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Abstract Finite-time stabilities of a class of fractional-

order neural networks delayed systems with order a:
0\a� 0:5 and 0:5\a\1 are addressed in this paper, re-

spectively. By using inequality technique, two new delay-

dependent sufficient conditions ensuring stability of such

fractional-order neural networks over a finite-time interval

are obtained. Obtained conditions are less conservative

than that given in the earlier references. Two numerical

examples are given to show the effectiveness of our pro-

posed method.

Keywords Finite-time stability � Fractional order �
Neural network � Delayed systems

1 Introduction

It is well known that neural networks have important po-

tential utilization in optimization, signal processing, asso-

ciative memory, parallel computation, pattern recognition,

artificial intelligence, and so on, and such applications

heavily depend on the dynamical behavior of neural net-

works, especially stability. So, the study of stability of

neural networks has become one of the most active areas of

research [1–6]. Note that these results mainly focus on

integer-order neural networks model, in which dynamical

behavior of the neurons is described by integer-order

derivative. With the rapid development of fractional cal-

culus and its advantages, some scholars claimed that it may

be appropriate to depict the ‘‘memory’’ of neurons by using

fractional-order derivative [7]. The reasons are that frac-

tional calculus is nonlocal and has weakly singular kernels,

and it provides an excellent instrument for the description

of memory and hereditary properties of dynamical pro-

cesses. Up to now, fractional-order neural networks have

been attracted wide attention. Some positive and interest-

ing results are obtained in biological neurons [7, 8], neural

network approximation [9], parameter estimations [10],

and so on. In particular, the dynamical behavior of frac-

tional-order artificial neural networks has been a very re-

cent and promising research topic. The chaotic behavior on

fractional-order neural network models has been discussed

by numerical simulations in Refs. [11–14], and stability

analysis of fractional-order neural network has been dis-

cussed in Refs. [15–17]. Refs. [18, 19] considered chaotic

synchronization in fractional-order neural networks. Mit-

tag-Leffler stability and synchronization of memristor-

based fractional-order neural networks were discussed in

Ref. [20].

For the analysis of the stability of the neural network,

asymptotic stability is an important concept, which implies

convergence of the system trajectories to an equilibrium

state over the infinite time, and much effort has been de-

voted to it. However, in some situations, one is not only

interested in system stability (in the sense of Lyapunov),

but also for the boundedness properties of system responses

(for example, technical and practical stability). It should be

paid attention to the fact that a system could be stable but

still completely useless because it possesses undesirable

transient performances. Thus, it is desirable that the
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dynamical system possesses the property that the trajecto-

ries must be within some bounds during a specific time

interval. Hence, finite-time stability was proposed by non-

Lyapunov point of view [21]. Neural networks are said to

be finite-time stable; given a set of admissible initial con-

ditions, the state trajectories of the system remain, over a

prespecified finite-time interval, in a bounded region of the

state space. Finite-time stability and asymptotic stability

are independent concepts, which neither imply nor exclude

each other. Some important results on finite-time stability

are obtained, which were also carried out on fractional-

order systems, for instance, sufficient conditions were

derived for finite-time stability of linear fractional-order

delayed systems in Refs. [22–25].

In recent years, there have been some advances in sta-

bility theory and control of fractional differential systems

[26–38]. However, due to the fact that fractional deriva-

tives are nonlocal and have weakly singular kernels, the

analysis on stability of fractional differential equations is

more complex and difficult than that of classical differen-

tial equations, which causes the development of stability of

fractional differential equations is a bit slow, and much

attention has also been paid to explore robust stability

conditions for fractional-order linear systems, see [39–42]

and references therein. In fact, on fractional-order neural

network as a typical fractional-order delayed nonlinear

system, there is no effective way to analyze its stability.

Although Ref. [43] proposed fractional-order Lyapunov

direct method to analyze asymptotic stability for fractional-

order nonlinear delayed systems in the sense of Lyapunov,

to choose a suitable Lyapunov function and calculate the

fractional-order derivative are very difficult. Here, our

contribution is to adopt new methods and obtain some new

sufficient conditions which guarantee that fractional-order

delayed neural networks with order a: 0\a\1 is stable

over a finite-time interval.

The rest of the paper is organized as follows. Some

necessary Definitions, Lemmas and model are given in

Sect. 2. Main results are discussed in Sect. 3. Two simple

examples are present in Sect. 4.

Notations: kxk ¼
Pn

i¼1 jxij and kAk = maxj

Pn
i¼1 jaijj

are the Euclidean vector norm and the matrix norm re-

spectively, where xi and aij are the element of the vector x

and the matrix A, respectively. Rþ and Zþ are the sets of

positive real and integer numbers, respectively.

2 Preliminaries and problem description

In this section, some notation, definitions and well-known

results about fractional differential equations are presented

firstly.

Definition 1 The fractional integral (Riemann–Liouville

integral) D�a
t0;t

with fractional order a 2 Rþ of function xðtÞ
is defined as

D�a
t0;t

xðtÞ ¼ 1

CðaÞ

Z t

t0

ðt � sÞa�1
xðsÞds;

where Cð�Þ is the gamma function, CðsÞ ¼
R1
0

ts�1e�tdt.

Definition 2 The Riemann–Liouville derivative of frac-

tional order a of function xðtÞ is given as

RLDa
t0;t

xðtÞ ¼ dn

dtn
D

�ðn�aÞ
t0;t xðtÞ

¼ dn

dtn

1

Cðn � aÞ

Z t

t0

ðt � sÞðn�a�1Þ
xðsÞds;

where n � 1\a\n 2 Zþ.

Definition 3 The Caputo derivative of fractional order a
of function xðtÞ is defined as follows:

CDa
t0;t

xðtÞ ¼ D
�ðn�aÞ
t0;t

dn

dtn
xðtÞ

¼ 1

Cðn � aÞ

Z t

t0

ðt � sÞðn�a�1Þ
xðnÞðsÞds;

where n � 1\a\n 2 Zþ.

Based on the definition of integral derivative and

fractional derivative, it is recognized that the integral

derivative of a function is only related to its nearby

points, while the fractional derivative has a relationship

with all of the function history information. That is, the

next state of a system not only depends upon its current

state but also upon its historical states starting from the

initial time. As a result, a model described by fractional-

order equations possesses memory. It is precisely to

describe the state of neuron [16]. In the rest of this

paper, we deal with fractional-order neural networks

with delay involving Caputo derivative, and the notation

Da is chosen as the Caputo fractional derivative operator

Da
0;t.

The dynamic behavior of a continuous fractional-order

delayed neural networks can be described by the following

differential equation:

DaxiðtÞ ¼ �cixiðtÞ þ
Xn

j¼1

aijfjðxjðtÞÞ þ
Xn

j¼1

bijgjðxjðt � sÞÞ þ Ii;

xiðtÞ ¼ /iðtÞ; t 2 ½�s; 0�;

8
>><

>>:

ð1Þ

or equivalently

DaxðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bgðxðt � sÞÞ þ I; ð2Þ

where 0\a\1, n corresponds to the number of units in a

neural network; xðtÞ ¼ ðx1ðtÞ; . . .; xnðtÞÞT 2 Rn corresponds
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to the state vector at time t; f ðxðtÞÞ ¼ ðf1ðx1ðtÞÞ; f2ðx2ðtÞÞ;
. . .; fnðxnðtÞÞÞT and gðxðtÞÞ = ðg1ðx1ðtÞÞ, g2ðx2ðtÞÞ,. . .,
gnðxnðtÞÞÞT denote the neuron activation function, and f ðxÞ,
gðxÞ are Lipschitz continuous, that is, there exist positive

constants F;G such that kf ðuÞ � f ðvÞk\Fku �
vk; kgðuÞ � gðvÞk \Gku � vk; 8u; v 2 Rn, where F [ 0;

G[ 0; C;A;B are constant matrices; C ¼ diagðci [ 0Þ
represents the rate with which the ith unit will reset its

potential to the resting state in isolation when disconnected

from the network and external inputs; A ¼ ½aij�n�n and B ¼
½bij�n�n are the connection weight matrix and the delayed

connection weight matrix, respectively; s is the transmis-

sion delay and a nonnegative constant. I ¼ ðI1; I2; . . .; InÞT
is an external bias vector. The initial conditions associated

with system (1) are of the form xiðtÞ ¼ /iðtÞ; t 2
½�s; 0�; i 2 N; define the norm k/k ¼ suph2½�s;0� k/ðhÞk.
With a given initial function, system (1) is defined over

time interval J ¼ ½t0; t0 þ T �, where quantity T may be any

a positive real number.

Definition 4 [23] The solution of system (1) is said to be

finite-time stable w.r.t. ft0; J; d; eg, if and only if kuðt0Þ �
/ðt0Þk\d imply kyðt; t0;uÞ � xðt; t0;/Þk\e for any two

solutions xðt; t0;/Þ and yðt; t0;uÞ, 8t 2 J ¼ ½t0; t0 þ T�,
where d; e are real positive numbers and index e stands for
the set of all allowable states of the system and index d for

the set of all initial states of the system (d\e).

In order to obtain main results, the following lemmas are

presented for subsequent use.

Lemma 1 [44] If xðtÞ2Cm½0;1Þ and m�1\a\m2zþ,
then

ð1Þ D�aD�bxðtÞ ¼ D�ðaþbÞxðtÞ; a; b� 0;

ð2Þ DaD�bxðtÞ ¼ xðtÞ; a ¼ b� 0;

ð3Þ D�aDbxðtÞ ¼ xðtÞ �
Xm�1

i¼0

tk

k!
xðkÞð0Þ; a ¼ b� 0:

Lemma 2 [45] (Hölder Inequality) Assume that p; q[ 1,

and 1
p
þ 1

q
¼ 1, if jf ð�Þjp, jgð�Þjq 2 L1ðEÞ, then f ð�Þgð�Þ 2

L1ðEÞ and

Z

E

jf ðxÞgðxÞjdx�
Z

E

jf ðxÞjpdx

� �1
p
Z

E

jgðxÞjqdx

� �1
q

:

where L1ðEÞ be the Banach space of all Lebesgue mea-

surable functions f :E ! R with
R

E
jf ðxÞjdx\1.

Let p ¼ q ¼ 2, it reduces to the Cauchy–Schwartz

inequality as follows:
Z

E

jf ðxÞgðxÞjdx

� �2

�
Z

E

jf ðxÞj2dx

� � Z

E

jgðxÞj2dx

� �

:

Lemma 3 [46] Let uðtÞ;xðtÞ; vðtÞ and hðtÞ be non-

negative continuous functions on Rþ, and let r � 1 be a real

number. If

uðtÞ� u0ðtÞ þ xðtÞ
Z t

0

vðsÞurðsÞds

� �1
r

; t 2 Rþ;

then

Z t

0

vðsÞurðsÞds� 1� ð1� WðtÞÞ
1
r

h i�r
Z t

0

vðsÞur
0ðsÞWðsÞds;

where WðtÞ ¼ exp �
R t

0
vðsÞxrðsÞds

� �
.

Lemma 4 [45] (Generalized Bernoulli inequality) If

r 2 Rþ, x\1 and x 6¼ 0, then, for 0\r\1

ð1� xÞr\1� rx:

or

1� ð1þ xÞrð Þ�1\ðrxÞ�1:

3 Main results

In this section, two sufficient conditions are proposed for

finite-time stability of a class of fractional-order neural

networks delayed systems with order a: 0\a� 0:5 and

0:5\a\1, respectively.

Theorem 1 When 1
2
\a\1, if

ð1þ M2Þð1þ 2eðM1þM2e�sÞ2tÞet\
e
d
; ð3Þ

where M1 ¼
ðkCkþkAkFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a , M2 ¼

kBkG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a , then

system (1) is finite-time stable w.r.t f0; J; d; eg, d\e.

Proof Assume that xðtÞ ¼ ðx1ðtÞ; . . .; xnðtÞÞT and yðtÞ ¼
ðy1ðtÞ; . . .; ynðtÞÞT are any two solutions of (1) with dif-

ferent initial conditions /ð0Þ and uð0Þ, and denote

eðtÞ ¼ xðtÞ � yðtÞ; rð0Þ ¼ /ð0Þ � uð0Þ. It follows from the

Lemma 1 that system (1) is equivalent to the following

Volterra fractional integral equation with memory

eðtÞ ¼ rð0Þ þ 1

CðaÞ

Z t

0

ðt � sÞa�1ð�CeðsÞ

þ Af ðxðsÞÞ � Af ðyðsÞÞ þ Bgðxðs � sÞÞ
� Bgðyðs � sÞÞÞds:

It is easy to obtain that

keðtÞk�krð0Þkþ 1

CðaÞ

Z t

0

ðt � sÞa�1ððkCkþ kAkFÞkeðsÞk

þ kBkGkeðs� sÞkÞds:
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By using Lemma 2 (Cauchy–Schwarz inequality), one has

keðtÞk� krð0Þk þ ðkCk þ kAkFÞ
CðaÞ

Z t

0

ðt � sÞa�1
ese�skeðsÞkds

þ kBkG

CðaÞ

Z t

0

ðt � sÞa�1
ese�skeðs � sÞkds

�krð0Þk þ ðkCk þ kAkFÞ
CðaÞ

Z t

0

ðt � sÞ2a�2
e2sds

� �1
2

�
Z t

0

e�2skeðsÞk2ds

� �1
2

þ kBkG

CðaÞ

Z t

0

ðt � sÞ2a�2
e2sds

� �1
2
Z t

0

e�2skeðs � sÞk2ds

� �1
2

:

ð4Þ

Note that
Z t

0

ðt � sÞð2a�2Þ
e2sds ¼

Z t

0

uð2a�2Þe2ðt�uÞdu

¼ e2t

Z t

0

uð2a�2Þe�2udu

¼ 2e2t

4a

Z 2t

0

h2a�2e�hdh\
2e2t

4a
Cð2a� 1Þ:

ð5Þ

Substituting (5) into (4), one obtains that

keðtÞk� krð0Þk

þ et M1

Z t

0

e�2skeðsÞk2ds

� �1
2

 

þ M2

Z t

0

e�2skeðs � sÞk2ds

� �1
2

!

; ð6Þ

where M1 ¼
ðkCkþkAkFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a , M2 ¼

kBkG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a .

Note that eðtÞ ¼ rðtÞðt 2 ½�s; 0�Þ and krð0Þk� krk ¼
suph2½�s;0� krðhÞk, we see that
Z t

0

e�2skeðs � sÞk2ds� e�2s
Z t

�s
e�2skeðsÞk2ds

¼ e�2s
Z 0

�s
e�2skeðsÞk2ds

þ e�2s
Z t

0

e�2skeðsÞk2ds

�krk2 þ e�2s
Z t

0

e�2skeðsÞk2ds:

ð7Þ

Together (6) with (7), it follows

keðtÞk� ðkrk þ M2krketÞ

þ etðM1 þ M2e
�sÞ

Z t

0

e�2skeðsÞk2ds

� �1
2

;

which implies

keðtÞke�t �ðkrk þ M2krkÞ

þ ðM1 þ M2e
�sÞ

Z t

0

ðe�skeðsÞkÞ2ds

� �1
2

:

Let u0ðtÞ ¼ krk þ M2krk, xðtÞ ¼ ðM1 þ M2e�sÞ, uðtÞ ¼
e�tkeðtÞk, vðtÞ ¼ 1 in Lemma 3, one have WðtÞ ¼
e�ðM1þM2e�sÞ2t and

keðtÞk� ðkrk þ M2krkÞ

þ ðM1 þ M2e
�sÞð½ð1� ð1� e�ðM1þM2e�sÞ2tÞ

1
2Þ��2

�
Z t

0

ðkrk þ M2krkÞ2e�ðM1þM2e�sÞ2sdsÞ
1
2:

Let r ¼ 1
2
, x ¼ e�ðM1þM2e�sÞ2t in Lemma 4, we have

1� 1� ðe�ðM1þM2e�sÞ2tÞ
1
2

� �h i�1

\2eðM1þM2e�sÞ2t;

therefore,

keðtÞke�t �ðkrkþM2krkÞþ ðM1 þM2e�sÞ2eðM1þM2e�sÞ2t

�
Z t

0

ðkrkþM2krkÞ2e�ðM1þM2e�sÞ2sds

� �1
2

�ðkrkþM2krkÞþ ðkrkþM2krkÞ2eðM1þM2e�sÞ2t

¼ ð1þM2Þð1þ 2eðM1þM2e�sÞ2tÞkrk:

So, if (3) is satisfied and krk\d, then keðtÞk\e, t 2 J, i.e.,

system (1) is finite-time stable.

Theorem 2 When 0\a� 1
2
, if

ð1þ N2Þð1þ qeðN1þN2e�sÞq
tÞet\

e
d
; ð8Þ

where N1 ¼ ðkCk þ kAkFÞðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, N2 ¼ kBk

GðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, p ¼ 1þ a; q ¼ 1þ 1

a, then system (1) is

finite time stable w.r.t f0; J; d; eg, d\e.

Proof According to the process of Theorem 1, we can

obtain the following estimation

keðtÞk�krð0Þkþ 1

CðaÞ

Z t

0

ðt � sÞa�1ððkCkþ kAkFÞkeðsÞk

þ kBkGkeðs� sÞkÞds:

By setting p ¼ 1þ a;q ¼ 1þ 1
a. Obviously, 1

p
þ 1

q
¼ 1. It

follows from Lemma 2 that
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keðtÞk� krð0Þk þ 1

CðaÞ

Z t

0

ðkCk þ kAkFÞðt � sÞa�1
ese�skeðsÞkds

þ 1

CðaÞ

Z t

0

kBkGðt � sÞa�1
ese�skeðs � sÞkds

�krð0Þk þ kCk þ kAkF

CðaÞ

Z t

0

ðt � sÞpa�p
epsds

� �1
p

�
Z t

0

e�qskeðsÞkq
ds

� �1
q

þ kBkG

CðaÞ

Z t

0

ðt � sÞpa�p
epsds

� �1
p
Z t

0

e�qskeðs � sÞkq

� �1
q

¼ krð0Þk þ
Z t

0

ðt � sÞpa�p
epsds

� �1
p

� kCk þ kAkF

CðaÞ

Z t

0

e�qskeðsÞkq

� �1
q

"

þkBkG

CðaÞ

Z t

0

e�qskeðs � sÞkq

� �1
q

#

: ð9Þ

Note that
Z t

0

ðt � sÞpða�1Þ
eptds ¼ ept

Z t

0

hpða�1Þe�phdh

¼ ept

ppða�1Þþ1

Z pt

0

rpða�1Þe�rdr

\
ept

ppða�1Þþ1
Cðpða� 1Þ þ 1Þ;

ð10Þ

where pða� 1Þ þ 1 ¼ a2 [ 0.

Substituting (10) into (9), one gets

keðtÞk� krð0Þk þ Cðpða� 1Þ þ 1Þ
ppða�1Þþ1

� �1
p

et

� kCk þ kAkF

CðaÞ

Z t

0

e�qskeðsÞkq
ds

� �1
q

"

þkBkG

CðaÞ

Z t

0

e�qskeðs � sÞkq
ds

� �1
q

#

:

From krð0Þk� krk ¼ suph2½�s;0� krðhÞk, it yields

keðtÞk� krð0Þk þ Cðpða� 1Þ þ 1Þ
ppða�1Þþ1

� �1
p

et

� kCk þ kAkF

CðaÞ

Z t

0

e�qskeðsÞkq
ds

� �1
q

"

þkBkG

CðaÞ

Z 0

�s
e�qskeðsÞkq

ds

� �1
q

þ kBkG

CðaÞ

Z t

0

e�qskeðsÞkq
ds

� �1
q

#

�krk þ N2e
tkrk

þ ðN1 þ N2e
�sÞet

Z t

0

e�qskeðsÞkq
ds

� �1
q

;

where N1 ¼ ðkCk þ kAkFÞðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, N2 ¼ kBk

GðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, which means that

keðtÞke�t �krk þ N2krk

þ ðN1 þ N2e
�sÞ

Z t

0

e�qskeðsÞkq
ds

� �1
q

:

Denote u0ðtÞ ¼ krk þ N2krk, xðtÞ ¼ ðN1 þ N2e�sÞ,
uðtÞ ¼ e�tkeðtÞk, vðtÞ ¼ 1 in Lemma 3, one gets WðtÞ ¼
e�ðN1þN2e�sÞq

t and

keðtÞke�t �ðkrkþN2krkÞ

þ ðN1 þN2e�sÞð½ð1� ð1� e�ðN1þN2e�sÞq
tÞ

1
qÞ��q

�
Z t

0

ðkrkþN2krkÞ2e�ðN1þN2e�sÞq
sdsÞ

1
q:

ð11Þ

Let r ¼ 1
q
and x ¼ e�ðN1þN2e�sÞq

t in Lemma 4, we have

1� 1� ðe�ðN1þN2e�sÞq
t

� �1
qÞ

	 
�1

\ qeðN1þN2e�sÞq
t: ð12Þ

Combining (11) and (12), one obtains

keðtÞke�t �ðkrk þ N2krkÞ þ ðN1 þ N2e
�sÞqeðN1þN2e�sÞq

t

�
Z t

0

ðkrk þ N2krkÞq
e�ðN1þN2e�sÞq

sds

� �1
q

�ðkrk þ N2krkÞ þ ðkrk þ N2krkÞqeðN1þN2e�sÞq
t

¼ð1þ N2Þð1þ qeðN1þN2e�sÞq
tÞkrk:

So, if (8) is satisfied and krk\d, then keðtÞk\e, t 2 J, i.e.,

system (1) is finite-time stable.

Remark 1 The fractional-order integral-differential op-

erator is the extended concept of integer-order integral-

differential operator. Under the definition of Caputo, one

can easily arrives at a fact that Caputo derivative of a

constant is equal to zero. Therefore, it follows from

Ref. [47] that there is at least an equilibrium point for

system (1). Further, according to Theorem 1 and 2, the

following corollaries hold.

Corollary 1 When 1
2
\a\1,if

ð1þ M2Þð1þ 2eðM1þM2e�sÞ2tÞet\
e
d
; ð13Þ

where M1 ¼
ðkCkþkAkFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a , M2 ¼

kBkG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cð2a�1Þ

p
CðaÞ2a , then

the equilibrium point of system (1) is finite -ime stable w.r.t

f0; J; d; eg, d\e.

Corollary 2 When 0\a� 1
2
, if

ð1þ N2Þð1þ qeðN1þN2e�sÞq
tÞet\

e
d
; ð14Þ
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where N1 ¼ ðkCk þ kAkFÞðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, N2 ¼ kBk

GðCðpða�1Þþ1Þ
CpðaÞppða�1Þþ1Þ

1
p, p ¼ 1þ a; q ¼ 1þ 1

a, then the equilibrium

point of system (1) is finite -ime stable w.r.t f0; J; d; eg,
d\e.

Remark 2 Reference [16] discussed the uniform stability of

system (1), but there exits some conservation that the initial

conditions associated with system (1) equals zero. Refer-

ence [15] considered the finite-time stability of system (1),

which only concerned the fractional-order a lying in ð1; 2Þ.

Remark 3 References [22–25] have considered the finite-

time stability of fractional-order linear delayed systems,

but without addressing nonlinear systems. Here, a typical

fractional-order nonlinear delayed systems are discussed.

Remark 4 Quite a few delay-independent finite-time sta-

bility criteria were derived for fractional-order neural net-

works with delay in Refs. [15, 48, 49]. Generally, delay-

dependent results are less conservative than delay-inde-

pendent ones when the delays are small. Here, two delay-

dependent conditions are established.

Remark 5 From Definition 4, it is not hard to see that the

bigger estimated time of finite-time stability will be better.

For comparison, example proposed in Ref. [50] is given in

next section. Numerical calculations show that the esti-

mated time of finite-time stability obtained in this paper is

bigger than that of Ref. [50]. In addition, the obtained

results in this paper are slightly simpler than that of

Ref. [50] in form.

4 Numeric example

In this section, we consider two simple examples to illus-

trate the effectiveness of theoretical results.

Example 1 Consider the fractional-order delayed Hop-

field neural model (1) with following parameters, which

was presented in Ref. [50]

C ¼
0:1 0

0 0:1

� �

; A ¼
0:2 � 0:1

0:1 0:2

� �

;

B ¼
�0:5 � 0:1

�0:2 � 0:5

� �

:

fractional order a ¼ 0:4 or a ¼ 0:7. The activation function

is described by f ðxÞ ¼ gðxÞ ¼ tanh x, s ¼ 0:1. Clearly, f ðxÞ
and gðxÞ satisfy Lipschitz condition with F ¼ G ¼ 1.

kAk ¼ 0:3; kBk ¼ 0:7; kCk ¼ 0:1. Choosing the initial

values ð0:08; 0:05ÞT. There is a task of checking the finite-

time stability w.r.t. ft0 ¼ 0; J ¼ ½0; 4�; d ¼ 0:1; e ¼ 1;

s ¼ 0:1g. When a ¼ 0:7, M1 ¼ 0:3995, M2 ¼ 0:692,

according to Corollary 1, the estimated time of finite-time

stability is 0:607, which is bigger than 0:5542 in Ref. [50].

The equilibrium point is finite-time stable, which is

depicted in Fig. 1. When a ¼ 0:4, N1 ¼ 0:6099,

N2 ¼ 1:0674. It follows from inequality (14) that the esti-

mated time of finite-time stability is 0:7522, which is

bigger than 0:6700 in Ref. [50]. Conditions of Corollary 2

are satisfied. Therefore, the equilibrium point is finite-time

stable. Numeric simulation is shown in Fig. 2.

Example 2 A fractional-order Hopfield neural network of

three neurons with the following parameters is given

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

time(s)

x 1
,x
2

x
1

x
2

Fig. 1 The time response curve of the system in example 1 (order

a ¼ 0:7)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time(s)

x
1

x
2

x 1
,x
2

Fig. 2 The time response curve of the system in example 1 (order

a ¼ 0:4)
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C ¼
0:4 0 0

0 0:55 0

0 0 0:5

0

B
@

1

C
A;

A ¼
�0:04 0:06 0:02

0:03 � 0:08 0:04

�0:05 � 0:02 0:01

0

B
@

1

C
A;

B ¼
0:03 � 0:04 0:05

�0:05 0:02 � 0:03

0:06 0:04 � 0:04

0

B
@

1

C
A:

a ¼ 0:3 or a ¼ 0:8. The activation functions are given by

f ðxÞ¼ sinx;gðxÞ¼ tanhx, s¼ 0:2. Obviously, F ¼G¼ 1,

kAk¼ 0:16;kBk¼ 0:14;kCk¼ 0:55. The initial values are

chosen as ð0:1;0:2;0:3ÞT. One has to check the finite-time

stability, w.r.t. ft0 ¼ 0;J ¼ ½0;4�;d¼ 0:1;e¼ 1;s¼ 0:2g.
When a¼ 0:8, M1 ¼ 0:5619, M2 ¼ 0:1192, based on

inequality (13), the estimated time of finite-time stability is

0:835. The equilibrium point is finite-time stable, which

is depicted in Fig. 3. When a¼ 0:3, N1 ¼ 1:3827,

N2 ¼ 0:2933. It follows from inequality (14) that the esti-

mated time of finite-time stability is 0:3183. The time

evolution of states is shown in Fig. 4.

5 Conclusion

In this paper, finite-time stability for a class fractional-

order delayed neural networks with order a: 0\a\0:5 and

0:5\a\1 was considered. Two effective criteria to ensure

the finite-time stability for this class of fractional order

systems were derived. Illustrative examples are presented

to demonstrate the effectiveness of the derived criteria.
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