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Abstract In this paper, a novel outranking approach for

multi-criteria decision-making (MCDM) problems is pro-

posed to address situations where there is a set of numbers

in the real unit interval and not just a specific number with

a neutrosophic set. Firstly, the operations of interval neu-

trosophic sets and their related properties are introduced.

Then some outranking relations for interval neutrosophic

numbers (INNs) are defined based on ELECTRE IV, and

the properties of the outranking relations are further dis-

cussed in detail. Additionally, based on the outranking

relations of INNs, a ranking approach is developed in order

to solve MCDM problems. Finally, two practical examples

are provided to illustrate the practicality and effectiveness

of the proposed approach. Moreover, a comparison analysis

based on the same examples is also conducted.

Keywords Interval-valued neutrosophic sets � Multi-

criteria decision-making � Outranking � ELECTRE IV

1 Introduction

In order to deal with different types of uncertainties, Zadeh

[1] proposed his seminal theory of fuzzy sets (FSs) in 1965;

since then, it has been applied successfully in various fields

[2]. However, in certain cases it is hard to define the grade of

membership of an FS with a specific value. Therefore,

Turksen [3] introduced interval-valued fuzzy sets (IVFSs) in

1986. Subsequently, Atanassov [4, 5] proposed intuitionistic

fuzzy sets (IFSs) to deal with the lack of knowledge of non-

membership degrees. Moreover, Gau and Buehrer [6] de-

fined vague sets, and according to Bustince, these vague sets

and Atanassov’s IFSs are mathematically equivalent objects

[7]. To date, IFS has been widely applied in solving multi-

criteria decision-making (MCDM) problems [8–10] in fields

such as medical diagnosis [11], neural networks [12], color

region extraction [13, 14] and market prediction [15]. IFSs

were subsequently extended to interval-valued intuitionistic

fuzzy sets (IVIFSs) [16], as well as to intuitionistic interval

FSs with triangular intuitionistic fuzzy numbers [17]. In

order to cope with these situations where people are hesitant

in expressing their preference with regard to objects in a

decision-making process, hesitant fuzzy sets (HFSs) were

introduced by Torra [18] and Narukawa [19]. In addition,

some further extensions have been proposed [20–22], and

methods with intuitionistic fuzzy numbers from some new

groups’ decision-making analysis have been developed [23,

24].

Despite the fact that the theory of FSs has been devel-

oped and generalized, it could not deal with all types of

uncertainties, such as indeterminate and inconsistent in-

formation, in real decision-making problems. For example

[25], when an expert gives the opinion about a certain

statement, he or she may say that the possibility that the

statement is true is 0.5, the degree of false statement is 0.6,

and the possibility that he or she is not sure is 0.2. A further

example relates to the field of medicine. Sometimes it is

difficult for a doctor to make a certain diagnosis when a

patient is suffering from a disease; therefore, she/he will

often give an analysis with a degree of truth and falsity, as

well as indeterminacy, such as 60 % of ‘‘yes’’, 30 % of

‘‘no’’ and 20 % of ‘‘not sure’’. These issues are beyond the

scope of the FSs and IFSs. Therefore, some new theories

are required.
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For this purpose, Smarandache [26, 27] developed neu-

trosophic logic and neutrosophic sets (NSs) in 1995. The NS

is a set where each element of the universe has a degree of

truth, indeterminacy and falsity and which lies in ]0-, 1?[,

the nonstandard unit interval [28]. Clearly, this is the ex-

tension to the standard interval [0, 1] as in the IFS. Fur-

thermore, the uncertainty present here, i.e., indeterminacy

factor, is independent of truth and falsity values, while the

incorporated uncertainty is dependent of the degrees of

belongingness and non-belongingness in IFSs [29]. Addi-

tionally, with regard to the aforementioned example about

expert statement, it can be expressed as xð0:5; 0:2; 0:6Þ by

NSs.

To date, some extensions to NS have been proposed. For

example, a single-valued neutrosophic set (SVNS), which

is a variation of an NS [25], was introduced to facilitate its

practical use. With regard to SVNS, Majumdar and Samant

[29] proposed a measure for the entropy, while Ye [30]

suggested methods for solving MCDM problems using a

cross-entropy and correlation coefficient [31]. Moreover,

Liu and Wang [32] proposed a single-valued neutrosophic

normalized weighted Bonferroni mean operator. Addi-

tionally, MCDM methods were suggested for simplified

neutrosophic sets (SNSs) [31, 33]. However, as the degree

of truth, falsity and indeterminacy about a certain statement

could not be defined precisely in real situations; an interval

neutrosophic set (INS) was required, which is similar to an

IVIFS. Wang et al. [34] proposed the concept of an INS

and developed its set-theoretical operators. Furthermore,

the operations of an INS were discussed in [35, 36], and its

correlation coefficients have also been considered [37], as

well the cosine similarity measure of INS was proposed

[38]. Additionally, on the basis of INSs, MCDM methods

using aggregation operators were proposed in [39]. More-

over, in order to utilize the advantages of INSs and inter-

val-valued HFSs, an interval neutrosophic hesitant fuzzy

set (INHFS) was proposed and its novel aggregation op-

erators were developed [40]. In order to deal with MCDM

problems in a neutrosophic linguistic environment, Broumi

and Smarandache [41] introduced a neutrosophic trapezoid

linguistic weighted geometric aggregation operator and an

extended TOPSIS method was developed [42]. Somewhat

differently, Tian et al. [43] proposed a simplified neutro-

sophic linguistic Bonferroni mean operator and a simplified

neutrosophic linguistic normalized weighted Bonferroni

mean operator to resolve MCDM problems where the

evaluation information takes the form of simplified neu-

trosophic linguistic numbers. At the same time, multi-val-

ued neutrosophic sets (MVNSs) were introduced [44],

based on which the power aggregation operators for

MVNNs were defined [45]. On the basis of soft set theory

[46–48], neutrosophic soft set and its operations were

defined [49, 50], and interval-valued neutrosophic soft sets

with their relations have been discussed [51–55].

The methods for solving MCDM problems using INSs

that are outlined above are all function models in nature. In

a function method, the priority of the alternatives will be

obtained being aggregated by given weights according to

aggregation operators. The order of the alternatives has

properties as transitivity, completeness and reflexivity. In

these function models, it is assumed that the criteria are

independent and subject to compensation, which causes

information loss and ignores the actual will of decision-

makers. For example, for an alternative A, even if it is

worse than alternative B with regard to a criterion, it may

be compensated by other criteria and the final ranking

maybe A[B. Clearly, this fails to meet some practical

requirements; therefore, another method, namely the rela-

tion model, is needed to deal with these problems. The

relation model adopts an outranking relation [56], which

proceeds by pair-wise comparison of alternatives for each

criterion in order to rank and classify alternatives in terms

of their priority according to the criteria. The ELECTRE

and PROMETHREE methods are the main representatives

in this field; moreover, in an outranking relation, the hy-

pothesis is weaker and more related to actual circumstance

[57].

Since they were originally developed by Benayoun, Roy

and Sussmann in 1966 [58], the ELECTRE methods have

been successfully and widely used in many actual decision-

making problems, from agriculture [59] to medical science

[60], from finance [61] to economics [62] and from project

selection [63] to communication and transportation [63,

64]. Theoretical research into ELECTRE has been inten-

sive, and different versions of this method have been pro-

posed for dealing with different decision-making

situations; these include ELECTRE I, ELECTRE II,

ELECTRE III, ELECTRE IV, ELECTRE TRI-C and

ELECTRE IS [58, 65–67]. Furthermore, some approaches

based on ELECTRE have been developed to solve MCDM

problems, including those where the evaluation values are

IFSs, SNSs [57], interval type-2 FSs [68], IVIFSs [69] and

HFSs [70, 71]. Moreover, this approach has been extended

to solve MCDM problems where the assessments of the

alternative are the form of linguistic information [72, 73].

Most of the above methods are needed to define the

relative importance of the coefficients of criteria. However,

people are often not willing or able to provide information

about the specific role (i.e., importance) that is associated

with each criterion in the aggregation procedure [58]. In

other words, people do not know how to assign a value to

those coefficients, and this does not mean that each crite-

rion has the same weight. However, ELECTRE IV is

highly appropriate for cases like this [74]. For this reason,
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some outranking relations of interval neutrosophic numbers

(INNs) based on ELECTRE IV are developed in this paper,

and the related properties of INNs are discussed. Further-

more, an outranking approach for MCDM problems using

INNs is proposed.

The rest of paper is organized as follows. Section 2

briefly introduces the concepts and operations of NSs,

SNSs and INSs. Subsequently in Sect. 3, some outranking

relations of INNs that are based on ELECTRE IV are de-

fined; moreover, some properties are also discussed. In

Sect. 4, an outranking approach for MCDM problems with

INNs is developed. Then in Sect. 5, two examples are

presented to illustrate the proposed methods and a com-

parative analysis and discussion are provided. Finally, in

Sect. 6 conclusions are drawn.

2 Preliminaries

In this section, some basic concepts and definitions, in-

cluding definitions of NSs, SNSs and INSs, are introduced.

The operations of INNs are also provided as they will be

utilized in the rest of the paper.

2.1 NS, SNS and INS

Definition 1 [34] Let X be a set with a generic element in

X denoted by x. A NS A in X is described using a truth-

membership function TA(x), a indeterminacy-membership

function IA(x) and a falsity-membership function FA(x).

TA(x), IA(x) and FA(x) are real standard or nonstandard

subsets of ]0-, 1?[, that is, TAðxÞ : X !�0�; 1þ½; IAðxÞ :
X !�0�; 1þ½; and FAðxÞ : X !�0�; 1þ½: There is no re-

striction on the sum of TA(x), IA(x) and FA(x), so

0� � sup TAðxÞ þ sup IAðxÞ þ sup FAðxÞ� 3þ:

Definition 2 [34] A NS A is contained in the other NS B,

denoted as A � B; if and only if inf TAðxÞ� inf TBðxÞ;
sup TAðxÞ� sup TBðxÞ; inf IAðxÞ� inf IBðxÞ; sup IAðxÞ�
sup IBðxÞ; inf FAðxÞ� inf FBðxÞ; and sup FAðxÞ� sup

FBðxÞ for x 2 X.

Since it is difficult to apply NSs to practical problems,

Ye [31] reduced the NSs of nonstandard intervals into a

kind of SNSs of standard intervals, which preserved the

operations of the NSs.

Definition 3 [31] A NS A in X is characterized by TA(x),

IA(x) and FA(x), which are singleton subintervals/subsets in

the real standard [0, 1], that is TAðxÞ : X ! ½0; 1�; IAðxÞ :
X ! ½0; 1�; and FAðxÞ : X ! ½0; 1�: Then, a simplification

of A is denoted by

A ¼ x; TAðxÞ; IAðxÞ;FAðxÞh ijx 2 Xf g

which is called a SNS and is a subclass of NSs.

Definition 4 [34] An INS A in X is characterized by a

truth-membership function TA(x), an indeterminacy-mem-

bership function IA(x) and a falsity-membership function

FA(x). For each point x in X, it is that TAðxÞ ¼
½inf TAðxÞ; sup TAðxÞ�; IAðxÞ ¼ ½inf IAðxÞ; sup IAðxÞ�;
FAðxÞ ¼ ½inf FAðxÞ; sup FAðxÞ� � ½0; 1� and

0� sup TAðxÞ þ sup IAðxÞ þ sup FAðxÞ� 3, x 2 X. Only

the subunitary interval of [0, 1] is considered, and it is a

subclass of a NS. Therefore, all INSs are clearly NSs.

2.2 Operations for INNs

Definition 5 [39] Let two INNs be a ¼ ½inf TaðxÞ; suph
TaðxÞ�; ½inf IaðxÞ; sup IaðxÞ�; ½inf FaðxÞ; sup FaðxÞ�i; and

b ¼ ½inf TbðxÞ; sup TbðxÞ�; ½inf IbðxÞ;h sup IbðxÞ�; ½inf

FbðxÞ; sup FbðxÞ�i; and k[ 0. The operations for the INNs

are defined below.

ð1Þ ka ¼ 1 � 1 � inf TaðxÞð Þk; 1 � 1 � sup TaðxÞð Þk
h iD

;

inf IaðxÞð Þk; sup IaðxÞð Þk
h i

;

ðinf FaðxÞÞk; ðsup FaðxÞÞk
h iE

;

ð2Þ ak ¼ ðinf TaðxÞÞk; ðsup TaðxÞÞ
h ik

;

�

1 � ð1 � inf IaðxÞÞk; 1 � ð1 � sup IaðxÞÞk
h i

;

1 � ð1 � inf FaðxÞÞk; 1 � ð1 � sup FaðxÞÞk
h iE

;

ð3Þaþb¼ inf TaðxÞþ inf TbðxÞ� inf TaðxÞ� inf TbðxÞ; supTaðxÞ½h
þsupTbðxÞ�supTaðxÞ�supTbðxÞ�;
½inf TaðxÞ� inf IbðxÞ; sup IaðxÞ�sup IbðxÞ�;
½inf FaðxÞ� inf FbðxÞ; supFaðxÞ�supFbðxÞ�i;

ð4Þa �b¼ inf TaðxÞ� inf TbðxÞ; supTaðxÞ�supTbðxÞ½ �h ;

½inf TaðxÞþ inf IbðxÞ� inf TaðxÞ� inf IbðxÞ; sup IaðxÞ
þsup IbðxÞ�sup IaðxÞ�sup IbðxÞ�;
½inf FaðxÞþ inf FbðxÞ� inf FaðxÞ� inf FbðxÞ; supFaðxÞ
þsupFbðxÞ�supFaðxÞ�supFbðxÞ�i:

Theorem 1 [39] Let a, b and c be three INNs and a ¼
½inf TaðxÞ; sup TaðxÞ�; ½inf IaðxÞ;h sup IaðxÞ�; ½inf FaðxÞ;

sup FaðxÞ�i, b ¼ ½inf TbðxÞ; sup TbðxÞ�; ½inf IbðxÞ; suph
IbðxÞ�; ½inf FbðxÞ; sup FbðxÞ�i and c ¼ ½inf TcðxÞ; sup Tch
ðxÞ�; ½inf IcðxÞ; sup IcðxÞ�; ½inf FcðxÞ; sup FcðxÞ�i: Then the

following equations are true.
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ð1Þ aþ b ¼ bþ a;

ð2Þ a � b ¼ b � a;
ð3Þ kðaþ bÞ ¼ kaþ kb; k[ 0;

ð4Þ ða � bÞk ¼ ak þ bk; k[ 0;

ð5Þ k1aþ k2a ¼ ðk1 þ k2Þa; k1 [ 0; k2 [ 0;

ð6Þ ak1 � ak2 ¼ aðk1þk2Þ; k1 [ 0; k2 [ 0;

ð7Þ ðaþ bÞ þ c ¼ aþ ðbþ cÞ;
ð8Þ ða � bÞ � c ¼ a � ðb � cÞ:

Example 1 If two INNs are a ¼ ½0:7; 0:8�; ½0:0; 0:1�;h
½0:1; 0:2�i, and b ¼ ½0:4; 0:5�; ½0:2; 0:3�; ½0:3; 0:4�h i and

k = 2, then:

ð1Þ ka ¼ ½0:91; 0:96�; ½0; 0:01�; ½0:01; 0:04�h i;
ð2Þ ak ¼ ½0:49; 0:64�; ½0; 0:19�; ½0:19; 0:36�h i;
ð3Þ aþ b ¼ ½0:82; 0:90�; ½0; 0:05�; ½0:03; 0:08�h i and

ð4Þ a � b ¼ ½0:28; 0:40�; ½0:20; 0:37�; ½0:37; 0:52�h i:

3 Outranking relations of INNs

A criterion with both preference and indifference thresh-

olds is called a pseudo-criterion. Roy [75, 76] provided a

definition of the pseudo-criterion, in which it is a function

gj associated with two threshold functions, qjð�Þ and pjð�Þ;
which satisfies the following condition: for all ordered

pairs of actions, ða; a0Þ 2 S� S; gjðaÞ� gjða0Þ; gjðaÞ þ
pjðgjða0ÞÞ and gjðaÞ þ qjðgjða0ÞÞ are non-decreasing

monotone functions of gjða0Þ; and pjðgjða0ÞÞ � qj
ðgjða0ÞÞ � 0 for all a 2 S. Here, qjðgjða0ÞÞ is the greatest

performance difference, for which the situation of indif-

ference holds on to criterion gj between two actions a and

a0, and pjðgjða0ÞÞ is the smallest performance difference, for

which the situation of preference occurs on criterion gj
between a and a0. Based on the definition, the pseudo-

criterion between two INNs can be defined as follows.

Definition 6 Given two INNs a and b, where a ¼
½inf Ta; sup Ta�; ½inf Ia; sup Ia�; ½inf Fa; sup Fa�h i; and

b ¼ ½inf Tb; sup Tb�; ½inf Ib; sup Ib�; ½inf Fb;h sup Fb�i:
Let gðaÞ ¼ ðinf Ta þ sup TaÞ � ðinf Ia þ sup IaÞ � ðinf Fa

þ sup FaÞ; gðbÞ ¼ ðinf Tb þ sup TbÞ � ðinf Ib þ sup IbÞ �
ðinf Fb þ sup FbÞ; gðTabÞ ¼ ðinf Ta þ sup TaÞ � ðinf Tb þ
sup TbÞ; gðIabÞ ¼ ðinf Ia þ sup IaÞ � ðinf Ib þ sup IbÞ; and

gðFabÞ ¼ ðinf Fb þ supFbÞ � ðinf Fa þ supFaÞ. Assume

that gða; bÞ ¼ gðaÞ � gðbÞ ¼ gðTabÞ þ gðIabÞ þ gðFabÞ. Let

p and q represent the preference threshold and indifference

threshold, respectively. The following relations exist be-

tween the two INNs:

(1) If p\ g(a, b), then a is strongly preferred to b,

denoted by P(a, b) or a[ Sb:

(2) If q\ g(a, b) B p, then a is weakly preferred to b,

denoted by Q(a, b) or a[Wb:

(3) If -q\ g(a, b) B q, then a is indifferent to b,

denoted by I(a, b), or represented by a	 Ib:

Clearly, there are three binary relations between two

INNs a and b. They are a strong dominance relation, weak

dominance relation and indifference relation. If a is

strongly preferred to b, it means that a strongly dominates

b, whereas if a is weakly preferred to b, it means that

a weakly dominates b.

Example 2 Assume preference threshold p = 0.4, and the

indifference threshold q = 0.2.

(1) If a ¼ ½0:7; 0:8�; ½0:0; 0:1�; ½0:1; 0:2�h i and b ¼
½0:4; 0:5�; ½0:2; 0:3�; ½0:3; 0:4�h i are two INNs, then

gða; bÞ ¼ 1:4[ p: Therefore, a and b satisfy P(a, b),

that is, a is strictly preferred to b.

(2) If a ¼ ½0:6; 0:7�; ½0:2; 0:4�; ½0:3; 0:4�h i and b ¼
½0:4; 0:5�; ½0:2; 0:3�; ½0:3; 0:4�h i are two INNs, then

q\gða; bÞ ¼ 0:3� p: Therefore, a and b satisfy Q(a,

b), that is, a is weakly preferred to b.

(3) If a ¼ ½0:6; 0:7�; ½0:3; 0:4�; ½0:4; 0:5�h i and b ¼
½0:4; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�h i are two INNs, then

�q\gða; bÞ ¼ 0\ q. Hence, a is indifferent to b,

that is, I(a, b).

Property 1 Let a, b and c be INNs, if a[ Sb and b[ Sc;

then a[ Sc:

Proof According to Definition 6, if a[ Sb then

gða; bÞ[ p; that is, gðaÞ � gðbÞ[ p: Similarly, if b[ Sc

then gðbÞ � gðcÞ[ p: Therefore, gðaÞ � gðbÞ þ gðbÞ �
gðcÞ[ 2p: Thus, gðaÞ � gðcÞ[ p: Based on Definition 6,

a[ Sc is achieved and, therefore, the property is proven.

Property 2 Let a, b and c be three INNs, then the fol-

lowing results can be achieved.

(1) The strong dominance relations are categorized into:

(1a) Irreflexivity 8a 2 INNs, akSa;

(1b) Asymmetry 8a; b 2 INNs, a[ Sb ) bkSa;

(1c) Transitivity 8a; b; c 2 INNs, a[ Sb; b[
Sc ) a[ Sc:

(2) The weak dominance relations are categorized into:

(2a) Irreflexivity 8a 2 INNs; akWa;

(2b) Asymmetry 8a; b 2 INNs, a[Wb ) bkWa;

(2c) Non-transitivity 9a; b; c 2 INNs, a[Wb;

b[Wc 6) a[Wc:

(3) The indifference relations are categorized into:

(3a) Reflexivity 8a 2 INNs; a	 Ia;
(3b) Symmetry 8a; b 2 INNs, a	 Ib ) b	 Ia;
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(3c) Non-transitivity 9a; b; c 2 INNs; a	 Ib;

b	 Ic 6) a	 Ic:

gðaÞ � gðaÞ ¼ 0\q\p; akSa; akWa; a	 Ia holds

according to Definition 6. Thus, (1a), (2a) and (3a) are true.

Similarly, if a[ Sb, then gðaÞ � gðbÞ[ p ) gðbÞ
�gðaÞ\� p. Therefore, bkSa and (1b) is true, as are (2b)

and (3b). According to Property 1 and Property 2, (1c) is

true. However, (2c) and (3c) need to be proven.

Example 3 (2c) and (3c) which are provided in Property 2

can be exemplified as follows.

(1) If a[Wb; b[Wc; assume gðaÞ � gðbÞ ¼ 0:25;

gðbÞ � gðcÞ ¼ 0:25 and q ¼ 0:2; p ¼ 0:4; then

gðaÞ � gðcÞ ¼ 0:5[ p: According to Definition 6,

a[ Sb in this case. Therefore, (2c) is achieved.

(2) If a	 Ib; then �q� gða; bÞ� q; that is, �q� gðaÞ �
gðbÞ� q: If b	 Ic , then �q� gðbÞ � gðcÞ� q:

Assume q ¼ 0:2; p ¼ 0:4; gðaÞ � gðbÞ ¼ 0:2 and

gðbÞ � gðcÞ ¼ 0:1; then gðaÞ � gðcÞ ¼ 0:3: In this

case, a[Wc according to Definition 6; therefore,

a	 Ib; b	 Ic ) a	 Ic is obtained, and (3c) is realized.

Definition 7 Let alternatives A and B be collections of

INNs, A ¼ fa1; a2; a3; . . .; amg; and B ¼ fb1; b2; b3; . . .;

bmg; ai; bj 2 INNs (i; j ¼ 1; 2; . . .;m). In order to make a

pair-wise comparison of the alternatives A and B, the fol-

lowing notations are defined:

Let nPðA;BÞ represent the number of the criteria for

which Pðai; bjÞ:
Let nQðA;BÞ represent the number of the criteria for

which Qðai; bjÞ:
Let nIðA;BÞ represent the number of the criteria for

which Iðai; bjÞ ^ ðgðai; bjÞ[ 0Þ:

Given two alternatives A and B, the following state-

ments provide insights into the outranking relation [65]:

(1) A outranks B, denoted by AOB, which means that the

analyst has enough reasons to ascertain that in the

eyes of the decision-maker, A is at least as good as B.

(2) A does not outrank B, which means that the

arguments in favor of the proposition ‘‘A is at least

as good as B’’ are judged insufficient (this does not

imply that there are arguments in favor of ‘‘B is at

least as good as A’’).

The binary relations 
 (preference), I (indifference) and R

(incomparability) between two alternatives A and B may

arise as follows:

AIB , AOB and BOA;

A 
 B , AOB and not BOA;

A � B , not AOB and BOA; and

ARB , not AOB and not BOA:

Furthermore, the preference relation consists of two si-

tuations. They are a strong preference and weak preference,

denoted by A 
S B and A 
W B respectively.

Based on [77], the rules of dominance were established

as follows.

Definition 8 Assume m is the total number of criteria.

Then:

(1) A 
S B: (a) for no criterion B is strictly preferred to

A; (b) if the number of criteria for which B is weakly

preferred in relation to A is inferior or equal to the

number of criteria for which A is strictly preferred to

B; and (c) and if the number of criteria, for which the

performance of B is better than that of A, is strictly

inferior to the number of criteria for which the

performance of A is better than that of alternative B.

A
S B

,
nPðB;AÞ¼0 and nQðB;AÞ�nPðA;BÞ and

nQðB;AÞþnIðB;AÞ\nIðA;BÞþnQðA;BÞþnPðA;BÞ:

�

(2) A 
W B: (a) if under no criteria B is strictly preferred

to A; (b) if the number of criteria, for which the

performance of B is superior to that of A, is strictly

inferior to the number of criteria for which the

performance of A is superior to that of alternative B;

(c) if the additional condition required for the

relation A 
S B to hold is not verified; and (d) if

there is a single criterion for which B is strictly

preferred to A, then A is strictly preferred to B in at

least half of the criteria.

A 
W B ,
nPðB;AÞ ¼ 0 and nQðB;AÞ þ nIðB;AÞ\nIðA;BÞ þ nQðA;BÞ þ nPðA;BÞ and not A 
S B

or

nPðB;AÞ ¼ 1 and nPðA;BÞ�m=2:

8<
:
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By this definition, the outranking relation between each

pair-wise can be achieved.

Example 4 Assume that the preference threshold is

p = 0.4 and the indifference threshold is q = 0.2. For al-

ternatives A1 and A2, three criteria are applied for evalua-

tion purposes. The performance of each criterion with

regard to every alternative is as follows:

A1 ¼ A11 A12 A13½ � ¼ ½0:4; 0:5�; ½0:2; 0:3�; ½0:3; 0:4�h i½ �
½0:4; 0:6�; ½0:1; 0:3�; ½0:2; 0:4�h i½ �
½0:7; 0:9�; ½0:2; 0:3�; ½0:4; 0:5�h i½ �

A2 ¼ A21 A22 A23½ � ¼ ½0:6; 0:7�; ½0:1; 0:2�; ½0:2; 0:3�h i½ �
½0:6; 0:7�; ½0:1; 0:2�; ½0:2; 0:3�h i½ �
½0:3; 0:6�; ½0:3; 0:5�; ½0:8; 0:9�h i½ �

According to Definition 6, gðA11;A21Þ ¼ �0:8;

gðA21;A11Þ ¼ 0:8[ p; gðA22;A12Þ ¼ 0:5[ p and

gðA13;B23Þ ¼ 1:8[ p: Therefore, PðA21;A11Þ; PðA22;A12Þ
and PðA13;A23Þ: That is, the relationship between alterna-

tives A1 and A2 is that with regard to the former two cri-

teria, A2 is strictly preferred to A1, while A1 is strictly

preferred to A2 with regard to the third criterion. For the

pair ðA1;A2Þ; nPðA1;A2Þ ¼ 1; nQðA1;A2Þ ¼ 0; nIðA1;A2Þ ¼
0; nPðA2;A1Þ ¼ 2; nQðA2;A1Þ ¼ 0 and nIðA2;A1Þ ¼ 0:

According to Definition 8, A2 
W A1; which means that A2

is weakly dominated by A1.

For ease of presentation, let nsðAiÞ represent the number

that has strong dominant relation with the alternative Ai, for

which Ai 
S Ak between the pair ðAi;AkÞ (k ¼ 1; 2; . . .; n).

Similarly, nwðAiÞ represents the number for which Ai 
W

Ak; for k ¼ 1; 2; . . .; n:

Definition 9 The rules of the outranking relation between

the pair ðAi;AkÞ are constructed as follows.

(1) If nsðAiÞ [ nsðAjÞ; then it implies Ai outranking Aj,

denoted Ai 
 Aj:

(2) If nsðAiÞ ¼ nsðAjÞ; and nwðAiÞ[ nwðAjÞ; then

Ai 
 Aj:

(3) If nsðAiÞ ¼ nsðAjÞ; nwðAiÞ ¼ nwðAjÞ and Ai 
S Aj;

then Ai 
 Aj:

Subsequently, the sequence with a partial or complete

order of alternatives is established.

4 An outranking approach for MCDM with INSs

In this section, an outranking method for MCDM problems

where the outranking rules of INSs are applied is proposed.

Assume that the MCDM ranking/selection problem with

INSs consists of n alternatives A ¼ fA1;A2; . . .;Ang and

each alternative is evaluated by m criteria C ¼
fc1; c2; . . .; cmg: The evaluation of every alternative ac-

cording to each criterion is transformed into the interval

neutrosophic decision matrix R ¼ ðAijÞn�m; where Aij ¼
hTAij

; IAij
;FAij

i is a criterion value, denoted by INN, where

TAij
indicates the truth-membership function that the al-

ternative Ai satisfies the criterion cj; IAij
indicates the in-

determinacy-membership function that the alternative Ai

satisfies the criterion cj; and FAij
indicates the falsity-

membership function that the alternative Ai satisfies the

criterion cj. Let the preference threshold for each criterion

P ¼ fp1; p2; . . .; pmg and the indifference threshold

Q ¼ fq1; q2; . . .; qmg:
In the following steps, a procedure to rank and select the

most desirable alternative(s) is outlined.

Step 1 Calculate the performance matrix G.

The performance value of every alternative Ai on each

criterion cj is denoted as gðAiÞj: Using Definition 6,

the performance matrix G can be calculated:

G ¼

gðA1Þ1 gðA1Þ2 � � � gðA1Þm
gðA2Þ1 gðA2Þ2 � � � gðA2Þm
� � � � � � � � � � � �

gðAnÞ1 gðAnÞ2 � � � gðAnÞm

2
664

3
775

Step 2 Calculate the difference matrix D.

The difference value gðAi;AkÞj demonstrates the

performance difference between two alternatives Ai

and Ak on each criterion cj. According to the score

function value of each alternative with regard to every

criterion, gðAi;AkÞj ¼ gðAiÞj � gðAiÞj ði; k ¼
1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ; and thus, the difference

matrix can be constructed as the following:

D ¼

gðA1;A1Þ1 gðA1;A1Þ2 � � � gðA1;A1Þm
gðA1;A2Þ1 gðA1;A2Þ2 � � � gðA1;A2Þm

� � � � � � � � � � � �
gðAn;AnÞ1 gðAn;AnÞ2 � � � gðAn;AnÞm

2
664

3
775

Step 3 Obtain the binary relationship between two the

INNs with regard to each criterion for all alternatives.

Clearly, the difference value gðAi;AkÞj must be com-

pared with the preference threshold pj and indifference

threshold qj to determine the relationships. According

to Definition 6, if gðAi;AkÞj [ pj; then Aij[S Akj.

Moreover, if qj \ gðAi;AkÞj � pj; then Aij[W Akj and

if �qj � gðAi;AkÞj � qj; then Aij[I Akj.

Step 4 Count the number of outranking relations.

Using Definition 7, count the number of outranking

relations nPðAi;AkÞ, nQðAi;AkÞ and nIðAi;AkÞ for the

620 Neural Comput & Applic (2016) 27:615–627

123



pair-wise ðAi;AkÞ regarding all criteria. Clearly, any

pair-wise ðAi;AkÞ; nPðAi;AkÞ represents the number

when Aij[ S Akj for j ¼ 1; 2; . . .;m: Similarly,

nQðAi;AkÞ represents the number when Aij[W Akj

and nIðAi;AkÞ represents the number when Aij * I Akj

and gðAi;AkÞj [ 0 for j ¼ 1; 2; . . .;m:

Step 5 Determine the outranking relations between the

pair-wise (Ai, Ak) according to Definition 8.

Step 6 Count nsðAiÞ and nwðAiÞ for alternative Ai.

Step 7 Select the alternative or alternatives with the most

outranking relations according Definition 9.

Using Definition 9, select the alternative or alterna-

tives with the largest nsðAiÞ: If two or more have the

maximum of nsðAiÞ; then compare nwðAiÞ: Thus, one

or more alternatives with the most outranking rela-

tions are distilled.

Step 8 Repeat Step 4–Step 7 for the remaining alterna-

tives until the remainder is null.

Step 9 Rank the alternatives.

The complete or partial order for all alternatives is

subsequently established.

5 An illustrative example

In this section, to demonstrate the application of the proposed

decision-making method and its effectiveness, two examples

of MCDM problems with alternatives are provided.

5.1 Two examples of outranking approach

for MCDM with INSs

Example 5 A decision-making problem adapted from

Refs. [39, 78] will be used. There is a panel with four pos-

sible alternatives to invest money: A1, A2, A3 and A4. The

investment company must take a decision according to the

following three criteria: c1, c2 and c3. The preference

threshold P = {0.2, 0.2, 0.2} and the indifference threshold

Q = {0.1, 0.1, 0.1}. The four possible alternatives are to be

evaluated under the above three criteria, and the evaluation

values are to be transformed into INNs, as shown in the

following interval neutrosophic decision matrix D:

Step 1 Calculate the performance matrix G:

G ¼

�0:3 0 0:2
0:5 0:5 �1:6
�0:3 �0:1 �1:3
1:1 0:6 �1:1

2
664

3
775

Step 2 Calculate the difference matrix D.

The difference value gðAi;AkÞj between the two alter-

natives Ai and Ak on each criterion cj satisfies

gðAi;AkÞj ¼ gðAiÞj � gðAiÞj: Subsequently, the differ-

ence matrix can be drawn up as shown in Table 1.

Step 3 Obtain the binary relationship between the two

INNs on each criterion for all alternatives.

Compare gði; kÞj with pj and qj, and then, the results can

be seen in Table 2.

Step 4 Compute the number of every outranking relation

of each alternative with the other alternatives for all the

criteria, as shown in Table 3.

Step 5 Determine the outranking relations according to

Definition 8, as shown in Table 4.

Step 6 Count nsðAiÞ and of every alternative Ai as shown

in Table 5.

Step 7 Select the alternative or alternatives with the most

outranking relations according to Definition 9.

It is clear that A4 is the best alternative.

Step 8 Repeat Step 4 to Step 7 for the remaining

alternatives until the remainder is null.

The procedure is continuously repeated, and subse-

quently A1, A2 and A3 are distilled.

Step 9 Rank the alternatives.

Based on the above steps, the final order A4 
 A1 

A2 
 A3 can be ascertained.

Example 6 The following scenario is adapted from ref-

erences [20, 79]. Recently, an overseas investment de-

partment decided to select a pool of alternatives from

several foreign countries based on preliminary surveys.

After a thorough investigation, five projects (alternatives)

were taken into consideration, i.e., fA1;A2;A3;A4;A5g.

There were many factors that affected the investment de-

cision, but four factors were eventually considered based

D ¼

½0:4; 0:5�; ½0:2; 0:3�; ½0:3; 0:4�h i ½0:4; 0:6�; ½0:1; 0:3�; ½0:2; 0:4�h i ½0:7; 0:9�; ½0:2; 0:3�; ½0:4; 0:5�h i
½0:6; 0:7�; ½0:1; 0:2�; ½0:2; 0:3�h i ½0:6; 0:7�; ½0:1; 0:2�; ½0:2; 0:3�h i ½0:3; 0:6�; ½0:3; 0:5�; ½0:8; 0:9�h i
½0:3; 0:6�; ½0:2; 0:3�; ½0:3; 0:4�h i ½0:5; 0:6�; ½0:2; 0:3�; ½0:3; 0:4�h i ½0:4; 0:5�; ½0:2; 0:4�; ½0:7; 0:9�h i
½0:7; 0:8�; ½0:0; 0:1�; ½0:1; 0:2�h i ½0:6; 0:7�; ½0:1; 0:2�; ½0:1; 0:3�h i ½0:6; 0:7�; ½0:3; 0:4�; ½0:8; 0:9�h i

2
664

3
775
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on the experience of the personnel concerned, including c1:

resources (such as the suitability of the minerals and their

exploration potential); c2: infrastructure (such as railway

and highway facilities); and c3: the development environ-

ment (such as development vitality and the stability, poli-

tics and policy of the region).

The decision-makers, including experts and executive

managers, were gathered to determine the information

needed to make a decision. The evaluation value ranges

from 0 to 1, and each decision-maker can use an interval

value to express his/her opinion; in other words, the three

interval values denote to what degree the project xi matches

the criterion cj, as well as the degrees of indeterminacy and

falsity. Each decision-maker gave his/her own evaluations

based on the surveys of the five projects as well as his/her

knowledge and experience. Then all the evaluations given

were assembled. Consequently, following a heated dis-

cussion, they came to a consensus on the final evaluations

which are expressed by INNs as shown in Table 6.

The preference threshold P = {0.2, 0.2, 0.2} and the

indifference threshold Q = {0.1, 0.1, 0.1}.

Step 1 Calculate the performance matrix G:

G ¼

0:8 0:5 �0:4
0:8 0:6 �0:3
0:9 1:0 �1:6
0:6 0:7 0:1
0:6 0:4 0

2
66664

3
77775

Table 1 The performance

difference of projects on each

criterion

c1 c2 c3

(A1, A1) 0 0 0

(A1, A2) -0.8 -0.5 1.8

(A1, A3) 0 0.1 1.5

(A1, A4) -1.4 -0.6 1.3

(A2, A1) 0.8 0.5 -1.8

(A2, A2) 0 0 0

(A2, A3) 0.8 0.6 -0.3

(A2, A4) -0.6 -0.1 -0.5

(A3, A1) 0 -0.1 -1.5

(A3, A2) -0.8 -0.6 0.3

(A3, A3) 0 0 0

(A3, A4) -1.4 -0.7 -0.2

(A4, A1) 1.4 0.6 -1.3

(A4, A2) 0.6 0.1 0.5

(A4, A3) 1.4 0.7 0.2

(A4, A4) 0 0 0

Table 2 The relationship

between each pair-wise on the

criteria

c1 c2 c3

(A1, A1) 	 I 	 I 	 I

(A1, A2) \S \S [S

(A1, A3) 	 I 	 I [S

(A1, A4) \S \S [S

(A2, A1) [S [S \S

(A2, A2) [S 	 I 	 I

(A2, A3) [S [S \S

(A2, A4) \S 	 I \S

(A3, A1) 	 I 	 I \S

(A3, A2) \S \S [S

(A3, A3) 	 I 	 I 	 I

(A3, A4) \S \S \W

(A4, A1) [S [S \S

(A4, A2) [S 	 I [S

(A4, A3) [S [S [W

(A4, A4) 	 I 	 I 	 I

Table 3 The relation numbers between pair-wise for all the criteria

nP(Ai, Ak) nQ(Ai, Ak) nI(Ai, Ak)

(A1, A1) 0 0 0

(A1, A2) 1 0 0

(A1, A3) 1 0 1

(A1, A4) 1 0 0

(A2, A1) 2 0 0

(A2, A2) 0 0 0

(A2, A3) 2 0 0

(A2, A4) 0 0 0

(A3, A1) 0 0 0

(A3, A2) 1 0 0

(A3, A3) 0 0 0

(A3, A4) 0 0 0

(A4, A1) 2 0 0

(A4, A2) 2 0 1

(A4, A3) 2 1 0

(A4, A4) 0 0 0

Table 4 The outranking rela-

tion matrix of the projects on

the criteria

A1 A2 A3 A4

A1 / 
S

A2 
W / 
W

A3 /

A4 
S 
S 
S /

Table 5 The relation numbers

between each project and the

others

nsðAiÞ nwðAiÞ

A1 1 0

A2 0 2

A3 0 0

A4 3 0
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Step 2 Calculate the difference value gðAi;AkÞj as shown

in Table 7.

Step 3 Obtain the binary relationship between two the

INNs on each criterion for all alternatives.

Compare gði; kÞj with pj and qj, and then, the results can

be seen in Table 8.

Step 4 Compute the number of every outranking relation

for each alternative with the other alternatives for all the

criteria, as shown in Table 9.

Step 5 Determine the outranking relations according to

Definition 8, as shown in Table 10.

Step 6 Count nsðAiÞ and nwðAiÞ of every alternative Ai

as shown in Table 11.

Step 7 Select the alternative or alternatives with the most

outranking relations according to Definition 9.

It is clear that A4 is the best alternative.

Step 8 Repeat Step 4–Step 7 for the remaining alterna-

tives until the remainder is null.

The procedure is continuously repeated, and subse-

quently, A3, A2 and A1 as well as A5 are distilled. It

should be noted that there are two alternatives that

were distilled in the last repetition, as A1 and A5 are

either indistinguishable or incomparable.

Step 9 Rank the alternatives.

The final order is A4 
 A3 
 A2 
 A1;A5:

5.2 A comparison analysis and discussion

To validate the feasibility of the proposed decision-making

method, a comparative study with other methods was

conducted. The comparison analysis includes two cases:

One is a comparison with the existing methods, which use

interval value neutrosophic information, that were outlined

in [39, 80]; in the other, the proposed method is compared

to the methods that use simplified neutrosophic informa-

tion, which were introduced in [30, 31, 57, 81].

Case 1 The proposed approach is compared with some of

the methods that use interval neutrosophic information.

With regard to the method in [80], firstly the similarity

measures were calculated and used to determine the final

ranking order of all the alternatives, and then, two aggre-

gation operators were developed to aggregate the interval

neutrosophic information [39]. To solve the MCDM

problem in Example 5, the results from using different

methods are shown in Table 12.

According to the results presented in Table 12, if

methods 1 and 2 in [80] are used, then the best alternatives

are A4 and A2, respectively, and the worst one is A1. By

using methods 3 and 4 in [39], the best ones are A4 and A1,

respectively, and the worst one is A3. Finally, with regard

to the proposed method in this paper, the best one is A4 and

the worst one is A3. In the similarity measures in [80], the

distances between INSs are first calculated and any dif-

ference is then amplified in the results using criteria

weights, which cause a distortion in the similarity between

Table 6 The performance

matrix of the projects on the

criteria

c1 c2 c3

A1 ½0:7; 0:9�; ½0:2; 0:3�; ½0:1; 0:2�h i ½0:4; 0:8�; ½0:1; 0:2�; ½0:1; 0:3�h i ½0:3; 0:4�; ½0:3; 0:4�; ½0:2; 0:2�h i
A2 ½0:6; 0:7�; ½0:1; 0:2�; ½0:1; 0:1�h i ½0:7; 0:9�; ½0:2; 0:3�; ½0:2; 0:3�h i ½0:3; 0:4�; ½0:3; 0:4�; ½0:1; 0:2�h i
A3 ½0:8; 0:9�; ½0:2; 0:3�; ½0:1; 0:2�h i ½0:6; 0:9�; ½0:1; 0:1�; ½0:1; 0:2�h i ½0:2; 0:4�; ½0:6; 0:9�; ½0:3; 0:4�h i
A4 ½0:5; 0:8�; ½0:2; 0:2�; ½0:1; 0:2�h i ½0:8; 0:9�; ½0:2; 0:4�; ½0:1; 0:3�h i ½0:5; 0:6�; ½0:3; 0:4�; ½0:1; 0:2�h i
A5 ½0:6; 0:8�; ½0:2; 0:3�; ½0:1; 0:2�h i ½0:5; 0:8�; ½0:2; 0:3�; ½0:2; 0:2�h i ½0:4; 0:6�; ½0:2; 0:4�; ½0:1; 0:3�h i

Table 7 The difference matrix

of the projects on each criterion
c1 c2 c3

(A1, A1) 0 0 0

(A1, A2) 0 -0.1 -0.1

(A1, A3) -0.1 -0.5 1.2

(A1, A4) 0.2 -0.2 -0.5

(A1, A5) 0.2 0.1 -0.4

(A2, A1) 0 0.1 0.1

(A2, A2) 0 0 0

(A2, A3) -0.1 -0.4 1.3

(A2, A4) 0.2 -0.1 -0.4

(A2, A5) 0.2 0.2 -0.3

(A3, A1) 0.1 0.5 -1.2

(A3, A2) 0.1 0.4 -1.3

(A3, A3) 0 0 0

(A3, A4) 0.3 0.3 -1.7

(A3, A5) 0.3 0.6 -1.6

(A4, A1) -0.2 0.2 0.5

(A4, A2) -0.2 0.1 0.4

(A4, A3) -0.3 -0.3 1.7

(A4, A4) 0 0 0

(A4, A5) 0 0.3 0.1

(A5, A1) -0.2 -0.1 0.4

(A5, A2) -0.2 -0.2 0.3

(A5, A3) -0.3 -0.6 1.6

(A5, A4) 0 -0.3 -0.1

(A5, A5) 0 0 0
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an alternative and the ideal alternative. While in [39], the

degree of distortion was reduced by the INS aggregation

operators. Furthermore, different aggregation operators

lead to different rankings, because the operators emphasize

decision-makers’ judgments differently. Method 3 in [39]

uses an interval neutrosophic number weighted averaging

(INNWA) operator, whereas method 4 in [39] uses an in-

terval neutrosophic number weighted geometric (INNWG)

operator. The INNWA operator is based on an arithmetic

average and emphasizes a group’s major points, while the

INNWG operator emphasizes an individual’s major points.

That is the reason why the results gained by method 3 and

method 4 in [39] are different. Additionally, the four orders

in [39] and [80] are obtained when the weight vector of the

criteria is given by W = (0.35, 0.25, 0.4). By comparison,

the proposed method in this paper does not consider the

relative importance coefficients of the criteria. However,

the ranking gained by the proposed method is the same as

that of the INNWA operator, which emphasizes a group’s

major points. Therefore, even without the criteria weights,

the proposed method is effective.

Case 2 The proposed approach is compared with some

methods that use simplified neutrosophic information. The

comparison results can be found in Table 13.

As shown in Table 13, the difference between the results

is the sequence of A4 and A2. Ref. [30] ranks the alterna-

tives that correspond to the cross-entropy values between

the ideal alternative and another alternative to select the

Table 10 The outranking rela-

tion matrix of the projects on

criteria

A1 A2 A3 A4 A5

A1 /

A2 
W /

A3 / 
S 
S

A4 
S 
S / 
S

A5 /

Table 11 The relation numbers

between each project and the

others

nsðAiÞ nwðAiÞ

A1 0 0

A2 0 1

A3 2 0

A4 3 0

A5 0 0

Table 8 The relationship

between each pair-wise on the

criteria

c1 c2 c3

(A1, A1) 	 I 	 I 	 I

(A1, A2) 	 I 	 I 	 I

(A1, A3) 	 I �S 
S

(A1, A4) 
W �W �S

(A1, A5) 
W 	 I �S

(A2, A1) 	 I 	 I 	 I

(A2, A2) 	 I 	 I 	 I

(A2, A3) 	 I �S 
S

(A2, A4) 
W 	 I �S

(A2, A5) 
W 
W �S

(A3, A1) 	 I 
S �S

(A3, A2) 	 I 
S �S

(A3, A3) 	 I 	 I 	 I

(A3, A4) 
S 
S �S

(A3, A5) 
S 
S �S

(A4, A1) �W 
W 
S

(A4, A2) �W 	 I 
S

(A4, A3) �S �S 
S

(A4, A4) 	 I 	 I 	 I

(A4, A5) 	 I 
S 	 I

(A5, A1) �W 	 I 
S

(A5, A2) �W �W 
S

(A5, A3) �S �S 
S

(A5, A4) 	 I �S 	 I

(A5, A5) 	 I 	 I 	 I

Table 9 The relation numbers between each pair-wise for all the

criteria

nP(Ai, Ak) nQ(Ai, Ak) nI(Ai, Ak)

(A1, A1) 0 0 0

(A1, A2) 0 0 0

(A1, A3) 1 0 0

(A1, A4) 0 1 0

(A1, A5) 0 1 1

(A2, A1) 0 0 2

(A2, A2) 0 0 0

(A2, A3) 1 0 0

(A2, A4) 0 1 0

(A2, A5) 0 2 0

(A3, A1) 1 0 1

(A3, A2) 1 0 1

(A3, A3) 0 0 0

(A3, A4) 2 0 0

(A3, A5) 2 0 0

(A4, A1) 1 1 0

(A4, A2) 1 0 1

(A4, A3) 1 0 0

(A4, A4) 0 0 3

(A4, A5) 1 0 1

(A5, A1) 1 0 0

(A5, A2) 1 0 0

(A5, A3) 1 0 0

(A5, A4) 0 0 0

(A5, A5) 0 0 0
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most desirable one. Refs. [31, 81] employ correlation co-

efficients and the aggregation operator, respectively. It can

be seen that the result of the proposed method is the same

as those in [31, 81], whereas it differs from that in [57],

which utilized a method based on ELECTRE. There are

particular reasons for the differences between the final

rankings of the compared methods and the proposed ap-

proach. Firstly, due to the use of criteria weights, the ag-

gregation values, correlation coefficients and cross-entropy

measures of SNSs were utilized by Ye [30, 31, 81], and this

led to differences in the final results. Secondly, the

outranking relations somehow retain the inherent thoughts

of decision-makers, which is a prerequisite of guaranteeing

the accuracy of the final outcome. Conversely, the

evaluation information of decision-makers is compensated

when using operators and measures. Furthermore, the dif-

ference between the result in [57] and the proposed method

derives from the relative importance coefficients of the

criteria used in that approach, as the proposed method does

not account for the importance of the criteria.

From the comparison analysis presented above, it can

been seen that the proposed approach is more flexible and

reliable in managing MCDM problems in an interval

neutrosophic environment than the compared methods,

which shows that the outranking approach developed in

this paper has certain advantages. Firstly, it is simple and

can also be used to solve problems with the preference

information that is expressed by INSs and SNSs. Secondly,

as it is not compensatory with regard to all the criteria, the

approach takes the importance of every decision-maker

fully into account. This means that it can avoid losing and

distorting the preference information provided which

makes the final results better correspond with real life de-

cision-making problems. However, the proposed method

has a limitation in that it always needs a large amount of

computation; fortunately, this can be easily reduced by the

assistance of programming software, such as MATLAB.

6 Conclusion

As a new branch of NSs, INSs can be applied in addressing

problems with uncertain, imprecise, incomplete and in-

consistent information that exist in real scientific and

engineering applications. This paper has proposed an ap-

proach for solving MCDM problems using INSs and de-

veloped some aggregation operators. However, it has been

found that in certain circumstances, the importance of each

criterion is not ascertained. Consequently, an outranking

approach for solving MCDM problems with INSs was

established based on the ELECTRE IV. Therefore, some

outranking relations for INNs were defined, and the prop-

erties relating to the outranking relations were discussed in

detail. Furthermore, two illustrative examples that

demonstrated the application of the proposed decision-

making method and a comparison analysis were provided.

The contribution of this study is that the proposed ap-

proach is simple and convenient with regard to computing,

and effective in decreasing the loss of evaluative infor-

mation. The validity and feasibility of the proposed ap-

proach have been verified through illustrative examples

and a comparison analysis, and the results of the latter

demonstrated that the method proposed can provide more

reliable and precise outcomes than other methods. There-

fore, this approach has great potential for managing

MCDM problems in an interval neutrosophic environment,

in which the criterion values that relate to the alternatives

are evaluated by INNs and the criterion weights are un-

known. However, it should be noted that it does not mean

that each criterion has the same weight. The limitation of

Table 12 The results of

different methods with INSs
Methods The final ranking The best alternative(s) The worst alternative(s)

Method 1 in [80] A4 
 A2 
 A3 
 A1 A4 A1

Method 2 in [80] A2 
 A4 
 A3 
 A1 A2 A1

Method 3 in [39] A4 
 A1 
 A2 
 A3 A4 A3

Method 4 in [39] A1 
 A4 
 A2 
 A3 A1 A3

The proposed method A4 
 A1 
 A2 
 A3 A4 A3

Table 13 The results of

different methods with SNSs
Methods The final ranking The best alternative(s) The worst alternative(s)

Method in [30] A2 
 A4 
 A3 
 A1 A2 A1

Method in [81] A4 
 A2 
 A3 
 A1 A4 A1

Method in [31] A4 
 A2 
 A3 
 A1 A4 A1

Method in [57] A2 
 A4 
 A3 
 A1 A2 A1

The proposed method A4 
 A2 
 A3 
 A1 A4 A1
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this approach is that it needs a large amount of computation

which does not affect its application. Furthermore, the

outranking approach with INSs, which is based on

ELECTRE IV, can be used to enlarge their application with

regard to MCDM problems.
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48. Deli İ, Cağman N (2015) Intuitionistic fuzzy parameterized soft

set theory and its decision making. Appl Soft Comput

28:109–113
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50. Deli İ, Broumi S (2015) Neutrosophic soft relations and some

properties. Ann Fuzzy Math Inf 9(1):169–182

51. Broumi S (2013) Generalized neutrosophic soft set. Int J Comput

Sci Eng Inf Technol 3(2):17–30
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