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Abstract In this paper, the effects of different parameters

on the dynamic behavior of the nonlinear dynamical sys-

tem are investigated based on modified Hindmarsh–Rose

neural nonlinear dynamical system model. We have cal-

culated and analyzed dynamic characteristics of the model

under different parameters by using single parameter bi-

furcation diagram, time response diagram and two pa-

rameter bifurcation diagram. The results show that the

period-adding bifurcation (with or without chaos), period-

doubling bifurcation and intermittent chaos phenomenon

(periodic and intermittent chaotic) can be observed more

clearly and directly from the two parameter bifurcation

diagram, and the optimal parameters matching interval can

also be found easily.

Keywords Neural model � Modified Hindmarsh–Rose

Model � Bifurcation � Two-parameter dynamic

characteristics

1 Introduction

The basic structural unit of biological nerve system is

neuron, the activities of which are mainly manifested in the

formation, change and transmission of bio-electricity sig-

nals. Biological nervous system is a complex multi-level

information neural network, which is formed through the

connections of large amount of nerve cells. Therefore, in

the process of neuron firing and information coding,

complex nonlinear dynamical behaviors are involved.

Since neuron-dynamics is an inter-discipline between bio-

physiology and nonlinear dynamics, it has biology- and

dynamics-significance to study neuron firing [1]. With the

continuous theoretical development in bio-physiology and

nonlinear dynamics, various biological neuron models are

built based on the data obtained from different ex-

periments. The application of nonlinear dynamics theories

and methods in the numerical calculation and analysis of

these neuron models makes it possible to observe some

phenomena hardly discovered in neuron-physiological ex-

periments. It promotes the rapid development of medical

science and neurology by providing guidance for practical

physiological experiments, as well as theoretical basis for

studies in medical science.

The neuron mathematical models mainly include: based

on the equivalent circuit theory, British biologist Hodgkin

and Huxley conducted the experiment of squid giant axon

stimulation and recorded the resting potential as well as the

action potential of the cells in 1950s. After rigorous ana-

lysis of these experimental data recorded, in 1952, they

built the dynamic equation of HH model, which described

the electric potential activity of cell membrane accurately

[2–4]. The establishment of this model makes it possible to

study the generation mechanism of neuron firing activity

through a mathematical model, which has guiding sig-

nificance to understand the generation mechanism of neu-

ron action potential in early times. Moreover, the HH

model is the prototype of all subsequent excitable cell

models, and provides a realistic basis for the description of

the electrophysiological property of all excitable cells.

FitHugh and Nagumo constructed the FHN model by

simplifying the HH model and adding a recovery variable

to ensure the slow-time variability of action potential. This
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two-dimension model accurately presents the action po-

tential generation for further analyses in future [5].

Based on the HH model established by Hodgkin and

Huxley, biologists has put forward many characterized

neuron models or simplified ones, such as, the Morris–

Lecar (ML) [6], Chay model [7], Hindmarsh–Rose (HR)

model [8], the Plant model and the pre-Botzinger model

[9], etc. Through theoretical justification or numerical

simulation, many experts and scholars have studied the

firing patterns and the dynamics properties of these

models [10–16].

In these researches, many complex firing patterns,

such as the periodic or chaotic behavior of bursting or

spiking, have been discovered [17–23]. Analyses of the

HR models show that both external impulse current and

different parameters will influence the dynamic behavior

of the model [24–27]. In the ML model and Chay model,

value changes of single parameter in the system, such as

the reversal voltage of the system, the time scale factor

which controls the slow variable, and conductance, will

have different influence on firing patterns of the system

[28, 29]. The analysis of inter-spike interval reveals that

period-doubling bifurcation and period-adding bifurca-

tion are common bifurcation structure types in neuron

models. But most existing studies about these models are

about influences of single-parameter variations on the

dynamic behaviors of the system. As for studies of two-

parameter bifurcation, different bifurcations are obtained

by varying the bifurcation parameter with the condition

parameter fixed correspondingly on two different levels

[30]. Unfortunately, this is not an intuitive method that

can reflect the changes that occur with different pa-

rameters varying within a certain range at the same time.

In this paper, the modified HR model is studied. As the

parameter varies within certain range, the bifurcation

structure and dynamic features of the system are ana-

lyzed from aspects of the inter-spike bifurcation diagram,

time-response diagram, etc. And the two-dimension

colored diagram of bifurcation with two parameters

varying within a certain range at the same time, is em-

ployed to represent the dynamic features and the rich

dynamic phenomena.

2 Modified HR model

The neuron model is based on the numerical expression

constructed by Hindmarsh and Rose from the snail

neuron cells data derived from the voltage clamp ex-

periments. For its simple numerical expression, this

model is regarded by many scholars as the idealistic one

in the study of actual neuron firing. The expression of

this model is:

dx

dt
¼ y� ax3 þ bx2 � z

dy

dt
¼ c� dx2 � y

dz

dt
¼ r s x� X � zð Þ½ �

ð1Þ

x represents membrane potential of the cell; y represents

internal current-related recovery variable; z represents slow

varying regulating current; all other variables are pa-

rameters of the system.

Based on the HR model, a similar neuron model is

analyzed in this paper. Since its structure is completely

modeled on the HR model, it is collectively known as

modified HR model. Its expression is [31]:

dx

dt
¼ �s �ax3 þ x2

� �
� y� bz

dy

dt
¼ /ðx2 � yÞ

dz

dt
¼ eðsa1x1 þ b1 � kzÞ

ð2Þ

a, b, a1, b1, k, s are parameters of the system. Their cor-

responding values are: a = 0.5, b = 1, a1 = - 0.1,

k = 0.2. There are detailed descriptions about them in

[31].

3 Dynamic characteristics of the modified HR
model with single parameter as variable

3.1 Dynamic characteristics with parameter

s as variable

With e = 0.02, b1 = -0.045 unchanged, and the pa-

rameter s as a variable, Fig. 1 is the corresponding inter-

spike bifurcation diagram. And Fig. 2 is the corresponding

Fig. 1 Inter-spike interval bifurcation diagram corresponding to s

740 Neural Comput & Applic (2016) 27:739–747

123



Lyapunov exponent diagram. When s value varies within

[-1.7, -1.6], it can be seen clearly from Fig. 1 that: from

simple single period activity, the system enters into the

ultimate chaotic state after undergoing period-doubling

bifurcation process, in which it goes through patterns of the

period-2, period-4, period-8, etc. Figure 2 (the Lyapunov

exponent diagram) indicates that: when the s value is

-1.684, the system enters into period-2 after period-dou-

bling bifurcation; and when s value is -1.629, it switches

from period-2 to period-4 after bifurcation. As the s value

increases, the system goes through period-8 and period-16;

when the maximum of Lyapunov exponent corresponding

to s value that varies within [-1.62, -1.6] is above zero, it

enters into the chaotic state. Therefore, period-doubling

bifurcation is a means by which a non-linear system tran-

sits from periodic to chaotic stage.

3.2 Dynamic characteristics with parameter e

as variable

In addition to the typical period doubling bifurcation, the

period-adding bifurcation will also occur in the neuron

model. In period-adding bifurcation, the firing period of the

system increases by one each time. With other parameters

unchanged, and the parameter e taken as a variable, the

inter-spike interval bifurcation diagram is shown in Fig. 3.

With the decrease of e value, the system transforms from

period-1 firing pattern into the period-2 spiking; and when

e value is 0.02, the system enters into the chaotic bursting.

With the further decrease of e value, the chaotic bursting

pattern degenerates into period-3 spiking which will enter

into chaotic firing interval after period-doubling bifurca-

tion. Then, the chaotic firing pattern degenerates into pe-

riod-4 spiking. The cycle of periodic-chaotic-periodic

firing pattern keeps repeating. After each chaotic firing

pattern, compared with that of its previous pattern, the

period number will increase by one. This period adding

firing activity with regular chaos is a common phenomenon

in the excitable neuron model.

3.3 Dynamic characteristics with parameter b1
as variable

With other parameter unchanged, and variable b1 value

varying within [-0.1, -0.02], the corresponding inter-

spike interval bifurcation diagram is shown in Fig. 4. It can

be seen that firing pattern of the system is period-1 pattern

with relatively small b1 values. When b1 increases to the

point of -0.54, there will be bifurcation in the system.

From period-1 firing pattern, undergoing period-doubling

Fig. 2 Lyapunov exponent diagram corresponding to s

Fig. 3 Inter-spike interval bifurcation diagram corresponding to e

Fig. 4 Inter-spike interval bifurcation diagram corresponding to b1

Neural Comput & Applic (2016) 27:739–747 741

123



bifurcation, the system goes through period-2 pattern, pe-

riod-4 pattern, etc, and enters into chaotic firing state,

where there is interior crisis in it. As b1 value increases to a

certain point, there will be inverse period-doubling bifur-

cation in the system, and from period-4 pattern, the chaotic

firing pattern switches back to the period-1 spiking pattern.

4 The effect of two-parameter variation
on dynamic behavior of the system

Infinitesimal disturbance of one or more variables values

will alter the effect of these parameters on dynamic be-

havior of the system. In the neuron model experiment, it is

hard to keep one parameter as variable and the values of all

others unchanged. It is more common that the values of

several parameters vary at the same time and within a

certain range. Therefore, it is practically meaningful to

study the influence of several changing parameters on the

dynamic features of the neuron system.

In this section, there are two parameters varying within a

certain range simultaneously, and the corresponding dy-

namic behavior of the system is analyzed.

4.1 Parameter e and b1 as variables

First of all, in the system where e and b1 are taken as

variables, with e value varying within [0, 0.04], and b1
value within [-0.06, -0.02], calculate and draw simula-

tion bifurcation diagrams of the model correspondingly, as

is shown in Fig. 5; different colors represent different cy-

cles in the figures; the right numbers in the figure represent

discharge cycles; greater than or equal to 16 big cycle

discharge activity or chaos phenomenon is labeled with

sixteen colors. When b1 value varies within [-0.06,

-0.055], it can be seen from a longitudinal viewpoint that

part of the diagram is colored red completely, which

indicates that the system is in a periodic spiking state,and

small changes of time scale value does not affect the whole

bifurcation structure of system. When b1 value varies

within [-0.055, -0.02], the firing pattern becomes com-

plicated. And burst firing of period-2, period-3, period-4,

period-5, period-6, period-8, period-12, period-16 pattern,

etc., can be observed in the system.

From Fig. 5, it can be observed easily and clearly that

period-doubling bifurcation occurs in the system. In the

diagram,from top to bottom, it can be seen intuitively that

period-1 is followed by period-2; and period-2 is followed

by period-4; period-4 is followed by period-8; period-8 is

followed by period-16; and period-3 is followed by period-

6; period-6 is followed by period-12. Many such period-

doubling can be observed if there are sufficient refinements

in the calculation, these period-doubling bifurcations can

be illustrated with different colored period numbers. Peri-

od-doubling is one path of neuronal discharge model

leading to chaos; we can clearly observe in Fig. 5 that the

bursting process of system from period-doubling gradually

enters into chaotic discharge.

Moreover, Fig. 5 also shows clearly that there will be

periodic firing after intermittent chaos in the system. With

b1 value varying within(-0.055, -0.03),and e value within
[0.01, 0.025], from period-2 burst firing pattern, undergo-

ing period-doubling bifurcation, the system goes through

period-4, period-8, period-16, and then enters into inter-

mittent chaotic firing interval, during which there are

complex dynamic phenomena, as well as the occurrences

of periodic windows in the system. Along with the decrease

of e value, the chaotic firing pattern of the system degen-

erates into period-3 burst firing pattern; then through bi-

furcation, the system enters intermittent chaotic firing

which latter degenerates into period-4 burst firing pattern.

With the above process being repeated, the system enters

Fig. 5 Bifurcation diagram corresponding to e and b1. a Bifurcation

diagram of e [ [0, 0.04] and b1 [ [-0.06, -0.02]. b Bifurcation

diagram of e [ [0, 0.02] and b1 [ [-0.06, -0.03] (color figure online)
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into a new periodic firing stage. It also illustrates that pe-

riod window region of chaotic firing changes with the pa-

rameter: with the decrease of e, the chaotic firing period

window also decreases, and then ultimately disappears.

From Fig. 5, it is easily observed the process of periodic

discharge with chaos and periodic discharge without chaos.

In Fig. 5, period-4, period-5, period-6, period-7, period-8

and period-9 these gradual growing periodic discharge in-

crease their numbers of periods is through period-adding

pattern in a certain parameter range. For example, when

b1 [ [-0.03, -0.02], the system will present on the period-

adding discharge without chaos phenomenon. And it can

also be observed in the figure, with increasing in the

number of periods, the periodic range gradually decreases,

which is shown in the picture that as the parameters change

the color band gradually narrows. From Fig. 5, it is not

difficult to see that when the parameters b1 change in the

[-0.055, -0.03] interval range, with the parameter e
changes, the system experiences period-adding discharge

with intermittent chaotic activities. In the process with

chaotic period-adding bifurcation, the chaotic window

gradually decreases as the number of period increases. And

when the number of periods reaches a certain value, the

chaotic window disappears and the system changes into

period-adding process without chaos. From Fig. 5b it can

be more clearly observed that the system comes into

chaotic discharges through period-doubling, and then the

saddle-node bifurcation will end the chaotic discharge and

enter a new period discharge process. From the Fig. 5a, b,

we may observe that the small perturbations of a single

parameter will not affect system discharge mode, and only

when two parameters simultaneously changes, the system’s

discharge state will change. This fully shows that compared

to the single parameter, the two-parameter dynamic char-

acteristics of neuron discharge model has more guiding

significance to the reality.

4.2 Parameter e and s as variables

Secondly, in the system where the parameter e and the

parameter s are taken as variables, calculate and draw

simulation bifurcation diagrams of the model correspond-

ingly, as is shown in Fig. 6. From Fig. 6a, it can be seen

that the system presents abundant dynamic phenomena

with e value varying within [0, 0.04] and s value varying

within [-1.7, -1.5].

Figure 6b is the bifurcation diagram of the system with

parameter e value varying within [0, 0.02] and parameter

s value varying within [-1.7, -1.6]. Figure 6c is bifurca-

tion diagram of the system with parameter e value varying

within [0, 0.01] and parameter s value varying within

[-1.7, -1.6]. From Fig. 6b, it can be observed easily and

clearly that period-doubling bifurcation occurs in the

system. In the diagram, from the upper left to lower right, it

can be seen intuitively that period-1 is followed by period-

2; and period-2 is followed by period-4; period-4 is fol-

lowed by period-8; period-8 is followed by period-16; and

period-3 is followed by period-6; period-6 is followed by

period-12. Many such period-doubling can be observed if

there are sufficient refinements in the calculation, these

period-doubling bifurcations can be illustrated with dif-

ferent colored period numbers in the Fig. 6b. Moreover,

Fig. 6b also shows clearly that there will be periodic firing

after intermittent chaos in the system. From top to bot-

tom to see Fig. 6b, undergoing period-doubling bifurca-

tion, the system goes through period-4, period-8, period-16,

and then enters into intermittent chaotic firing interval from

period-2 burst firing pattern, during which there are com-

plex dynamic phenomena, as well as the occurrences of

periodic windows in the system. Along with the decrease of

e value, the chaotic firing pattern of the system degenerates

into period-3 burst firing pattern; then through bifurcation,

the system enters intermittent chaotic firing which latter

degenerates into period-4 burst firing pattern. With the

above process being repeated, the system enters into a new

periodic firing stage. It also illustrates that period window

region of chaotic firing changes with the parameter: with

the decrease of the parameter e, the chaotic firing period

window also decreases, and then ultimately disappears.

Figure 6c is the lower part of the Fig. 6b, it can be seen this

phenomenon more clearly from Fig. 6c.

Figure 6d is bifurcation diagram of the system with

parameter e value varying within [0.01, 0.04], and pa-

rameter s value varying within [-1.7, -1.6]. Figure 6e is

bifurcation diagram of the system with parameter e value

varying within [0, 0.02] and parameter s value varying

within [-1.62, -1.58].

Figure 6d indicates that the system will present various

complicated rhythmic firing pattern. When e is above

0.026, the firing of the system takes on period-1 and pe-

riod-2 pattern, and minor change of the time scale will not

affect the bifurcation structure of the whole system. With

the decrease of e value, the bifurcation can be observed

clearly. The adjacent two colors represent different period

numbers, for example: period-1 is adjacent to period-2,

which is adjacent to period-4; period-3 is adjacent to pe-

riod-6; period-4 is adjacent to period-8, etc. Refined cal-

culation can lead to the observation of many such period-

doubling bifurcations. For the firing pattern of neuron

system, one of the routes to chaos is via period-doubling

bifurcation.

Figure 6d shows clearly the process, in which the sys-

tem enters into chaotic burst firing via period-doubling

bifurcation. From careful observation, we know that

chaotic firing is not actually disordered, but accompanied

with small periodical windows. The chaotic firing interval
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can be seen clearly, when there are two parameters varying

at the same time in the system. For example, as soon as

saddle node bifurcation quickly ends, the system switches

into a periodic burst firing pattern with a new period

number. Along with the value changes of the parameters

with a certain range, the system repeats the periodic firing

Fig. 6 Bifurcation diagram corresponding to e and s. a Bifurcation

diagram of e [ [0, 0.06] and s [ [-1.7, -1.5]. b Bifurcation diagram

of e [ [0.01, 0.02] and s [ [-1.7, -1.6]. c Bifurcation diagram of

e [ [0, 0.01] and s [ [-1.7, -1.6]. d Bifurcation diagram of

e [ [0.01, 0.04] and s [ [-1.7, -1.6]. e Bifurcation diagram of

e [ [0, 0.02] and s [ [-1.62, -1.58]. f Bifurcation diagram of e [ [0,

0.02] and s [ [-1.6, -1.5] (color figure online)
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to chaotic burst firing via period-doubling bifurcation.

Then via saddle node bifurcation, the chaotic burst firing

pattern shifts into a new periodic one. It can be more

clearly seen the process from Fig. 6e.

Figure 6d, e also show that: the firing activity of the system

switches from period-2 pattern to period-4 pattern via period-

doubling bifurcation; after undergoing another period-dou-

bling bifurcation, period-4 pattern shifts into period-8 pattern,

and then the system takes on the intermittent chaotic firing

activity. As the parameter value changes, the intermittent

chaotic firing activity shifts into period-3 firing pattern via

saddle node bifurcation. Through period-doubling bifurca-

tion, period-3 pattern is replaced by period-6, after which the

system enters into chaotic firing. Then the system will repeat

the same chaotic firing patterns, after which it degenerate into

new periodical firing pattern with the new period number in-

creasing by one each time. This is the period-adding bifur-

cation with chaos. With the increase of period number, the

chaotic firing periodic window decreases between two peri-

odic windows, and then ultimately disappears.

From Fig. 6f, it is easily observed the process of peri-

odic discharge with chaos and periodic discharge without

chaos. From the upper left of Fig. 6f it can be seen that the

system experiences period-adding discharge with inter-

mittent chaotic activities with the parameter e changes. In
the process with chaotic period-adding bifurcation, the

chaotic window gradually decreases as the number of pe-

riod increases. And when the number of periods reaches a

certain value, the chaotic window disappears and the sys-

tem changes into period-adding process without chaos.

From Fig. 6e it can be more clearly observed that the

system comes into chaotic discharges through period-

doubling, and then the saddle-node bifurcation will end the

chaotic discharge and enter a new period discharge process.

In the lower right part of Fig. 6f, from right to left, it can

seen that period-1 is adjacent to period-2, which is adjacent

to period-3; period-3 is adjacent to period-4; period-4 is

adjacent to period-5, etc, these gradual growing periodic

discharge increase their numbers of periods is through

period-adding pattern in a certain parameter range. And it

can also be observed in the figure, with increasing in the

number of periods, the periodic range gradually decreases,

which is shown in the figure that as the parameters change

the color band gradually narrows.

4.3 Parameter b1 and s as variables

In the system where the parameter b1 and the parameter s are

taken as variables, calculate and draw simulation bifurcation

diagrams of the model correspondingly, as is shown in

Fig. 7. From Fig. 7a, it can be seen that the system presents

abundant dynamic phenomena with b1 value varying within

[-0.06, -0.02] and s value varying within [-1.8, -1.5].

Figure 7b is the bifurcation diagram of the system with

parameter b1 value varying within [-0.06, -0.02] and

parameter s value varying within [-1.7, -1.6]. Figure 7b

shows that: When e is under -1.63, the firing pattern of the

system is in period-1 and period-2 pattern, and minor

change of parameter e will not affect the bifurcation

structure of the whole system. With the increase of s value,

the period-doubling bifurcation can be observed clearly.

The adjacent two colors represent different period num-

bers, for example: period-1 is adjacent to period-2 which is

adjacent to period-4; and period-4 is adjacent to period-8,

etc. Refined calculation can lead to the observation of

many such period-doubling bifurcations. Moreover, it also

indicates that: with the increase of the period number, the

period range decreases, which is reflected in the figure as

the narrowing down of colored region with the parameter

variation.

Figure 7c is bifurcation diagram of the system with pa-

rameter b1 value varying within [-0.06, -0.04] and pa-

rameter s value varying within [-1.6, -1.5]. Figure 7d is

bifurcation diagram of the system with parameter b1 value

varying within [-0.05, -0.04] and parameter s value vary-

ing within [-1.62, -1.58]. Figure 7c shows that: the firing

activity of the system switches from period-2 pattern to pe-

riod-4 pattern via period-doubling bifurcation; after under-

going another period-doubling bifurcation, period-4 pattern

shifts into period-8 pattern, and then the system takes on the

intermittent chaotic firing activity. As the parameter value

changes, the intermittent chaotic firing activity shifts into

period-3 firing pattern via saddle node bifurcation. Through

period-doubling bifurcation, period-3 pattern is replaced by

period-6, after which the system enters into chaotic firing.

Then the system will repeat the same chaotic firing patterns,

after which it degenerate into new periodical firing pattern

with the new period number increasing by one each time.

This is the period-adding bifurcation with chaos. With the

increase of period number, the chaotic firing periodic win-

dow decreases between two periodic windows, it can be

clearly seen this process from Fig. 7d.

Therefore, compared with the condition where there is

only one parameter as variable, the effect of parameter

minor change on the system is more obvious, when two

parameters taken as variables in the system. From Fig. 5,

we know that the firing pattern of the system will not alter

with minor changes of a single parameter. Generally, the

following three aspects can be observed from bifurcation

diagram of two variables as control parameters:

(1) When two parameters are taken as control pa-

rameters, the bifurcation diagram is an integrated diagram

of single parameter bifurcation diagram, that is, the cross or

vertical section of the diagram is the bifurcation diagram

with one parameter being unchanged and the other as

control parameter in the system;
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(2) When two parameters are taken as control pa-

rameters, period-adding bifurcation (with or without

chaos), period-doubling bifurcation and intermittent chaos

(periodic and intermittent chaotic) can be observed intu-

itively in the corresponding bifurcation diagram;

(3) In the bifurcation diagram, where two variables are

control parameter, it is easy to determine the period num-

ber and the occurrence time point of the burst firing in the

system, as well as the corresponding interval within which

the parameter values vary.

5 Conclusions

Based on the modified HR model, the neuron model is

calculated and simulated with C language programming

and the Grapher, and then the effect of different parameters

on the dynamic behavior of the modified HR neuron

system are examine through analyzing the single parameter

as well as two parameter bifurcation diagram.

The results show that: with other parameter unchanged,

when s value increases, the system is on a stable periodic

firing activity; and as s value decreases, the system enters

into chaos via period-doubling bifurcation and there are

interior crises during the chaotic interval. While other

parameters remain unchanged, with the increase of e
value, the system undergoes inverse period-adding bifur-

cation with chaos occurring in this process. With other

parameter unchanged, and b1 value varying within [-0.1,

-0.02], via period-doubling bifurcation, the period-1 fir-

ing activity of the system switches into chaotic firing with

interior crisis, and then through inverse period-doubling

bifurcation, ultimately returns to the period-1 spiking

pattern.

While other parameters remain unchanged, with the

increase of e value, the system undergoes inverse period-

Fig. 7 Bifurcation diagram corresponding to s and b1. a Bifurcation

diagram of s [ [-1.8, -1.5] and b1 [ [-0.06, -0.02]. b Bifurcation

diagram of s [ [-1.7, -1.6] and b1 [ [-0.06, -0.02]. c Bifurcation

diagram of s [ [-1.6, -1.5] and b1 [ [-0.06, -0.04]. d Bifurcation

diagram of s [ [-1.62, -1.58] and b1 [ [-0.05, -0.04] (color figure

online)
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adding bifurcation with chaos occurring in this process.

When e value is under 0.02, the neuron system is in a

chaotic firing state. With the increase of the parameter

value, the chaotic firing state of the system switches into

the steady period-1 spiking state.

With other parameter unchanged, and b1 value varying

within [-0.1, -0.02], via period-doubling bifurcation, the

period-1 firing activity of the system switches into chaotic

firing with interior crisis, and then via inverse period-

doubling bifurcation, period-4 pattern returns to the period-

1 spiking pattern.

When two parameters are taken as variables, period-

adding bifurcation (with or without chaos), period-dou-

bling bifurcation and intermittent chaos (periodic and in-

termittent chaotic) can be observed intuitively in the

corresponding bifurcation diagram. In the bifurcation dia-

gram, where two variables are control parameters, it is easy

to determine the period number and the occurrence time

point of the burst firing in the system, as well as the cor-

responding interval within which the parameter values

vary. Thus it has guiding significance for researchers in this

field.
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