et al. [4] considered a two-agent scheduling with trun-

cated sum-of-prossing-times-based learning effect on a

single machine. Wang and Wang [25, 26], Sun et al. [21,

22] and Wang et al. [33] considered flow-shop scheduling

with learning effects. Wang et al. [23] considered two-

machine makespan minimization a flow-shop scheduling

with effects of deterioration and learning. Wang et al.

[31] considered single-machine scheduling with a time-

dependent learning effect and deteriorating jobs. They

found some results to the total completion time

minimization problem. Wang et al. [32] considered sin-

gle-machine scheduling problems with truncated expo-

nential learning effect, and they proved that some regular

objective functions can be solved in polynomial time. Wu

et al. [35] considered scheduling problems jobs with a

truncated sum-of-processing-times-based learning effect,

and they proved that some single-machine scheduling

problems can be solved in polynomial time. Wu et al.

[36] considered scheduling problems jobs with a truncated

position-based learning effect, and they proved that some

single-machine and two-machine flow-shop scheduling

problems can be solved in polynomial time. Other types

of scheduling problems and models with learning effects

have also been discussed, and more references can be

found in papers by Zhang et al. [44], Rudek [18, 19],

Cheng et al. [5, 6], Wang et al. [24, 32], Lu et al. [16],

Wang and Wang [27–30], Yang et al. [37], Niu et al.

[17], and Li et al. [10].
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Koulamas and Kyparisis [9] and Liu et al. [14, 15]

considered scheduling with past-sequence-dependent (p-s-

d) job delivery times on a single machine. For some regular

and non-regular objective functions, Koulamas and Ky-

parisis [9] and Liu et al. [15] showed that the problem can

be solved by simple polynomial-time algorithms. Liu et al.

[14] considered the problem with p-s-d job delivery times

and the release times. Liu et al. [13] and Yin et al. [41]

studied scheduling with p-s-d job delivery times and de-

teriorating jobs. However, to the best of our knowledge,

apart from the recent paper of Yang et al. [38, 40], Yang

and Yang [39], Liu [12], Yin et al. [42], Shen and Wu [20],

and Zhao and Tang [43], it has not been investigated in the

scheduling models by considering learning effect and the

p-s-d delivery time simultaneously. Yang et al. [38] studied

scheduling with (p-s-d) job delivery times and job-inde-

pendent learning effect (i.e., the actual processing time of

job Jj if it is scheduled in position r on a single machine is

given by: pAjr ¼ pjr
a, where a� 0 is a constant learning

effect. Yang and Yang [39] studied scheduling with p-s-d

job delivery times and position-dependent processing times

(i.e., the actual processing time of job Jj if it is scheduled in

position r on a single machine is given by: pAjr ¼ pjr
aj ,

where aj is a job-dependent factor. Liu [12] considered the

identical parallel-machine scheduling problem with p-s-d

and job-independent learning effect (the same as in Yang

et al. [38]). For the total absolute deviation of job com-

pletion times minimization, the total load on all machines

minimization and the total completion time minimization,

they proposed polynomial algorithms to optimally solve

these problems. Yin et al. [42] considered the single-ma-

chine scheduling problem with p-s-d and job-independent

learning effect (the same as in Yang et al. [38]). For four

due date determination decisions, they proved that the

proposed problems can be solved in polynomial time. Yang

et al. [40] considered p-s-d delivery times scheduling

problems with deterioration and learning effects simulta-

neously on a single machine. Shen and Wu [20] considered

single-machine scheduling with p-s-d job delivery times

and general position-dependent and time-dependent learn-

ing effects (i.e., the actual processing time of job Jj if it is

scheduled in position r is given by: pAjr ¼ pjf

ð
Pr�1

i¼1 p½i�ÞgðrÞ, where f is a differentiable non-increasing

function with f 0 non-decreasing on ½0;þ1Þ and f ð0Þ ¼ 1

and g is a non-increasing function with gð1Þ ¼ 1. Under the

proposed learning model, they provided optimal solutions

for some regular objective functions. Zhao and Tang [43]

considered single-machine scheduling with p-s-d job de-

livery times and general position-dependent processing

times (i.e., the actual processing time of job Jj if it is

scheduled in position r is given by: pAjr ¼ pjgjðrÞ, where

gjðrÞ is a function that specifies a job-dependent positional

effect. Under the proposed learning model, they provided

optimal solutions for some objective functions.

However, subjected to the uncontrolled learning effect,

the actual processing time of a job will plummet to zero

dramatically due to the increasing number of jobs which

are already processed or the emergence of jobs with long

processing time. Hence, Cheng et al. [4], Wu et al. [35, 36],

Wang et al. [24] and Li et al. [11] considered the truncated

learning effect model. Hence, in this paper we extend the

results of Yang et al. [38, 40], Yang and Yang [39], Liu

[12], Yin et al. [42], Shen and Wu [20], and Zhao and Tang

[43] to the single-machine scheduling problem with the

truncated sum-of-processing-times-based learning effect

and p-s-d delivery times. The phenomenon of the truncated

sum-of-processing-times-based learning effect and past-

sequence-dependent (p-s-d) job delivery times can be

found in a production situation, ‘‘for example, an electronic

component may be exposed to certain electromagnetic and/

or radioactive fields while waiting in the machine’s pre-

processing area, and regulatory authorities require the

component to be ‘treated’ (e.g., in a chemical solution

capable of removing/neutralizing certain effects of electro-

magnetic/radioactive fields) for an amount of time pro-

portional to the job’s exposure time to these fields. This

treatment can be performed after the component has been

processed by the machine, but before it is delivered to the

customer so it can be delivered with a ‘guarantee.’ Such a

postprocessing operation is usually called the job ‘delivery

time,’ i.e., the past-sequence-dependent (p-s-d) job deliv-

ery times. In addition, if human interactions (the machines

or workers) have a significant impact during the processing

of the job, the processing time will add to the workers

experience and cause an uncontrolled learning effect’’ [9,

20].

The rest part of the paper is organized as follows:

Sect. 2 formulates the problem. Section 3 considers several

single-machine scheduling. Section 4 provides some ex-

tensions. In Sect. 5, conclusions are drawn.

2 Problems description

The notations used throughout this paper are defined as

follows.

n : The total number of jobs

pj : The normal processing time of job Jj;

j ¼ 1; 2; . . .; n. The normal processing

time of a job is incurred when the job is

scheduled first in a sequence

vj: The weight of job Jj, j ¼ 1; 2; . . .; n

dj: The due date of job Jj, j ¼ 1; 2; . . .; n
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p½r� : The normal processing time of a job

scheduled in the rth position in a

sequence, r ¼ 1; 2; . . .; n

q½r� : The past-sequence-dependent (p-s-d)

delivery time of a job scheduled in the

rth position in a sequence,

r ¼ 1; 2; . . .; n
w½r� : The waiting time of a job scheduled in

the rth position in a sequence,

r ¼ 1; 2; . . .; n

pAjr : The actual processing time of job Jj
scheduled in the rth position in a

sequence, r; j ¼ 1; 2; . . .; n

pA½r� : Be the actual processing time of a job if

it is scheduled in the rth position in a

sequence, r ¼ 1; 2; . . .; n

p : A job sequence of n jobs

Cj ¼ CjðpÞ : The completion time for job Jj in p
Cmax : The makespan of a given permutation,

i.e., Cmax ¼ maxfCjjj ¼ 1; 2; . . .; ng
P

Cj : The sum of completion times of jobs
P

Ch
j : The sum of the hth (h� 0) power of job

completion times
P

vjCj : The total weighted completion time
P

Lj: The total lateness

Lmax ¼
maxfCj � djj
j ¼ 1; 2; . . .; ng :

The maximum lateness

The model is described as follows. There are n inde-

pendent and non-preemptive jobs J ¼ fJ1; J2; . . .; Jng to be

processed on a single machine. All the jobs are available at

time 0; the machine will handle one job at a time, and there

will be no idle time between the processes of any job. As in

Cheng et al. [4], Wu et al. [35] and Li et al. [11], we

assume that the actual processing time of job Jj, scheduled

in position r, is given by:

pAjr ¼ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

; r; j ¼ 1; 2; . . .; n;

ð1Þ

where a� 0 is a constant learning effect, p½0� ¼ 0,
P0

i¼1 p½i� ¼ 0 and b is a truncation parameter with

0\b\1. Moreover, following Koulamas and Kyparisis

[9], Yang et al. [38], Yang and Yang [39] and Shen and Wu

[20], the processing of the job J½r� must be followed by the

p-s-d delivery time q½r�, i.e.,

q½1� ¼ 0 and q½r� ¼ cw½r� ¼ c
Xr�1

i¼1

pA½i�; r ¼ 2; 3; . . .n;

ð2Þ

where c� 0 is a normalizing constant and w½r� denotes the

waiting time of job J½r�. Let C½j� denote the completion time

of job J½j� and Cj is defined analogously. We assume that the

postprocessing operation of any job J½j� modeled by its de-

livery time q½j� is performed ‘‘off-line,’’ i.e., C½1� ¼ p½1� and

C½j� ¼ w½j� þ pA½j� þ q½j�; j ¼ 2; 3; . . .; n;

where w½1� ¼ 0 and w½j� ¼
Pj�1

i¼1 p
A
½i�; j ¼ 2; 3; . . .; n.

For convenience, we denote by TTLE the truncated

time-dependent learning effect given by (1) and denote by

qpsd the p-s-d delivery given by (2) [9]. In this paper, we

consider the problem to minimize the makespan

Cmax ¼ maxfCjj j ¼ 1; 2; . . .; ng, the total completion time
P

Cj, the sum of the hth (h� 0) power of job completion

times
P

Ch
j , the total lateness

P
Lj, the total weighted

completion time
P

vjCj and the maximum lateness

Lmax ¼ maxfCj � djj j ¼ 1; 2; . . .; ng, where vj and dj de-

note the weight and due date of job Jj. Using the three-field

notation of Graham et al. [8], we denote the problems that

are considered in this paper as 1jTTLE; qpsdjc, where

c 2 fCmax;
P

Ch
j ;
P

Lj;
P

vjCj; Lmaxg.

3 Single-machine scheduling problems

Lemma 1 For the 1jTTLEjCmax problem, an optimal

schedule can be obtained by the SPT rule (i.e., by se-

quencing the jobs in non-decreasing order of pj).

Proof See the proof in Wu et al. [35]. h

Theorem 1 For the 1jTTLE; qpsdjCmax problem, an op-

timal schedule can be obtained by the SPT rule (i.e., by

sequencing the jobs in non-decreasing order of pj).

Proof Let p ¼ ½S1; Jj; Jk; S2� and p0 ¼ ½S1; Jk; Jj; S2� be

two job schedules by interchanging two adjacent jobs Jj
and Jk, where S1 and S2 are partial sequences and S1 or S2

may be empty. We also assume that there are r � 1 jobs in

S1. To show p dominates p0, it suffices to show that the

ðr þ 1Þth jobs in p and p0 satisfy the condition that

CkðpÞ�Cjðp0Þ (since for any Ju in S2, from CkðpÞ�Cjðp0Þ
we have CuðpÞ�Cuðp0Þ, hence C½n�ðpÞ�C½n�ðp0Þ). Under

p, the completion times of jobs Jj and Jk are
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CjðpÞ ¼
Xr�1

i¼1

pA½i� þ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i�:

CkðpÞ ¼
Xr�1

i¼1

pA½i� þ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pk max 1 þ
Xr�1

i¼1

p½i� þ pj

 !a

;b

( )

þ c
Xr�1

i¼1

pA½i� þ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )" #

;

ð3Þ

whereas under p0, they are

Ckðp0Þ ¼
Xr�1

i¼1

pA½i� þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i�

and

Cjðp0Þ ¼
Xr�1

i¼1

pA½i� þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pj max 1 þ
Xr�1

i¼1

p½i� þ pk

 !a

;b

( )

þ c
Xr�1

i¼1

pA½i� þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )" #

:

ð4Þ

Stem from Eqs. (3) and (4), we have

Cjðp0Þ � CkðpÞ ¼c ðpk � pjÞmax 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pj max 1 þ
Xr�1

i¼1

p½i� þ pk

 !a

; b

( )

� pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

� pk max 1 þ
Xr�1

i¼1

p½i� þ pj

 !a

; b

( )

:

From pj � pk and Lemma 1, we have c ðpk �

pjÞ 1 þ
Pr�1

i¼1 p½i�

� �a
� 0 and pk max ð1 þ

Pr�1

i¼1

p½i�Þa; b
� �

þ

pj max ð1 þ
Pr�1

i¼1

p½i�

�

þpkÞa; bg � pj max ð1 þ
Pr�1

i¼1

p½i�Þa; b
� �

�pk max ð1 þ
Pr�1

i¼1

p½i� þ pjÞa; b
� �

� 0, hence Cjðp0Þ �

CkðpÞ � 0. h

Theorem 2 For the problem 1jTTLE; qpsdj
P

Ch
j , an op-

timal schedule can be obtained by the SPT rule.

Proof We also use the same notations as in Theorem 1. In

order to show p dominates p0, we should prove that

(i) CkðpÞ�Cjðp0Þ and (ii) Ch
j ðpÞ þ Ch

k ðpÞ�Ch
k ðp0Þ þ

Ch
j ðp0Þ (since for any Ju in S2, from CkðpÞ�Cjðp0Þ we have

CuðpÞ�Cuðp0Þ, hence
P

Ch
j ðpÞ�

P
Ch
j ðp0Þ).

Case (i) has been proved by Theorem 1. From pj � pk,

we have CjðpÞ�Ckðp0Þ, hence

Ch
j ðpÞ þ Ch

k ðpÞ�Ch
kðp0Þ þ Ch

j ðp0Þ:

It completes the proof of case (ii). h

Corollary 1 For the 1jTTLE; qpsdj
P

Cj problem, an

optimal schedule can be obtained by the SPT rule.

Theorem 3 For the 1jTTLE; qpsdj
P

Lj problem, an

optimal schedule can be obtained by the SPT rule.

Proof Obviously,

Xn

j¼1

Lj ¼
Xn

j¼1

ðCj � djÞ ¼
Xn

j¼1

Cj �
Xn

j¼1

dj:

For
Pn

j¼1 dj is a constant,
Pn

j¼1 Lj is minimized if
Pn

j¼1 Cj is minimized. From Theorem 2, the result can be

easily obtained. h

Theorem 4 For the 1jTTLE; qpsdj
P

vjCj problem, if all

the jobs have agreeable weights, i.e., pj � pk implies

vj � vk for all the jobs Jj and Jk, an optimal schedule can be

obtained by the WSPT rule (i.e., by sequencing the jobs in

non-decreasing order of pj=vj).

Proof As in Theorem 1, the same notations are also used.

In order to show p dominates p0, we should prove that (1)

CkðpÞ�Cjðp0Þ and (2) vjCjðpÞ þ vkCkðpÞ� vkCkðp0Þ þ
vjCjðp0Þ with pj=vj � pk=vk, pj � pk and vj � vk.

Case (1) has been proved by Theorem 1. We provide the

proof of case (2) as follows.

From Theorem 1, we have CjðpÞ�Ckðp0Þ, hence

vkCkðp0Þ þ vjCjðp0Þ � vjCjðpÞ � vkCkðpÞ
� vkCjðpÞ þ vjCkðpÞ � vjCjðpÞ � vkCkðpÞ
¼ ðvj � vkÞðCkðpÞ � CjðpÞÞ
� 0:

Hence, vjCjðpÞ þ vkCkðpÞ� vkCkðp0Þ þ vjCjðp0Þ. It com-

pletes the proof of part (2) and thus the theorem. h

Theorem 5 For the problem 1jTTLE; qpsdjLmax, if the

jobs have agreeable conditions, i.e., pj � pk implies dj � dk
for all the jobs Jj and Jk, an optimal schedule can be ob-

tained by the EDD rule (i.e., by sequencing the jobs in non-

decreasing order of dj).
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Proof We still use the same notations mentioned above.

From the proof of Theorem 1, under p, the lateness of jobs

Jj and Jk are

LjðpÞ ¼
Xr�1

i¼1

pA½i� þ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i� � dj;

LkðpÞ ¼
Xr�1

i¼1

pA½i� þ pj max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pk max 1 þ
Xr�1

i¼1

p½i� þ pj

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i� þ pj 1 þ
Xr�1

i¼1

p½i�

 !a" #

� dk;

whereas under p0, they are

Lkðp0Þ ¼
Xr�1

i¼1

pA½i� þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i� � dk;

Ljðp0Þ ¼
Xr�1

i¼1

pA½i� þ pk max 1 þ
Xr�1

i¼1

p½i�

 !a

; b

( )

þ pj max 1 þ
Xr�1

i¼1

p½i� þ pk

 !a

; b

( )

þ c
Xr�1

i¼1

pA½i� þ pkð1 þ
Xr�1

i¼1

p½i�Þa
" #

� dj:

If dj � dk, we have Lkðp0Þ � Ljðp0Þ. In addition, if dj � dk
and pj � pk, according to Theorem 1, we get LkðpÞ� Ljðp0Þ
and LjðpÞ� Ljðp0Þ. Therefore, we obtain

maxfLjðp0Þ;Lkðp0Þg� maxfLjðpÞ; LkðpÞg:

It completes the proof of the theorem. h

The following example illustrates the results of the

theorems.

Example 1 Consider the instance with n ¼ 3; p1 ¼
10; p2 ¼ 12; p3 ¼ 14; v1 ¼ 8; v2 ¼ 5; v3 ¼ 3; d1 ¼ 11;

d2 ¼ 14; d3 ¼ 16, a ¼ �0:3, b ¼ 0:8; c ¼ 0:5 and h ¼ 2.

Now applying Theorems 1–5, we know that the optimal

schedule is ½J1; J2; J3� for the following objective func-

tions: Cmax,
P

C2
j ,
P

Lj,
P

vjCj and Lmax. In addition, we

have

C1 ¼ 10;C2 ¼ 10 þ 12 � max 1 þ 10ð Þ�0:3; 0:8
n o

þ 0:5 � 10 ¼ 24:6;

C3 ¼ 24:6 þ 14 � max 1 þ 10 þ 12ð Þ�0:3; 0:8
n o

þ 0:5 � 24:6 ¼ 48:1:

Cmax ¼ C3 ¼ 48:1,
P

C2
j ¼ 102 þ 24:62 þ 48:12 ¼ 3018:8,

P
Lj ¼ 10 þ 24:6 þ 48:1 � 11 � 14 � 16 ¼ 41:7,

P
vjCj ¼ 8 � 10 þ 5 � 24:6 þ 3 � 48:1 ¼ 347:3 and

Lmax ¼ maxf10 � 11; 24:6 � 14; 48:1 � 16g ¼ 32:1.

4 Extensions

Similar to the proof of Sect. 3 and Shen and Wu [20], our

results (Theorems 1–5) can be extended to the following

learning effect models:

(a) The model of Zhang et al. [44]:

pAjr ¼ pj qr þ
Xr�1

l¼1

bl ln p½l�

 !a

; ð5Þ

where a is the learning indices with a� 0, br is the

weight of position r, 0� b1 � b2 � � � � � bn and

0� q1 � q2 � � � � � qn.

(b) The model of Rudek [18]:

pAjr ¼ pjf
Xr�1

l¼1

p½l�

 !

; ð6Þ

where f : ½1;þ1Þ ! ð0; 1� is the non-increasing

function (i.e., learning curve) common for all jobs.

(c) The model of Cheng et al. [5]:

pAjr ¼ pj 1 þ
Xr�1

l¼1

bl ln p½l�

 !a

rb; ð7Þ

where
P0

l¼1 bl ln p½l� :¼ 0, a and b are the learning

indices with a� 0 and b� 0, and br is the weight of

position r.

(d) The model of Wang et al. [32]:

pAjr ¼ pj max la
�

Pr�1

i¼1
p½i�Pn

i¼1
p½i� þ m

0

B
@

1

C
A; b

8
><

>:

9
>=

>;
;

r; j ¼ 1; 2; . . .; n;

ð8Þ

where l� 0, m� 0, lþ m ¼ 1,
P0

i¼1 p½i� ¼ 0 and b is

a truncation parameter with 0\b\1.

(e) The model of Cheng et al. [6]:

pAjr ¼ pj 1 þ
Xr�1

l¼1

ulp½l�

 !a

rb; ð9Þ

where a� 0 and b� 0 and ul [ 0 is the associated

weight of the lth position.

(f) The model of Niu et al. [17]:

pAjr ¼ pjf
Xr�1

l¼1

gðp½l�Þ
 !

hðrÞ; ð10Þ
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where
df ðxÞ

dx
� 0; d2f ðxÞ

dx2 � 0,
d2gðxÞ

dx2 � 0 and hðrÞ is a

non-increasing function with gð0Þ ¼ 0 and hð1Þ ¼ 1.

5 Conclusions

This research studied the scheduling problems with trun-

cated sum-of-processing-times-based learning effect and

past-sequence-dependent job delivery times on a single

machine. To some single-machine minimization problems,

it is proved that the proposed problems were polynomial

time solvable. In future research, more realistic settings

such as the job-shop scheduling [7, 34] and unrelated

parallel machines scheduling, or optimizing other perfor-

mance measures with truncated sum-of-processing-times-

based learning effect and past-sequence-dependent job

delivery times will be explored.
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