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Abstract The purpose of this paper was to propose a new

method to solve partial differential equations arising in the

field of science and engineering. In this new method, we have

reduced the multiple integrals into a single integral and ex-

pressed it in terms of a difference kernel. To make the cal-

culation easy and convenient, we have used the Laplace

transformation to solve the difference kernel. The method is

very simple, easy to understand and calculation minimizing

as compared to the Adomian decomposition method and the

variational iteration method. Some examples are given to

verify the reliability and efficiency of the method.

Keywords Difference kernel � Laplace transformation �
Convolution theorem

1 Introduction

The concept of iterative methods has gained considerable

popularity and importance, due to its demonstrated ap-

plications in numerous seemingly diverse and widespread

fields of engineering and applied sciences. There are

various iterative techniques to solve nonlinear differential

equations arising in applied sciences and engineering, and

for example, iterative methods have successfully applied

to problems in physics [1–5], biology [6, 7], chemistry [8,

9], electrical engineering [10–12], civil engineering [13,

14] and mechanical engineering [15–18]. However, all

these techniques have their limitations in applications.

Inspired and motivated by the ongoing research in this

area, we suggest a novel difference kernel iterative

method (DKIM) for linear and nonlinear differential

equations in this paper. The method does not require that

the nonlinearities be differentiable with respect to the

dependent variable and its derivatives. This method makes

use of the difference kernel in the iteration formula. The

method has linked up variational iteration method [19]

and Adomian decomposition method [20] through a new

iterative scheme called difference kernel iterative method.

The strength of new iterative scheme is: there is no need

to integrate the differential equation again and again as we

do in Adomian decomposition method. Benefits of new

iterative scheme over the variational iteration method are:

It avoids the unnecessary calculations and no need to

calculate Lagrange multiplier and construction of correc-

tional functional. In this new method, we have introduced

the difference kernel instead of Lagrange multiplier which

is very easy to calculate. Through this difference kernel,

we solve the integral by means of Laplace transform [20–

26], which makes calculation very simple and easy to

understand. The method is very simple, easy to under-

stand, decreases the calculations as compared to so-called

Adomian decomposition method and variational iteration

method. Several examples are given to verify the re-

liability and efficiency of the method. To the best of our

knowledge, difference kernel iteration method for solving

differential equations is presented for the first time in the

literature.
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2 Method description

In order to elucidate the solution procedure, we consider

the following nth order partial differential equation:

Lnf x; tð Þ ¼ Rf x; tð Þ þ Nf x; tð Þ þ g x; tð Þ; t [ 0; x 2 R;

ð1Þ

where Ln ¼ on

otn
; n � 1; R is linear differential operator, N is

the nonlinear differential operator,R and N are free of partial

derivative with respect to variable t, g is the source term. As

we are familiar with the fact that in all kinds of iterative

techniques, except operator rest of terms are treated as a

known function on the behalf of initial guess. In this present

newly proposed idea, we have used same concept. We have

bound all terms in one function except operator:

gþ Nf þ Rf ¼ F t; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
: ð2Þ

Incorporating Eq. (2) in Eq. (1), we get

Lnf ¼ F t; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
; ð3Þ

On integrating Eq. (3) with respect to t, one can obtain

Lðn�1Þf ¼
Z t

0

F n; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
dnþ c1ðxÞ; ð4Þ

again integrate Eq. (4)

Lðn�2Þf ¼
Z t

0

Zn

0

F s; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �

� dsdnþ c1ðxÞt þ c2ðxÞ;

ð5Þ

now we will convert this double integral in Eq. (5) into

single integral by doing integration by parts:

Lðn�2Þf ¼ n
Zn

0

F s; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
dsjt0

2
4

�
Z t

0

nF n; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
dn

3
5

þ c1ðxÞt þ c2ðxÞ

¼ t

Z t

0

F s; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �

ds�
Z t

0

nF n; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �

dnþ c1ðxÞt þ c2ðxÞ

¼
Z t

0

t � nð ÞF n; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �

dnþ c1ðxÞt þ c2ðxÞ;

ð6Þ

where we replaced s by n since they are only dummy

variables of integration. If we continue this process of in-

tegration, we can easy get final form as follows:

f x; tð Þ ¼
Z t

0

t � nð Þn�1

n� 1ð Þ! F t; x; g; f ;
of

ox
;
o2f

ox2
; . . .

� �
dn

þ c1ðxÞtn�1

n� 1ð Þ! þ
c2ðxÞtn�2

n� 2ð Þ! þ � � �n ðxÞ: ð7Þ

By writing the constant of integration in the form

ckðxÞ ¼ of n�k x;0þð Þ
otn�k ; k ¼ 1; . . .; n and substituting Eq. (2)

in Eq. (7), we obtain

f x; tð Þ ¼
Xn�1

k¼0

okf x; 0þð Þ
otk

tk

k!
þ
Z t

0

t � nð Þn�1

n� 1ð Þ! Rf þ Nf þ gð Þdn:

ð8Þ

Equation (8) can be written in the following form:

f x; tð Þ ¼
Xn�1

k¼0

okf x; 0þð Þ
otk

tk

k!
þ
Z t

0

t � nð Þn�1

n� 1ð Þ! g x; nð Þdn

þ
Z t

0

t � nð Þn�1

n� 1ð Þ! Rf þ Nfð Þdn: ð9Þ

We define iteration form of Eq. (9) as follows:

fp x; tð Þ ¼ f0ðx; tÞ þ
Z t

0

t � nð Þn�1

n� 1ð Þ! Rfp�1 þ Nfp�1

� �
dn;

p � 1; ð10Þ

where

f0 x; tð Þ ¼
Xn�1

k¼0

okf x; 0þð Þ
otk

tk

k!
þ
Z t

0

t � nð Þn�1

n� 1ð Þ! g x; nð Þdn

and
t�nð Þn�1

n�1ð Þ! is difference kernel which we will denote by

K t � nð Þ. The more refined form of Eq. (10) is

fp x; tð Þ ¼ f0ðx; tÞ þ
Z t

0

K t � nð Þ Rfp�1 þ Nfp�1

� �
dn ð11Þ

The most important Laplace transform pair used for solv-

ing integral equations with difference kernel is

L

Z t

0

K t � nð Þfp t; nð Þdn

8<
:

9=
; ¼ L K tð Þ � fp tð Þ

� �
¼ K sð Þfp sð Þ;

ð12Þ

where K(s) = L{K(t)} and fp(s) = L{fp(t, n)}. The integral

in Eq. (12) is called the convolution product of the two
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functions. It is apparent now that the convolution product

has the same integration limits (0, t) as that of Eq. (11). By

using the result illustrated in Eq. (12) in Eq. (11), we get

resulting equation for iteration method in the form

fp sð Þ ¼ f0ðsÞ þ K sð ÞHp�1 sð Þ ¼ f0ðsÞ þMp�1 sð Þ; p � 1;

ð13Þ

where Hp-1(s) is the Laplace transform of (Rfp-1 ? Nfp-1)

and Mp-1(s) = K(s)Hp-1(s). Inverse Laplace will give us

solution

fp x; tð Þ ¼ f0ðx; tÞ þMp�1 x; tð Þ: ð14Þ

Then, we get required solution

f ðx; tÞ ¼ lim
p!1

fpðx; tÞ: ð15Þ

3 Application of method

Example 1 Consider the partial differential equation

o2uðx; tÞ
ot2

¼ 4
o2uðx; tÞ

ox2
; ð16Þ

subject to the initial conditions

uðx; 0Þ ¼ sin px; utðx; 0Þ ¼ 0: ð17Þ

The exact solution is

uðx; tÞ ¼ sin px cos 2pt: ð18Þ

To solve the Eq. (16), we follow the formulation, given

in Sect. 2.

upðx; tÞ ¼ u0ðx; tÞ þ
Z t

0

Kðt � nÞ 4
o2up�1

ox2

� �
dn; p� 1:

ð19Þ

Hence

u0 ¼
Xn�1

k¼0

okuðx; 0þÞ
otk

tk

k!
¼ sin px; K t � nð Þ ¼ t � nð Þ;

ð20Þ

upðx; tÞ ¼ u0ðx; tÞ þ
Z t

0

ðt � nÞ 4
o2up�1

ox2

� �
dn; p� 1: ð21Þ

For p = 1, we have

u1ðx; tÞ ¼ sin pxþ
Z t

0

ðt � nÞ �4p2 sin px
� �

dn

¼ sin px� 4p2 sin px
Z t

0

ðt � nÞ dn:

u1ðx; sÞ ¼ sin px
1

s
� 4p2 sin px

1

s3
:

ð22Þ

Thus

u1ðx; tÞ ¼ sin px� 4p2t2 sin px
2!

¼ sinpx� ð2pÞ2
t2 sin px
2!

:

In the same way, rest of iterations can be calculated as

follows:

u2ðx;tÞ¼sinpx�ð2pÞ2

2!
t2sinpxþð2pÞ4

4!
t4sinpx

¼sinpx 1�ð2pÞ2

2!
t2þð2pÞ4

4!
t4

 !
;u3ðx;tÞ

¼sinpx 1�ð2pÞ2

2!
t2þð2pÞ4

4!
t4�ð2pÞ6

6!
t6

 !
;u4ðx;tÞ

¼sinpx 1�ð2pÞ2

2!
t2þð2pÞ4

4!
t4�ð2pÞ6

6!
t6þð2pÞ8

8!
t8

 !
;

..

.

ukðx;tÞ¼sinpx
Xk
i¼0

ð�1Þ2ið2pÞ2i

ð2iÞ! t
2i;

..

.
ð23Þ

Then, we obtain the required solution in the form

uðx; tÞ ¼ lim
k!1

ukðx; tÞ ¼ sin px
X1
i¼0

ð�1Þ2i ð2pÞ2i

ð2iÞ! t
2i

¼ sin px cos 2pt: ð24Þ

Example 2 Consider the partial differential equation with

the initial conditions

o2uðx; tÞ
ot2

þ o2uðx; tÞ
ox2

þ uðx; tÞ ¼ 0;

uðx; 0Þ ¼ 1 þ sin x; utðx; 0Þ ¼ 0:

ð25Þ

By applying the aforesaid method, we have

upðx; tÞ ¼ u0ðx; tÞ �
Z t

0

Kðt � nÞ o2up�1

ox2
þ up�1

� �
dn

with n = 2 difference kernel become K(t - n) = (t - n),

and from initial conditions, we get

u0ðx; tÞ ¼
Xn�1

k¼0

okuðx; 0þÞ
otk

tk

k!
¼ 1 þ sin x ð26Þ

For p = 1, we get

u1ðx; tÞ ¼ 1 þ sin x�
Z t

0

ðt � nÞ o2u0

ox2
þ u0

� �
dn

¼ 1 þ sin x�
Z t

0

ðt � nÞdn: ð27Þ
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By taking Laplace transform of Eq. (27), we get

u1ðx; sÞ ¼
1

s
þ 1

s
sin x� 1

s3
: ð28Þ

Inverse Laplace will give us first iteration, i.e.,

u1ðx; tÞ ¼ 1 þ sin x� t2

2!
: ð29Þ

In the same way, rest of iterations have the form

u2ðx; tÞ ¼ 1 þ sin x� t2

2!
þ t4

4!
;

u3ðx; tÞ ¼ 1 þ sin x� t2

2!
þ t4

4!
� t6

6!
;

..

.

ukðx; tÞ ¼ sin xþ
Xk
i¼0

ð�1Þi t
2i

2i!
;

..

.

ð30Þ

Therefore, the solution is given by

uðx; tÞ ¼ lim
k!1

ukðx; tÞ ¼ lim
k!1

sin xþ
Xk
i¼0

ð�1Þi t
2i

2i!

 !

¼ sin xþ cos t:

ð31Þ

Example 3 Consider the homogeneous nonlinear gas

dynamic equation

ouðx; tÞ
ot

þ 1

2

oðu2ðx; tÞÞ
ox

� uðx; tÞð1 � uðx; tÞÞ ¼ 0; ð32Þ

subject to the initial condition

uðx; 0Þ ¼ e�x: ð33Þ

From the initial condition, we have

u0 ¼
Xn�1

k¼0

oku x; 0þð Þ
otk

tk

k!
¼ e�x: ð34Þ

Then, iteration formula has the form

up x; tð Þ ¼ u0ðx; tÞþ
Z t

0

K t� nð Þ

� �1

2

oðu2
p�1ðx; tÞÞ
ox

þ up�1ðx; tÞð1� up�1ðx; tÞÞ
 !

� dn; p � 1:

ð35Þ

For p = 1, we obtain

u1ðx; tÞ ¼ e�x þ
Z t

0

� 1

2
ð�2e�2xÞ þ e�xð1 � e�xÞ

� �
dn:

ð36Þ

The same way as above, we get

u1ðx; tÞ ¼ e�x 1 þ tð Þ;

u2ðx; tÞ ¼ e�x 1 þ t þ t2

2!

� �
;

u3ðx; tÞ ¼ e�x 1 þ t þ t2

2!
þ t3

3!

� �
;

..

.

ukðx; tÞ ¼ e�x 1 þ t þ t2

2!
þ t3

3!
þ � � � þ tk

k!

� �
¼ e�x

Xk
i¼0

ti

i!
;

..

.

ð37Þ

Hence, the solution of Eq. (32) has the form

uðx; tÞ ¼ lim
k!1

e�x
Xk
i¼0

ti

i!
¼ et�x: ð38Þ

4 Conclusion

In this paper, we study the insightful idea of Adomian

decomposition method and variational iteration method.

We find some unnecessary calculations and a lengthy

process of integration. To cope with this difficulty, we

proposed another method called difference kernel iterative

method, which gives equivalent results, the results obtained

by ADM. The following observations have been made:

• DKIM eliminates the need to do repeated integrations

as in Adomian decomposition method, and one can get

the same results of Adomian method;

• Through this method, there is no need to calculate

Lagrange multiplier of He’s variational iteration

method. We introduce difference kernel instead of

Lagrange multiplier;

• This method avoids the unnecessary calculations in

He’s variational iteration method;

• By using the convolution property, as we have differ-

ence kernel in integral, we can avoid unnecessary

calculation;

• We can easily convert Lagrange multiplier of He’s

VIM into difference kernel and then apply DKIM to

avoid the unnecessary calculations appearing in VIM-I

and VIM-II [27].
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So in final conclusion, we can say that the present

method is more useful, easy to understand and more ef-

fective as compared to ADM and VIM.
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