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Abstract This paper is concerned with the stabilization
of bidirectional associative memory neural networks with
time-varying delays in the leakage terms using sampled-
data control. We apply an input delay approach to change
the sampling system into a continuous time-delay system.
Based on the Lyapunov theory, some stability criteria are
obtained. These conditions are expressed in terms of linear
matrix inequalities and can be solved via standard nu-
merical software. Finally, one numerical example is given
to demonstrate the effectiveness of the proposed results.

Keywords BAM neural networks - Sampled-data
control - Stabilization - Leakage delay

1 Introduction

As we all know, time delays are unavoidable in many
practical systems such as biology systems, automatic
control systems and artificial neural networks [1-4]. The
existence of time delays may lead to oscillation, divergence
or instability of dynamical systems [2, 3]. Various types of
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time-delay systems have been investigated, and many
significant results have been reported [4—10].

Recently, the stability of systems with leakage delays
becomes one of the hot topics. The research about the
leakage delay (or forgetting delay), which has been found in
the negative feedback of system, can be traced back to 1992.
In [11], it was observed that the leakage delay had great
impact on the dynamical behavior of the system. Since then,
many researchers have paid much attention to the systems
with leakage delay and some interesting results have been
derived. For example, Gopalsamy [12] considered a
population model with leakage delay and found that the
leakage delay can destabilization system. In [13], the
bidirectional associative memory (BAM) neural networks
with constant leakage delays were investigated based on
Lyapunov—Krasovskii functions and properties of M-ma-
trices. Inspired by [13], in [14], a class of BAM fuzzy cel-
lular neural networks (FCNNs) with leakage delays was
considered, in which the global asymptotic stability was
studied by using the free-weighting matrices method. Fur-
thermore, Liu [15] discussed the global exponential sta-
bility for BAM neural networks with time-varying leakage
delays, which extended and improved the main results in
[13, 14]. In addition, Lakshmanan et al. considered the
stability of BAM neural networks with leakage delays and
probabilistic time-varying delays via the Lyapunov—Kra-
sovskii functional and stochastic analysis approach [16]. Li
et al. [17] investigated the existence, uniqueness and sta-
bility of recurrent neural networks with leakage delay under
impulsive perturbations and showed that the impact of
leakage delay cannot be ignored. In particular, Li et al. gave
the following example to describe this phenomenon [17].

Remark 1 Consider the following system with leakage
delays.
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o 9f Lo 1)
and £ =[fi, A", fy) =5, (1) = 0.01sin’, 75(r) =
0.01cos?z.

If there is no leakage delay, system is stable. However,
if leakage delays p; = p, = 0.2, system becomes unstable
(see Figs. 1, 2).

The phenomena mentioned above show that a larger
leakage delay can cause fluctuant. As we all know, stability
is an important index of the system in application [18, 19].
So it is very important to take some control strategies to
stabilize the instable system. Up to now, various control
approaches have been adopted to stabilize those instable
systems. Controls such as feedback control [20, 21], in-
termittent control [22, 23], impulsive control [24-27],
fuzzy logical control [28] and sampled-data control [29]
are adopted by many authors. The sampled-data control
deals with continuous system by sampled data at discrete
time. It drastically reduces the amount of transmitted in-
formation and increases the efficiency of bandwidth usage
[30]. Compared with continuous control, the sampled-data
control is more efficient, secure and useful [31], so it has a
lot of applications. For example, Wu et al. [32]
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Fig. 2 The trajectories of state variables (p; = p, =0.2)

investigated the stability of neural network by using a
sampled-data control with an optimal guaranteed cost. The
synchronization problem of some networks was studied via
sampled-data control [33, 34]. In addition, the performance
of some nonlinear sampled-data controllers was analyzed
in terms of the quantitative trade between robustness and
sampling bandwidth in [35].

Motivated by the above discussion, the main purpose
of this paper is to investigate the stabilization of BAM
neural networks with time-varying leakage delays via
sampled-data control. To the best of our knowledge, so
far, there were no results on the stabilization analysis of
BAM neural networks with time-varying leakage delays.
By using the input delay approach, the BAM with leakage
delay under the sampled-data control is transformed into a
continuous system. Then, by using the Lyapunov stability
theory, a stability criterion was expressed in terms of LMI
toolbox. The paper is organized as follows. In the next
section, the problem is formulated and some basic pre-
liminaries and assumptions are given. In Sect. 3, an ap-
propriate sampled-data controller is designed to stabilize
BAM neural networks with time-varying leakage delays.
In Sect. 4, one illustrative example is given to show the
effectiveness of our results. Some conclusions are made
in Sect. 5.

2 Preliminaries

Consider the following BAM neural network with time-
varying leakage delays:
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p(t))+21 1 jl ( ())+Zz 1 jl

—a(n)+ Y0, S,»”g,(vj( )+ 30 5,-2>g,»<v,~<r — (1) + 1,

(it = (1) +

where f1;(¢) and v;(¢) are the state variables of the neuron at
time ¢, respectively. The positive constants a; and ¢; denote
the time scales of the respective layers of the networks.

p1 p@ 40 40

g oYy % oY%
and J; denote the external inputs. o(z) and p(z) are leakage

are connection weights of the network. I;

delays; 71(¢) and 15(t) are time-varying delays; g;(-), £0)
are neuron activation functions.

Let (u*, v*)T be an equilibrium point of Eq. (2). Then,
(u,v*)" satisfies the following equations:

( )+Zjl ij
i) + i P

&0) + 1
D)+

0—*&,#1 +Zj 1 l]
Zl 1 jl

O—fcj

{ xX(1) = —Ax(t — (1)) + Big(y(1)) + Bag(y(t —
(1) = =Cy(t = p(1)) + Dif (x(1)) + Daf (x(z —

(1)) + Kx(t — 73(1))
(1)) + My(t — 73(1)),

O=t<t--- <t <--
over, there exists a positive constant T3
ter1 — e <13, Vk € N.

Under the sampled-data control, system (4) can be
modeled as:

-, and limg_ 4 #x = +00. More-
such that

{ (1) = —Ax(t = o (1)) + Big(y(1)) + Bag(y(t — 11(2))) + u(t)
¥(1) = =Cy(t = p(1)) + Dif (x(1)) + Daof (x(1 = 72(1))) + v(1),
(5)

Let 73(¢) =t — t, for ¢ € [t, tx4+1). Using the input delay
method, we have

Shift the equilibrium point (u*,v*)" to the origin by

xi(t) = () — ui, yi(t) = vi(t) — vi. System (2) can be
rewritten into the following compact matrix form:
{ (1) = —Ax(t — a(1)) + Big(y(1)) + Bag(y(t — 71 (1))
¥(t) = =Cy(t = p(1)) + Dof (x(1)) + Daf (x(1 — 72(1))),
(4

~—

where A = diagla;,as...a,] >0, C =diaglcy,c...cy)
By s Dk = (i) s k= 1,2, g((1)) =

>0, B, = ij
g(1) +v*) = g(v), and f(x(1)) = F(x(t) + 1) = f ().

Remark 2 In [17], the impact of leakage delay on stability
of systems was discussed. That is, larger leakage delay can
lead to the instability of system. However, how to control
the harmful effect is not investigated. Next, we will study
the stabilization of (4) via sampled-data control.

Let u(r) = Kx(%), v(t) = My(t), where K,M € R"™"
are the sampled-data feedback controller gain matrices to
be designed. #; denotes the sample time point and satisfies

nxn?

The initial conditions of model (6) are given as:

x(1) = ¢(1),
(1) = (1),

where s; = max{o7, 12,73},

te [*SI,O]
t € [—s5,,0]

s = max{p,, 71,73}

Remark 3 As is well known, it is difficult to analyze the
stabilization of system (5) because of discrete term pu(t) =
Kx(t:), and v(¢) = My(#). Based on the input delay ap-
proach, which was put forward by Fridman in [36], the
system (5) is changed as a continuous-time system (6). So
we can discuss the stabilization of system (6).

In order to investigate stabilization of system (6) and
calculate the sampled-data feedback controller gain matrices
K, M, we need the following assumptions and lemmas.

Assumption 1 The leakage delays o(¢), p(f) and the
time-varying delays 7;(¢), t2(¢) are continuous differential
functions and satisfy 0 <oy <0a(f)<ag,, 0< p; < p(f)<
0, 6(t) <o, p(t)<p, O0<t(t) <7y, T1(f) <t <1, 0<
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1,(1) <12, T2(t) <2 <1, where a1,02,0;, p2,0,p,71,
75,711 and Ty, are constants.

Remark 4 1t is worth pointing out that only upper bounds
of leakage delays were considered in [37-39]. In this paper,
we considered not only the upper bounds of leakage delays
but also the lower bounds. Therefore, our results are more
general than that in [37-39].

Assumption 2 There exist positive constants y;, v;, such
that

@0*%@0

o< 8 <u O<ﬁ@0*ﬁ@0§

Xi — X Xi — X

Vi

forall x;, x;, e R, x; #x;, i =1,2...n

Lemma 1 [40] Given any real positive define symmetric
matrix M and a vector function o(-) : [a,b] — R"; then,

ulb w(s)ds} TM [/ab w(s)ds} <(b—a) /ab o (s)Moo(s)ds.

Ti Mo “}13 ”},4 ”},5 0wy Ts Mo 0
£ My 0 0 ms O 0 mg my O
* x m, 0 ms 0 0 0 0 0
* * x  mi, ms O 0 0 0 0
* * * * n%ﬁ 0 0 0 0 0
I, =| = * * * né, 0 0 0 0
* * * * * n;j 0 0 0
* * * * * * 7'52';78 0 0
* * * * * * * né‘g 0
* * * * * * * * “}0.10
* * * * * * * * *
[ i 775%3 Ta ms 0w, 775%,8 “%,9 0
* 0 0 ”%,5 0 0 n3y mi 0
* ©By; 0 ms 0O 0 0 0 0
* * 7142‘)4 ”2‘5 0 0 0 0 0
* * * n%s 0 0 0 0 0
I, =| = * * x* me O 0 0 0
* * * * * n%J 0 0 0
* * * * * * n%tg 0 0
* * * * * * * 7'5519 0
* * * * * * * * n%()’ 10
* * * * * * * * *

Lemma 2 (Barbalat’s lemma) [41] If w(¢) is uniformly
continuous, and fzz w(s)ds has a finite limit as t — +o0,
then lim,_, o w(t) =0

3 Main results

In this section, the stability of system (6) is investigated
and the sufficient conditions for ensuring the stability of
system are derived. By solving the LMIs, a suitable sam-
pled-data controller is obtained to stabilize the BAM neural
networks with time-varying leakage delays.

Theorem 1  Let Assumption 1 and 2 hold; then, the
trivial solution of system (6) is globally asymptotically
stable if there exist positive-definite symmetric matrices
P, 0, Pi(i=1,23), 0;(i=1,2,3), Ri(i =1,...,6),
T;(i=1,...,8), Si(i=1,...,6), positive-definite diagonal
matrices X;(i = 1,...,4) and any matrices X,Y such that
the following LMIs hold:

B

5
P =

<0.

SO O O O O o o

1
10,11

1
T |

B

5

© O O O O O o Rheb

<0.

2
0,11

2
T |
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where

M =Pi+Py+Ps+Rs+Ry—S,— 53—
—Tu+ (1o — DT+ U XU,

”{,2 =P—R;s, n%j =5, n{A:Sg, 7[175 = —Rs5A,

my, =T+ (1—12)Ts, nj g =RsBy, mj g =RsB,,

T =Ti+X,

n22 =01,81 + 0182 + 0583 + 151 + 13T + 15T —

T+ T3

Rs —RI,

n25 =—R5A, nzg—RSBl, nzg—R5B2, nzn =X,
n3,3 =—P,—S51 -85, n3’5 =5,

Mha=—P3— 81 =83, my 5=,

mis=(c—1)P =S, 5],

Moo= —Ra—Ty, mg; =T,

my,= (1= 1)Rs =T =T + (152 — )Ty + U X3U,
nég =—-Xy, nég =—Xy,

7Iio,m =-T5—Ty, ”%0,11 =Ty,

”{1,11 =-T4— T4Ta

7 =01 +0s+ 03 +Ri +Ry— S5 —S6 —
—To+ (ti1— DT+ VX5V,

T, +Ts

M, =0—Re, mj 3 =055, 11 4 =S6, M5 = —ReC,

1, =To+(1—111)T7, mj g = ReD, 1} g = ReD2,

iy =Te+Y,

n22 = pl2S4 —|—p]S5 —|—p2S6 +r]T2 —|—r3T6 +11T7 Re¢ — Rg,

n25 =—R¢C, 7r28 =R¢D;, nzng(,Dz, ”211 =Y,
M3 =—0r—Ss—Ss, 135 =S4,
Myq=—03—Ss—Ss, Ty 5 =S4,

”2,5 =(p—1)01 54 —Sj,

Moo =—Ro—Ts, g7 =T,

m,=(tn— DR =T =T +(tn — DT + VX4V,
7T§78=—X1,

7T§79=—X37

TE%O,]OZ —Ts—Ts, 7r%0,11 =Ts,

n%hll :_TG_TeTa 012 =02 =01, Pip = P2~ Py-

Moreover, desired controller gain matrices are given as
K=R;'X, M=R;'Y.

Proof Consider the following general Lyapunov—Kra-
sovskii functional:

Vi) =T ()Pa(0) +37 (0 03(1)

Valr) = f_;m WPlolast [ A (Px(s)
+ /l_t”sz(s)ng(s)dv

o= [ o [ 600
o[ e

o= [ R [T Rs(d
+ z-tQ(,)xT( $)R3x(s)ds + /t_:z (s)R4x(s)d

1/5(z)=a,2/_gz /tth (5)S1i(5)dsd0
to [ : /Hexx (5)S2(s)dsd0

P2 +0
0 t
o [ [ 3T ESsi(s)as0
—py Jt+0
0

wos /(y (5)Se5(s)dsd0
va [ ° [ it

/ xT(8)T3x(s dv+r3/ / (5)Tyx(s)dsd0
—13 t+60

+/ Yy (8)Tsy(s)ds + 13 / (8)T6y(s)dsdd
—13 t+0

. / / §)T53(s)dsd0
-7 ( +0

+1 / / i (5) Tg(s)dsd0
—15(t) J 140

Calculate the derivative of V(z) along the solution of the
system (6),

V() = 26 (1)PR(1) + 20" (1) 05(2) (9)

Vi (t) = 2T (t)P1x(t) — x"(t — o (£))P1x(t — o(2))(1 — o)
+ 2T (1) Pyx(t) — x"(t — 01)Ppx(t — a1)
+ xT () P3x(t) — X" (t — 62)P3x(t — 02) (10)
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V(1) =y (1)Qiy(1) = y" (1 = p()) Qiy(r — p(2)) (1 = p)
Y (1)Qay(t) = y' (2 = p1)Q2y(t = p1)
+Y1(0)Qsy(1) = ¥ (t = p2)Q3¥(t = p2)
(11)
V(1) =y (ORiy(r) = y" (1 = 11 (D) Riy(r — 11 (1)) (1 = 711)
+ Y (ORey (1) =y (1 = T1)Roy(t — 1)
+ 2T (ORsx(1) — x" (1 = 12(1))R3x(1 — w2 (1))(1 — 120)

+ xT()R4x(t) — xT(t — 1) Ryx(t — 12)

(12)

Vs(t) =012 / T (0818(1)d0— o1 / T (14-0)S 151+ 0)d0

0 0
+r71/ xT(z)Szx(z)de—al/ il

0 0
+0, / i (£)S3x(¢)d0— oy / i (t40)S3%(z+0)d0
—02 —02

0 0
+1, / i ()T %(r)d0—1, / i
) -T2

= o’ (1)S14(r) — Ulz/t:iale(u)Sl)é(u)dy

(140)S,x(r+0)d0

(t+0)Tyi(1+0)d0

+O’%)€T(l‘)52)€(l‘)—0’1/j AT (1) S (p)du
A i) —0n [ (WSl

+ 225 (1) T1x(1) — 12 /,i A ()T (p)du

<! (1)Sui(r) a(1)] 81 (1 —01)

[x(t—oy)—x(t—

—x(t=a ()]~ [x(t =0 (1)) —x(t—02)]" 1 [x(1— (1))

—x(t—02)]+ 03T (1)S2%(t) — [x(r) —x(t— 1)) Sa[x(2)

—x(t—01)]+ 02T (1)S35(t) — [x(r) —x(1— 02)] " S3[x(2)

(1= 02)] 4 B (T30~ et — 02 (1)) —x(1—72)]"

x Tt fe(r=12(1)) = x(t = 2)] = [x(1) —x(t = 2a(1)))"

x Ty [x(1) —x(t—1a(t))]

@ Springer

Valt) = " 050~ pi2 [ 3T G085
+ p1y" (1)Ss¥ () — py /_t ¥ (1) Ssy()du
A 0850 o [ T (Se5(u)du

=p;

+ 1y () Toy(t) — 1 /7 ¥ (W) Toy () dp

<Py (0)Say (1) = [y(t = py) = y(t = p(6)] Saly(t — py)
—y(t = p())]
— (= p(0) = y(t = p2))" Saly(t — p(1))
+ iy (0)Ssy(1)
= () =yt = p))I"Ss[y(r) — y(t — )]
(1) = y(t— Pz)]TS6b’(t) —y(t = ps)]
(t—11(1)) = y(t — 1) Taly(r — 7 (
(1) = y(t = ()] Toy(t) = y(t — 7

—y(t = p,)]

-b

-y

-

(14)

Vi(t) <xT(6)Tax(t) — x"(t — 13) Tax(t — 13) + w37 (1) T (1)
73(1)) — x(t — 13)] Tafx(t — 13(1)) — x(t — 73)]

= [x(1) = x(r = T ()] Tulx(r) — x(t — w3 (1))

+ Y (O Tsy(r) = y' (8 = w3) Tsy(t — 13) + 3y (1) T6Y (1)
— [t = w3 (1)) = y(t = 13)] " To[y(t — 13(1)) — y(t — 73)]
= (6) = y(t = () Te[y(1) = y(t — w3 (1))

— (-

Vi) <3O0 — a1 - ) [ () T(s)ds
t 11()

+ T%)&T(l‘)Tg)&(Z) — ‘62(1 — ‘E22) /r ( >)&T(\s')Tg)é(S)(h‘

< () Ty(1) — (1 — wn) y(t) — y(r — 71 (0)]"
Trly(t) — y(t — w1 (1))]
+ r%)&T(t)TSX(z) — (1 — 720) [x(¢) — x(t — rz(z))]T
Tslx(r) — x(1 — 72(2))]
(15)
In addition,
0 = 2" (1) + (1) Rs[—(r) + (1)
= 2[x" (1) + " (1)]Rs[—x(t) — Ax(t — (1)) + B1g(¥(t))

+ Bag(y(t — 11(2))) + Kx(t — 13(1))]
= =2 (1)Rsi(t) — 2" (1)RsAx(t — 0 (1)) + 2x" (1)RsB1g(¥(1))
+ 2 (1)RsBag(y(r — 11(1)))
+ 2xT (1)RsKx(r — 13(1)) — 24T (1)Rsi(t) — 257 (1)Rs
x Ax(t — a(1)) + 2x7 (1)RsB g (¥(¢)
+ 24T (1)RsBag (y(t — 11(1))) + 257 (1)RsKx(r — 13(¢))

(16)
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0= 2["(r) + " (1)]Rs[-3(t) + ¥(1)]

(1) + " (1)]Rs[=3(2) — Cy(r = p(1)) + Dif (x(r))
+ Dof (x(r = 72(1))) + My(r — 73(1))]

= —2y" (Rey(1) — 29" (1)RsCy (1 — p(1))
+ 29" (RsDIf (x(1)) + 2" (1)RsDaf (x(t — 12(1)))
+ 29" ()RsMy(t — 13(1)) — 29" (1)Re¥ (1) — 25" (1)
ReCy(1 — p(1)) + 29" (1)RsD1f (x(1))

+ 29" (OR6Daf (x(r — 12(1))) + 25" (1) ReMy(t — 13(1))

=2p’

(17)
From Assumption 2, we have
FT@)Xif (x(r) <" () UTX, Ux(1)
g (1) Xag(y(1)) <Y (VX V(1)
ST = v (0)Xaf (x(t = 12(1)) <27 (1 = 12(1))
UTX3Ux(t — 12(1))
8" (y(r = 1(1)))Xag (1 — 11(1))) <" (1 — (1))
VIX Vy(t — (1))
So,
V() < = S OIFE (1) — ST E() (18)
where [T} = —I1; > 0, [T} = —II, > 0 are defined in (7)
and (8) and
& (1) = [ (0,37 (0),27 (1 = 01), 6 (1 = 02), 4" (¢ = 0 (1)),
Xt = 1),x" (1 = (1)), 8" (0(1), 8" (6(1 — 11 (1)),
(1= 3),x (1 = 13(1))),
&(0) = [ ()57 (0,57t = p1),y" (1 = p2), Y (1 = p(2)),

Yt =),y (1 = (),
FT(@) T (x(r = w2 (0), 3" (1 = 13), 5" (1 = w3 (0))]

From (19), one has

V(1) + tf,T(s)Hl*cfl(s)ds+/tcf;(s)H;éz(s)dsgV(O), t>0.
0 0

(19)

Moreover,

V(O) S [;“max(P) + GZ/Imax (Pl) + O-l/lmax(PZ) + 62/1max (P3)

2
0]

2
, 05 —
+ T2 Amax (R'§) + TZAmax (R4) + 2 ) OF12)vmav(

1 1 5,
X (S1) + = 0} Zmax (S2) + 5 3 Zmax (S3)

2

1 1
+ Efgimax(Tl) + T3j~max(T3) + Efgimax(T4)

1
+ 5 T%lmaX(TS)]q)z + [;“maX(Q) + pz)“max(Ql )

+ pl/lmax(QZ) + pzlmax(QS) + Tl/lmax(Rl)

2 2
— 1
p2 ) pl p12}~max(S4) + _p?imax

+ Tl/lmax(RZ) + )

1 1
(SS) + = ,Dz)max(Sﬁ) + T /Imax(TZ) + 73;Lmax

1
X (T5) —‘ri‘[gimax(]—%) +§T?imax(T7)}\P2
= Al(I)z + A2T2<OO
(20)
where ® = max{ sup || ¢(60) |, sup [l $(0) I}, ¥ =

max{ sup (| w(’ﬁh“”?up R1GE

0€[—s,,0
On the other hand, by the definition of V(r), we get
V(6) 22" ())Px(r) + ¥ ()Q¥(7)
> Jmin(P)x (1)x(1) + Zmin (Q)y" (1)¥(1)
= Jnin(P) | (1) 1> +2min(Q) | ¥(0) |17
= min{ Zmin(P), Zmin (@) }[I| x(2) [I* + [ ¥(2) [I*]-

(21)

Then, combining (21) and (22), we obtain

1 x(@) |7+ [ y(@) I* < mln{,lmm‘(/(()))imm(Q)}

<00,
(22)

which demonstrates that the solution of (6) is uniformly
bound on [0,00). Next, we shall prove that (|| x(¢) ||,
Il () ||) — (0,0) as t— oo. On the one hand, the
boundedness of || %(¢) || and || y(¢) || can be deduced
from (6) and (23). On the other hand, from (19), we have

V(D) < = L (OIFE (1) fz( )Ty fz( ) — Jmin(TTY)
(e ) ( ) — Zamin (TI)y™ (1)y(2). So, fo x(s)ds < oo and
fo s)ds <o0. By the lemma 2, we have
(Il () || || y() ) — (0,0). That is, the equilibrium

point of system (6) is globally asymptotically stable,
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which implies that the designed sampled-data control
can stabilize the instable BAM neural networks with
leakage delays. O

In particular, if the leakage delays are constant, that is,
o(t) = a, p(t) = p. Then, the (6) becomes

{ (1) = —Ax(t — o) + Big(y(1)) + Bag(y(1 — 11(1))) + Kx(1 — 73(1))
¥(1) = =Cy(t = p) + Dof (x(1)) + Daf (x(t — wa(1))) + My(1 — 73(1)),
(23)

Similar to the proof of Theorem 1, we have the following
corollary.

Corollary 1  Let Assumptions 1 and 2 hold; then, the
trivial solution of system (24) is globally asymptotically
stable if there exist positive-definite symmetric matrices
P, 0, P, 0, R(i=1,...6), Ti(i=1,...,8), Si(i=
1,2), positive-definite diagonal matrices X;(i=1,...,4)
and any matrices X, Y such that the following LMIs hold:

IT, = (E}J)9x9<07 I, = (”iz.j)9x9<0 (24)
where

m =PI +Ry+Ry— S — T +Ts — Ty + (1 — )Ty
+U™x,U,

mi, =P —Rs, T, =81 — RsA,

M5 =T+ (1 —12)Ts, 7T:76 = RsBy, 7T1>7 = RsB>,
Mo =Ts+X,

My, = 0281 + 13Tt + 1374 + 1375 — Rs — RL,

my3 = —RsA, my=RsBi, my;=RsBy, my =X,

myy=—P,— Sy,

7‘3&,4 =—-Rs—T, ni,5 =T,

mhis=(tn— DRs = T) — T{ + (1 — )Ts + U'X3U,

1
n6,6:_X27

=X

77 = —A4,
Lo=-T3—Ty, i2y=T
Tgg = —13 — 14, Tgg = 14,
1 T

Moo =—Ts =Ty,

7"5%,1 =01 +R+R—$5—-T+Ts —Te+ (t1; — DT
+Vix,v,

ml, =0~ Rs, =5~ ReC,

ms=T+ (1 — )Ty, ¢ =ReDi, m ;= ReDs,

miy=Ts+7Y,

@ Springer

TE%Q = p2S5 + ‘E%Tz + T§T6 + T%T7 —R¢ — Rgv

2 _ 2 1 _ 2 _
7'5275 = —RﬁC7 TEZ,S = R6D17 7'[2)9 = R6D27 7'[2)11 = Y,
2 _
T33 = 01— 8,
2 _ 2 _
Tyq = —Ry — T, Tys5 = 1>,

TEg,S = (Tll — l)Rl — T2 — T2T + (Tll — 1)T7 + VTX3V,

Tge = —X1,

ng = X3,

mgg = —Ts — Ts, mgo = Ts,
Moo =—Ts—T¢.

Moreover, desired controller gain matrices are given as
K=R;'X, M=Rg'Y.

Remark 5 From Fig. 2, we can see that system (1) is
unstable if p; = p, = [0.2,0.2]". Taking the sampling time
points ¢, = 0.01k, k=1,2,...... and solving LMIs (25),
the gain matrices of the designed sampled-data controller
can be obtained as follows:

B —48.5668  0.7458
K=R;'X = ,
0.6336  — 48.9883
B —46.4711  —0.8717
M=R'Y = 7
—0.8318 —49.8324

By Corollary 1, system (1) is asymptotically stable under
the given sampled-data control. Figure 3 shows the tra-
jectories of state variables.

Remark 6 In fact, the leakage delay has very important
effect on the dynamic behavior of systems. The larger
leakage delay can cause instability of system. This phe-
nomenon can be seen in [17]. In pervious papers [13—-17],
the author only considered the stability of BAM with
leakage delays based on Lyapunov—Krasovskii functionals,
free-weighting matrices and so on. Different from those
articles, our paper mainly investigates the stabilization of
BAM neural networks with leakage delays. The sampled-
data controllers are designed by solving LMIs. When the
leakage delays lead to the instability of system, we can
stabilize the system by sampled-data control.

4 Numerical examples

In this section, a simulation example is given to show the
feasibility and efficiency of the theoretic results.



Neural Comput & Applic (2016) 27:447-457

455

1k
05}
x 0
-0.5
1t
0 0.5 1 1.5 2 25
t
ol
1k
> 0
1t
ot
0 015 1 115 é 25

t

Fig. 3 The trajectories of state variables (p; =0.2) under the
sampled-data control

Example 1 Consider the following BAM neural networks
with leakage delays

—Ax(t = o(t)) + Big(y(r)) + Bag(y(t — 11 (1)) + Kx(t — w3(t

i) = )
{y‘(t) = —Cy(t = p(1)) + Dif (x(1)) + Daof (x(t — 12(1))) + My(r — 73(t

)
))?

(25)
where
06 0 O 0.9 0o —-12
A=]10 06 0|, Bl=|-07 0 1 ,
| 0 0 05 02 1.3
(1 0 0.2 09 0 O
B2=|-12 0 0.4 c=]10 08 0|,
| 05 —-02 0 | 0 0 09
[ 04 —08 0] 03 0 O
Dl=|-05 04 08|, D2=|0 03 0
! 0 0.4 ] 0 0 03

The neuron activation functions g;(y) = tanh(y;),
fi(x) = tanh(x;). The time-varying leakage delays o(r)
=0.5+0.01sint, p(r) =0.4+ 0.0lcost. Time-varying
delays are chosen as 7;(¢) = 0.1sin’*#, 1,(¢) = 0.1 cos>1.

It is easy to see that g, =0.51, 0, =049, p,
041, p, =039, 0=p=0.01, 7, =1,=02<1.
w=1, v/ =1, U=diag[l,1,1], V= diag[l,1,1].
By the simulation results, it can be observed that the sys-
tem (26) is unstable (Fig. 4).

In addition, the stabilization of the system (26) by de-
signing suitable sampled-data controller is investigated.
Taking sampling time points # = 0.02k, k = 1,2,
and the sampling period is T = 0.02. Solving LMIs (7) and
(8), we have:

-2

50

100
t

Fig. 4 The state trajectories of system (26)

0.0393 0.0140 0.0035

P

0.0140 0.0383 0.0018

)

0.0035 0.0018 0.0299

0.0415
0.0042
~0.0028

r0.0082
0.0048
1 0.0013
70.0046
0.0029
| 0.0008
70.0046
0.0031
| 0.0008
©0.0082
0.0016
| —0.0011
©0.0078
0.0019
| —0.0013
©0.0078
0.0019
| —0.0013
0.0204
0.0008
—0.0005

0=

0>

03

R, =

0.0042
0.0387
0.0001
0.0048
0.0081
0.0003
0.0029
0.0044
0.0003
0.0031
0.0044
0.0003
0.0016
0.0071
0.0001
0.0019
0.0066
0.0001
0.0019
0.0066
0.0001

0.0008
0.0198
— 0.0001

—0.0028
0.0001
0.0372

0.0013 T

0.0003

0.0060 |

0.0008 T

0.0003

0.0030 |

0.0008 T

0.0003 |,

0.0030 |
—0.00117

0.0001
0.0067 |
—0.00137
0.0001
0.0059 |
—0.00137
0.0001

0.0060 |

0.0195

150

—0.0005
—0.0001 |,
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0.0118 ~ 0.0016 ~ —0.0011 ~4.6177 32262 0.9644
R, = 0.0016 0.0108 0.0001 |, K=R;'X=| 32443 —4.5385 —0.5644 |,
| —0.0011 0.0001  0.0103 0.9622  —0.5668 —3.2755
- - —2.3625 0.7271 —0.5697
0.0135 0.0048 0.0012 .
M=R;Y=] 07230 —2.7043 0.2700 |,
10.0012 0.0004  0.0110 Due to the limitation of space, the other solution matrices
[0.0110  0.0048 0.0013 (Ti(i =1,..,8), Si(i=1,...,6), Xi(i=1,....,4)) are
not given. This indicates that all conditions in Theorem 1
Ry = 100048 0.0107 0.0004 |, are satisfied. By Theorem 1, system (26) is globally
0.0013 0.0004 0.0085 asymptotically stable under the given sampled-data control.
: : Figure 5 shows the trajectories of the state variables.
0.0223 0.0181 0.0045
Rs = [ 0.0181 0.0212 0.0021 |,
5 Conclusion
1 0.0045 0.0021 0.0113 |
[ 0.0204 0.0063 —0.0042 In this paper, a new sampled-data control strategy and its
stability analysis are developed to stabilize BAM neural
Re = | 00063 0.0164  0.0003 |, networks with leakage delays. We firstly analyzed insta-
—0.0042 0.0003 0.0142 bility phenomena caused by the leakage delays. Afterward,
- - we employed sampled-data control strategy to stabilize the
—0.0401 —0.0126  —0.0035 instable systems. Some LMIs were derived to calculate the
X =|-00128 —0.0389 —0.0013 ], gain matrix of the designed sampled-data controller. Fi-
nally, a numerical example was given to show the effec-
[ —0.0034  —0.0011 —0.0339 ] tiveness of our theoretic results. The complexity of some
[—0.0412 —0.0033 0.0021 control strategies will be considered in future. Some bio-
logical networks with leakage delay are also important
¥=1-00032 -0039 -0.0001], research direction in our future work.
| 0.0021  —0.0001 —0.0380

The gain matrices of the designed controller can be ob-
tained as follows:

-2

t

Fig. 5 The state trajectories of system (26) with sampled-data control
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