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Abstract Wiper blade of automobile is among those

types of flexible system that is required to be operated in

quite high velocity to be efficient in high load conditions.

This causes some annoying noise and deteriorated vision

for occupants. The modeling and control of vibration and

low-frequency noise of an automobile wiper blade using

soft computing techniques are focused in this study. The

flexible vibration and noise model of wiper system are

estimated using artificial intelligence system identification

approach. A PD-type fuzzy logic controller and a PI-type

fuzzy logic controller are combined in cascade with active

force control (AFC)-based iterative learning (IL). A multi-

objective genetic algorithm is also used to determine the

scaling factors of the inputs and outputs of the PID-FLC as

well as AFC-based IL gains. The results from the proposed

controller namely fuzzy force learning (FFL) are compared

with those of a conventional lead–lag-type controller and

the wiper bang–bang input. Designing controllers based on

classical methods could become tedious, especially for

systems with high-order model. In contrast, FFL controller

design requires only tuning of some scaling factors in the

control loop and hence is much simpler and efficient than

classical design methods.

Keywords Automotive wiper � System identification �
Intelligent control � Multi-objective genetic algorithm

1 Introduction

Flexibility feature of wiper blade structure has made it a

critical apparatus in terms of control matter in spite of its

uncomplicated operational mechanism. A desirable wiper

system is characterized by a homogeneous disposal of the

water, without noise generation and by limiting as much as

possible the phenomenon of wear (loss of wiping or noise

presence). Low-frequency noise known as chatter noise

was identified in wiper system during operation and is

subjected to be suppressed while does not violate other

oscillatory attributions of wiper system in time domain [3].

This noise causes annoying sound to automobile occupant

during the wiper operation especially in the heavy rain and

snow.

Flexible dynamic of a wiper system requires a reliable

system identification method to model transfer function of

wiper system for helping designer in developing more ac-

curate controller. Modeling of wiper system as a flexible

manipulator with several modes needs a trustworthy system

identification method featuring capability at fast-varying

dynamics and non-minimum phase systems modeling [22,

28]. A nonlinear auto-regressive exogenous (NARX) [8] in

cascade with Elman neural network (ENN) is utilized for

the purpose of system identification of nonlinear wiper

system [9, 24].

Pole placement controller was applied in vibration re-

duction in flexible smart structures [13]. Adaptive and ro-

bust pole placement approaches were proposed for

vibration and noise reduction in cantilever beams [25, 31].

Inverse dynamics control in cooperation with input shaping
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was developed to achieve minimum vibration within

bounded speed of actuator [21]. The vibration control of

chaotic motion in a two-blade wiper system was investi-

gated by Wang and Chau [27]. A hybrid control method for

a flexible inverted pendulum on a moving cart deals with

the vibration of system with minimum actuator effort [2].

Yanyan et al. [29] proposed a control approach by sensing

the rain extent on windscreen using infrared rain sensor

that commands the motor velocity proportionally. Prakash

and Anita [20] employed fuzzy logic controller along with

a conventional model reference adaptive control (MARC)

to deal with nonlinear traits of system.

For systems subject to external disturbances, nonlin-

earities, uncertainties, and signal limits, obtaining a precise

model of the system in various operating conditions is very

difficult. Thus, model-free controllers have been recently

emerged in the literature [12]. Although the model of the

system is required in the controller design stage, an exact

model of the system is not required for controller synthesis.

PD-type fuzzy controller (PD-FLC) and PI-type fuzzy

controller (PI-FLC) are the most common reported meth-

ods in the literature [19]. The advantage of using the PD-

FLC is that unlike conventional controller design methods,

the exact model of the system is not required at the con-

troller design stage. PD-FLC improves the transient re-

sponse of the system. However, the steady state error of the

system will remain large when PD-FLC is employed. PI-

FLC control is known to be more practical than PD-FLC,

because it results in zero steady state error [14]. Since PI-

FLC is still known to give poor performance for high-order

processes due to the integral action, the three-term PID-

FLC control should enhance the performance.

In order for three-term PID-FLC control to enhance the

performance, it needs three inputs to the fuzzy controller,

which makes the design of rule-bases very difficult

(Ni 9 Nj 9 Nk, where Ni, Nj, and Nk are the number of

membership functions of the inputs) [7]. An alternative

approach to alleviate this problem is to add an integrator to

the output of the PD-FLC and sum it to the PD part. It

basically produces a PD-FLC ? I not a PID-FLC [15].

In order to design a PID-FLC, we combined two sepa-

rate PI-FLC and PD-FLC. This structure simplifies the

configuration and makes the controller easier to implement,

since both rule-bases are two-dimensional. The problem

then becomes designing a PI and a PD rule-base, which

reduces the complexity of the design [10]. After designing

the fuzzy controller, fine-tuning can be made in order to

improve the performance of the controller. Tuning can be

made either to the membership functions or to the scaling

factors (note that it is common to use normalized inputs

and outputs for fuzzy controller and hence scaling factors

are required to normalize these inputs and outputs). How-

ever, as the rule-base conveys a general control policy, it is

preferred to keep the rule-base unchanged and the tuning

exercise is focused on the scaling factors. In multi-objec-

tive control problem, it is necessary to estimate a number

of parameters of control scheme that in turn introduces

more complexity to the system. To tackle this, multi-ob-

jective genetic algorithm (MOGA) was utilized to optimize

the PID-FLC scaling factors in order to achieve the opti-

mum trade-off between the desired objective functions [18,

23]. Population-based optimization technique like bees

colony was successfully applied for exploiting the most

appropriate parameters of fuzzy membership function and

simplified the fuzzy control design while enhances the

control effectiveness [5].

Iterative learning (IL) method is an intelligent learning

algorithm for mechanisms that perform repetitive op-

erations within a period of time to improve the system’s

performance. In other words, IL control is a learning

method to generate an optimal output response as close as

the desired output as time increases. Arimoto proposed a

number of learning algorithms and proved their conver-

gence, stability, and robustness [1]. Since then, IL control

has been successfully applied to different repetitive flexible

control systems [4, 26, 30].

A reliable nonlinear system identification namely non-

linear auto-regressive exogenous Elman neural network

(NARXENN) was adopted in first stage of this survey to

model the flexible dynamics of wiper blade with acquired

experimental data. A lead–lag controller was designed

based on the dynamics properties of wiper system extracted

from system identification and applied on the path of ref-

erence input. Then, a PD-FLC and a PI-FLC are combined

in cascade with active force control (AFC)-based IL and

named fuzzy force learning (FFL) to achieve a robust

controller for possible uncertainty that occurs during op-

eration of wiper. In order to deal with complexity of con-

trolling the multi-conflict objectives in both time and

frequency domains, MOGA is utilized to regulate the

corresponding parameters of proposed controller. Detail of

the proposed controller is illustrated in Fig. 1.

Methodology of data acquisition and design of the

controllers are presented in Sect. 2. In Sect. 3, the results

Fig. 1 FFL controller using MOGA
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of system identification and effectiveness of proposed

controller are discussed, and finally, the conclusion is

brought in Sect. 4.

2 Methodology

2.1 Data acquisition

First, the data acquisition stage is carried out online for

recording the wiper system signals. Then, the data analyses

run off-line and handle the recorded data to develop an

efficient controller standing by experimental tests. A uni-

blade-type wiper, which is typically found in the Proton

Iswara and is driven by its corresponding DC wiper motor

in hub, measuring devices, interface card, and digital pro-

cessor are in hand for experiment. The wiper blade can be

considered as a pinned-free flexible arm that moves freely

in the horizontal plane of windscreen while the effect of

axial force is negligible. A pipe hose with running water is

facilitated on the top of windscreen that simulates a rainy

or wet condition for operating wiper at speed of bang–bang

input. The measurement sensors included a Kistler Type

8794A500 tri-axial accelerometer mounted at the endpoint

of the wiper blade using beeswax for measurement of

endpoint acceleration as well as a shaft encoder placed at

the hub of wiper for measurement of hub angle. Recording

the input signals is carried out at digital sampling rate of

1 kHz. In the experiment, a 16-input-channel PAK MK II

Muller BBM signal analyzer was used.

The simulation of the flexible manipulator is conducted

with the two analogue outputs namely hub angle and

endpoint acceleration. Low-pass filters each with cutoff

frequency of 80 Hz is used to band limit the system re-

sponse to the first resonance mode for each output. Fur-

thermore, to decouple the flexible motion control loop from

the rigid body dynamics, a high-pass filter for each output

with a cutoff frequency of 5 Hz is used. The system

damping ratio is negligible, and payload is measured as

7.4 N/m. A motor drive amplifier (current amplifier) de-

livers a current proportional to the input voltage for actu-

ating a bidirectional motor. A linear drive amplifier

LA5600 can be employed as motor driver too. The shaft

encoder placed on hub of wiper sends the analogue infor-

mation of the hub angle of the wiper to process unit of

controller after being converted to digital values. An in-

terface circuit PCL 812PG is needed to interface the wiper

system with a host PC and carrying out data acquisition and

control between the processor, the actuator, and sensors

with 25 ls for A/D conversion and a settling time of 20 ls
for D/A conversion. A schematic diagram of proposed

controller interfaces used in this work is shown in Fig. 2.

2.2 AFC-based IL

The AFC technique verified to be quite effective in robust

accuracy positioning tasks in spite of possessing trouble-

free mathematical algorithm [11]. The successful operation

of AFC method as a disturbance rejecter scheme compared

to the traditional control methods such as the PID con-

troller is proved in the literature [16, 17, 24]. Other ad-

vantages of application of AFC as a disturbance rejection

in this study are because of its low computational burden

and few input information in a real time system. As it is

shown in Fig. 3, AFC requires only the acceleration in-

formation of wiper tip.

In the rotational bodies, Newton’s second law expresses

that the sum of all torques applied to the system is equal to

the multiplication of the mass moment of (I) to the angular

acceleration (a) of the system.

Consider Newton’s well-known and functional second

law of motion of rotational bodies:
X

s ¼ Ia ð1Þ

X
Y

Fig. 2 Schematic diagram of

proposed controller interfaces
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where s is the applied torque of wiper motor and I and a are
the mass moment of inertia and the angular acceleration of

the wiper blade, respectively.

An external disturbance sd is included in (1):

sþ sd ¼ I hð Þa ð2Þ

The main point of AFC is where disturbances have to be

estimated somehow as:

s�d ¼ s� EIa ð3Þ

where EI is the estimated inertia matrix that can be ob-

tained by crude approximation or other intelligent methods

such as iterative learning, fuzzy logic. MOGA has been

used in this paper to estimate the most appropriate value for

EI to achieve a desirable trade-off among all objectives

even in the presence of external disturbance. s is the

measured applied control torque that can be estimated by a

current sensor or directly by a force or torque sensor, and

the measured angular acceleration, i.e., €h can be obtained

by an accelerometer. From (3), it is clear that if the total

applied torque to the system and angular acceleration of

actuated joint are accurately obtained using measuring in-

struments, the estimated inertial parameters needed in AFC

loop for disturbance rejection are appropriately ap-

proximated, without having to acquire the knowledge about

actual magnitude of the disturbance. In order to alleviate

the total torque disturbance, IL compensator is incorpo-

rated in AFC loop as well (Fig. 3).

Most of the algorithms proposed by Arimoto et al. in the

literature show that the ðk þ 1Þth input to the system can be

obtained by kth input plus an error coefficient that may

consist of a coefficient of track error (TE ¼ qdesired
�qactual), derivative and integral of track error. These

mathematical expressions are similar to the description of

classic PID controller; therefore, the IL algorithms can be

described as the proportional-integral (PI)-type learning

algorithms as follows:

s�dkþ1
¼ s�dkþ1

þ /þ w
Z

dt

� �
ek ð4Þ

where s�dkþ1
and s�dk are the next step and current estimated

inertia for AFC loop, ek is the output error

(TE ¼ qdesired � qactual), / and w are learning parameters of

PI-type iterative learning algorithm. The most appropriate

values of / and w are carefully obtained using crude

approximation.

2.3 PID-FLC

In order to reduce the number of rules that are used in

regular three-input PID-type fuzzy controller, two separate

Sugeno-type FLC structures are used in this paper. In fact,Fig. 3 AFC-based IL

Fig. 4 Membership functions

illustration of FLC: a track error

input, b rate of track error input,

c controller output
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the PID action is separated into a PI-FLC and a PD-FLC

part. The outputs from the two fuzzy controllers are then

added together to result in a final PID-FLC. The inputs to

both the PI-FLC and the PD-FLC parts are scaled error

(e(t)) and the scaled rate of change of error ðêðtÞÞ. The size
of inputs and output membership functions is chosen to be

three. The membership functions of the input and output

variables for both the PI-FLC and the PD-FLC to be em-

ployed are of the triangular type, and they are defined as

shown in Fig. 4 and Table 1. Since both the PD-FLC and

PI-FLC parts share the same inputs, the number of rules has

been reduced to 3 9 3 ? 3 9 3 instead of regular three-

input PID-FLC controller with (3 9 3 9 3) rules. Note that

the universe of discourse for both the PI-FLC and the PD-

FLC is normalized between [-1, 1]. Thus, three scaling

factors namely STE, SdTE, and Su (Fig. 5) are required to be

designed and tuned using MOGA in the following section.

2.4 MOGA

In MOGA, fitness sharing technique is utilized to give

confidence in the search toward the true Pareto optimal

set while maintaining diversity in the population. The

basic idea of fitness sharing is that all the individuals

within the same region (called a niche) share their fitness.

In fitness sharing method, a niche count is obtained from

the Euclidean distance between every pair of solutions

first and then the fitness of each solution is ranked from

the best individual to the worst. Details of this method

can be found in Ref. [6]. Also, hypervolume indicator is

adopted in this study for performance assessment of

MOGA [32].

3 Results and discussion

3.1 Multi-objective indexes

Integral of absolute endpoint acceleration (IAEA), max-

imum overshoot of hub displacement, and rise time of hub

displacement response are objectives that are aimed to be

minimized and defined as:Fig. 5 PID-FLC

Table 1 FLC rule-base with track error and rate of track error

Track error (TE) Rate of track error (dTE)
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Fig. 6 Time domain modeling of wiper tip: a endpoint acceleration of wiper tip, b hub displacement
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• Integral absolute value of endpoint acceleration

(IAEA):

IAEA ¼
ZT

0

yEAðtÞj jdt; ð5Þ

where |yEA(t)| represents the vibration amplitude of

wiper blade and is correlated to noise level of wiper

blade.

• Rise time The time required for system hub displace-

ment response to rise from 5 to 95 % of the final steady

state value of the desired response.

• Maximum overshoot The maximum peak value of the

hub displacement response curve measured from the

desired response of the system.

In the design of proposed FFL controller, such trade-off

is emerged in relationship between rise time and vibration

amplitude. IAEA and maximum overshoot are objectives in
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Fig. 7 Frequency domain modeling of wiper tip response: a PSD of endpoint acceleration, b Yule-Walker spectral density of endpoint
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Fig. 8 Time domain response of wiper tip without disturbance: a endpoint acceleration of wiper tip, b hub displacement
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accord; while the rise time index of wiper lip is in obvious

conflict with two aforementioned objectives.

3.2 System identification

As the design of FLC does not require the model of the

system, a closed loop system identification procedure is

required. A NARXENN is employed to identify a model

for the flexible wiper system. The details of the system

identification algorithm using the collected experimental

data were described in Ref. [33]. For the modeling pro-

cess, input–output data were collected for a wiper system.

Then, performing the one value at the moment the best

maximum lag of the data in NARX model was found as

nx = ny = 4. Subsequently, ENN with two hidden layers,

each with ten tansigmoid neurons and two linear output

layers was trained. The process is adjusted until the

prediction output satisfied a model validation test and

model mean-squared errors level reached to 0.00012. The

fitting accuracy of predicted system for one-step-ahead

prediction of the corresponding endpoint acceleration and

hub angle responses of the actual system is shown in

Fig. 6.

It is observed from the NARXENN that the total model

order of four is required to model the resonant mode of

wiper system. The ultimate goal here is to find a model of

the real system that is as simple as possible and yet capable

of capturing all of the important characteristics of the plant.

The illustrated results of actual and predicted PSD and

Yule-Walker power/frequency of endpoint acceleration in

frequency domain in Fig. 7 verify that there is an accept-

able comparison between system identification results and

actual results in frequency domain as well.

3.3 Lead–lag controller for single objective

It should be noted that in order to design the conventional

controller, the designed lead–lag compensator should be

added in series to notch filter to attenuate the effect of

structural resonance frequency. The carefully designed

lead–lag controller should also be cascaded with a low-pass

filter in order to attenuate the high-frequency measurement

noise. Figures 8 and 9 show that lead–lag controller is

capable of reducing the vibration and noise at the endpoint

of the manipulator in comparison with bang–bang input

without intervention of any external disturbance.

Further study revealed the deficiency of lead–lag con-

troller in vibration and noise elimination of wiper blade in

the presence of external disturbance and uncertainty

(Fig. 13). Hence, an essence of a robust controller for re-

duction in chatter noise level of wiper blade simultaneously

with accurate trajectory tracking of wiper hub angle was

demanded. In order to achieve such controller, it is required
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Fig. 10 Hypervolume indicator of wiper system objective space

using MOGA
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Fig. 9 Frequency domain response of wiper tip without disturbance:

a PSD of endpoint acceleration, b Yule-Walker spectral density of

endpoint acceleration
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to design a robust closed loop controller to reject any un-

known external disturbance.

3.4 Multi-objective FFL controller

MOGA was initialized with a random population consist-

ing of 50 individuals and maximum generation of 100 as

termination criterion. The population is represented by

binary strings each of 30 bits, called chromosomes. Each

chromosome consists of five separate strings, constituting

three terms specified to PID-FLC membership positions

and the rest two specified to proportional and integrative

scale factors of IL controller. Using educated guess, a

reasonable range of these parameters that ensure stability

of system is defined. The crossover rate and mutation rate

for this optimization process were set at 90 and 0.01 %,

respectively. Moreover, Epanechnikov fitness sharing

technique was used to ensure that the best solution of each

generation is selected for the next generation, so that the

next generation’s best will never degenerate and hence

guarantee convergence of the GA optimization process.

Hypervolume indicator assesses the convergence of al-

gorithm toward Pareto front as well as preserving the dis-

tribution of Pareto front throughout objectives space. Once

this metric is applied to compare the performance of an

algorithm in successive iterations; as the number of non-

dominated solutions and their distribution throughout the

objective space increases, the hypervolume indicator’s

value represents the greater value. Hypervolume indicator

of MOGA for adjusting controller parameters is shown in

Fig. 10. It can be clearly seen that the overall number of

Pareto front members found in each generation and their

diversity throughout the objective space is increased as the

number of generations goes on, so that the maximum value

of Hypervolume is obtained at last generation.

Table 2 Controller parameters

and objective values
Trade no. Objectives Controller parameters

IAEA (m/s2) Rise time (s) Max. overshoot (%) STE SdTE Su EI

1 924 0.24 93 0.174 0.270 0.023 0.920

2 499 0.32 78 0.235 0.944 0.630 2.134

3 124 0.39 36 0.575 0.376 0.270 1.413

4 468 0.33 51 0.180 0.451 0.445 3.367

5 73 0.48 17 0.411 0.720 0.872 0.892
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Fig. 11 Optimal Pareto sets

illustrations of pair objectives:

a conflict interests, b mutual
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490 Neural Comput & Applic (2016) 27:483–493

123



Explicit conflict interests of maximum overshoot and

IAEA for Pareto optimal sets of wiper blade objectives are

illustrated in Fig. 11. This miscorrelation makes the deci-

sion tough for designer to choose the best trade-off.

However, the non-dominated Pareto set depicted in Fig. 11

proves that IAEA and maximum overshoot are highly non-

competing and it is important for the decision-maker, as it

conceptually reduces the complexity of the problem.

Adjustable parameters of FFL controller and their cor-

responding objective measures are listed in Table 2. In

Table 2, the most significant non-dominated samples of

Pareto optimal sets swinging between the robustness per-

formances and rise time improvement of wiper blade are

shown. It can be deduced that the smallest rise time of

system is obtained in Trade 2 with unfavorable IAEA and

maximum overshoot. Further, the least amounts of vibra-

tion objectives are achieved in Trade 5 at the expense of

longest rise time. However, in case of current design, the

Trade 3 is deemed to be preferred to others that lead to the

most reasonable values of IAEA, maximum overshoot, and

rise time of wiper blade. Glimpsing at other trade-offs in

Table 2 reveals that though Trade 5 has greater vibration

reduction and wiper hub trajectory tracking rather than

Trade. 3, this is achieved at the expense of longer system

delay or rise time. Also, diverse trade-offs of objectives can

be seen in Table 2 so that each of them are obtained by

adjusting membership functions as well as corresponding

scale factors of AFC.

An instance trade-off of Pareto front sets for IAEA, rise

time, and maximum overshoot of wiper blade is shown in

Fig. 12. The x-axis shows the design objectives, and the

y-axis signifies normalized values of each objective. The

conflict interests of objectives are deduced from crossing

lines between adjacent objectives, while parallel lines are

evident of mutual interests between the objectives.
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Fig. 13 Time domain response of wiper tip in the presence of disturbance: a endpoint acceleration of wiper tip; b hub displacement
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As the proposed controller was designed to achieve the

greatest vibration and noise reduction in wiper blade in

frequency domain while maintaining a reasonable transient

response time of system concurrently; convinced the de-

signer to vote on behalf of Trade 3 with the estimated

values of IAEA, maximum overshoot, and rise time of

wiper blade 178, 27, and 0.26 s, respectively.

The robustness of FFL controller can be obviously de-

duced from Fig. 13. Figure 13a shows the noteworthy

dampening of endpoint acceleration using the FFL con-

troller rather the lead–lag controller with uncertainty. In

Fig. 13b, the high distortion of open loop wiper lip in

tracking the desired trajectory subjected to external dis-

turbance is evident while the least fluctuation in minimum

rise time has been achieved using the FFL controller.

Moreover, the deficiency of lead–lag controller in com-

parison with the proposed controller with applying external

disturbance can readily be seen in terms of endpoint ac-

celeration, rise time, and maximum overshoot.

The vibration amplitudes reduction in developed con-

troller is shown in Fig. 14. PSD and Yule-Walker ampli-

tudes of the wiper endpoint that indicate measure of chatter

noise of wiper system considerably reduced with FFL

controller compared to open loop and IS controller sub-

jected to external disturbance.

4 Conclusion

In dynamics control of flexible manipulators like wiper

blade system, usually the low levels of residual vibration

cannot be obtained with a command that produces the

fastest transient time. In order to achieve the low levels of

vibration and noise in frequency domain while maintaining

the desirable characteristics of wiper blade in time domain,

a lead–lag controller was designed based on the priory

knowledge of wiper dynamics system from NARXENN

system identification. Conventional lead–lag controller was

applied, which reduced vibration and noise of wiper system

in a nearly free external disturbance environment. Insen-

sible and deteriorated response of lead–lag controller to

uncertainties persuaded the study to devise a more robust

controller. Hence, FFL controller was designed by com-

bination of PID-FLC and AFC-based IL. MOGA was

employed to settle the most appropriate trade-off among

vibration and noise reduction and faster transient time

features of wiper system. The results of multi-objective

FFL controller were compared with a conventional lead–

lag compensator and the bang–bang input in the presence

of disturbance. The results showed that the system’s per-

formance dramatically improved using FFL compared to

the bang–bang input and conventional lead–lag controller.

Main contribution of FFL controller than conventional

lead–lag controller is its successful implementation without

using any notch filters or low-pass filter while two notch

filters and a low-pass filter had to be added to the designed

lead–lag compensator before implementing to the system.
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