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Abstract Adjacent to the terminal transmissible sickness

recognized as Ebola hemorrhagic fever, there is another one

called Lassa hemorrhagic fever. This disease kills more

pregnant women as Ebola does. A novel analysis of the

construction of mathematical formulas underpinning the

spread of this sickness amount in pregnant women was

presented in this paper. A clear justification of the derivative

used in this construction is presented.Anovel operator called

Atangana transform was proposed and used. The derivation

of the numerical solution was achieved via the scope of an

iteration method. The efficiency of the used method was

tested by presenting its stability and convergence. Numerical

simulations are also presented.

Keywords Model of Lassa fever for pregnant women �
Beta-derivative � Atangana transform � Stability and

uniqueness � Numerical simulations

1 Introduction

Beside the deadly infectious disease known as Ebola

hemorrhagic fever, there is another one called Lassa

hemorrhagic fever [3]. This disease is classified under the

arenaviridae virus family. The first outbreaks of the disease

have been observed in the following countries including:

Nigeria, Liberia, Sierra Leone, and Central Africa Republic.

However, it was first described in 1969 in the town of Lassa,

in Borno State, Nigeria [1]. The main host of the Lassa virus

is the Natal multimammate mouse, an animal homegrown in

most of sub-Saharan Africa; this animal is presented in

Fig. 1. The contamination in human characteristically takes

place by disclosure to animal excrement all the way through

the respiratory or gastrointestinal tracts. Mouthful of air of

tiny particle of infective material is understood to be the

mainly noteworthy way of exposure. It is also likely to get

hold of the infection through broken skin or mucous mem-

brane that directly exposed to infective material [2].

A study has revealed that about 15–20 % of the hospi-

talized Lassa fever patients will die from the disease.

However, during epidemics, mortality can climb as high as

50 % [4]. The mortality rate is greater than 80 % when it

occurs in pregnant women during their third trimester; fetal

death also occurs in nearly all those cases [4]. The aim of

this paper is to provide a clear description of the spread,

infection, and death of the populations of the pregnant.

Mathematical tools have always been used for the de-

scription of many physical problems; for instance to ap-

proximate the speed done by an object for a given distance

and time done, we used the idea of the rate of change. All

these models use the basic idea of derivative. However, it

has been recognized in the recent decade that it is rather

better to use derivative that has a new parameter that the

classical version of Newtonian derivative. These deriva-

tives with new parameters are referred to fractional order

derivative. Even if these fractional derivatives have been

intensively used with success to describe real-world prob-

lems, there are fundamental problems that we face when

using these derivative, for example, what could be the

Caputo/Riemann–Liouville fractional derivative of a pro-

duct of functions? Will we obtain a formula similar to that

of chain when dealing with composition of function? Re-

cently, a new derivative called the beta-derivative was

proposed [5], and this derivative is the modified version of

A. Atangana (&)

Faculty of Natural and Agricultural Sciences, Institute for

Groundwater Studies, University of the Free State,

Bloemfontein 9300, South Africa

e-mail: abdonatangana@yahoo.fr

123

Neural Comput & Applic (2015) 26:1895–1903

DOI 10.1007/s00521-015-1860-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1860-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1860-9&amp;domain=pdf


the one proposed in [6]. This derivative is not perhaps a

fractional derivative but has a fractional order. This

derivative satisfies several properties that were as limita-

tion for the fractional derivatives and has been used to

model some biological problems [6, 7]. The derivative

under consideration here is given as

A
0D

b
x f ðxÞð Þ ¼ lim

e!0

f xþ e xþ 1
C bð Þ

� �1�b
� �

� f ðxÞ

e
ð1Þ

for all x� a; b 2 ð0; 1�. Then if the limit of the above ex-

ists, f is said to be b-differentiable.

Theorem 1 [5] Assuming that, f is differential and b-
differentiable on the opened interval ða; bÞ, then

A
0D

b
x f ðxÞð Þ ¼ xþ 1

C bð Þ

� �1�b

lim
h!0

f xþ hð Þ � f ðxÞ
h

: ð2Þ

Definition 1 [5] Let f : ½a; 1Þ ! R is given function,

then we propose that the integral of order b-integral of f is

A
a I

b
x f ðxÞð Þ ¼

Zx

a

t þ 1

C bð Þ

� �b�1

f ðtÞdt: ð3Þ

The above operator is the inverse operator of the pro-

posed beta-derivative, and is called the Atangana beta

integral [5].

2 Mathematical formulation of the problems

Let N be a total number of adult women in a given country,

S be the susceptible population of pregnant women, R be

the recovery population of pregnant women, I the infected

population of pregnant women, D the population of preg-

nant women dying in that country. We shall assume that

women are being pregnant at the rate b, they are suscep-

tible at a rate a, they are infected at a rate c, they infected

women are dying at a rate f and recovery at the rate h. We

assume that they die with natural death or other disease at a

rate l. Then the mathematical formula underpinning the

change in time of the susceptible population within the

scope of beta-derivative is given as

A
0D

b
t S tð Þ ¼ �cS tð ÞI tð Þ þ bN � lN þ fRðtÞ þ hS tð Þ � lSðtÞ

ð4Þ

The above equation is obtained because c is the rate of

infectious, pregnant women from recovery population turn

out to be vulnerable again at the rate h, a proportion of

adult women will be pregnant at a rate b, and finally the

number of pregnant women that die due to natural death

and other diseases at the rate l. The change of infected

populations can be expressed with the following linear

ordinary differential equation

A
0D

b
t I tð Þ ¼ cS tð ÞI tð Þ � ðf þ hÞIðtÞ � hSðtÞ ð5Þ

The physical explanation underpinning the above

equation is that, since, the total number of pregnant women

removed from susceptible group can be mathematically

expressed as cS tð ÞI tð Þ. However, due to the introduction of

medication, a number of pregnant women will be recovered

at a rate of h, and a number of pregnant women will die at a

rate f . The change in time of the recovery population is

given by

A
0D

b
t R tð Þ ¼ hI tð Þ � fRðtÞ ð6Þ

Finally, we can expressed the change in time of the

population of the death as

A
0D

b
t D tð Þ ¼ fI tð Þ þ lN � bN ð7Þ

Therefore, the description of the spread and conse-

quences associate can be underpinned by the following set

of mathematical formula

A
0D

b
t S tð Þ ¼ �cS tð ÞI tð Þ þ bN � lN þ fR tð Þ � lS tð Þ þ hSðtÞ

A
0D

b
t I tð Þ ¼ cS tð ÞI tð Þ � f þ hð ÞI tð Þ � hSðtÞ

A
0D

b
t R tð Þ ¼ hI tð Þ � fR tð Þ

A
0D

b
t DðtÞ ¼ fI tð Þ þ lN � bN þ lSðtÞ

8>>><
>>>:

ð8Þ

We shall test the validity and also a possible mathe-

matical analysis of the above system of equations and this

will be done in the next section.

3 Analysis and rationality of the system

One of the important parts of this modeling is to check the

rationality of the proposed system. This usually consists of

Fig. 1 Mastomys natalensis, the natural reservoir of the Lassa fever

virus
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assuring that the sum of the equations in the system is equal

to zero. Thus adding together equation in the system, we

obtain the following

A
0D

b
t S tð Þ þ A

0D
b
t R tð Þ þ A

0D
b
t I tð Þ þ A

0D
b
t D tð Þ ¼ 0 ð9Þ

Now using the linearity of the beta-derivative, we have

A
0D

b
t S tð Þ þ R tð Þ þ I tð Þ þ DðtÞf g ¼ 0

Now applying the inverse operator of A
0D

b
t given in

Definition (1), we obtain

S tð Þ þ R tð Þ þ I tð Þ þ D tð Þ ¼ constance ¼ N

We shall now check the steady-state solutions and the

eigenvalues associate

3.1 Disease control

To find the endemic equilibrium points, we assume that the

system is time independent such that using the one of the

properties of the beta-derivative we have:

0 ¼ �c�S�I þ bN � lN þ f �Rþ h�S� l�S
0 ¼ c�S�I � f þ hð Þ�I � h�S
0 ¼ h�I � f �R

8<
: ð10Þ

By solving the last two equations of the system, we

obtain

�R ¼ h�I

f
; �S ¼ ðf þ hÞ

c�I � h
�I ð11Þ

Now replacing the above solutions into the first equation

of the system, we obtain

A�I2 þ B�I þ C ¼ 0 C ¼ �h b� lð ÞN;
B ¼ hþ c� lð Þf þ cN b� lð Þ

þ hðc� lÞ; A ¼ hc ð12Þ

Thus the solution of the above equation are given as

�I� ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4Chc

p

2A
ð13Þ

We consider only the positive solution and obtain the

endemic equilibrium points.

�I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4Chc

p

2A
� B

2A
¼ B

2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4Chc

p

B
� 1

 !

¼ B

2A
R0 � 1ð Þ

The disease-free equilibrium points are given as

b� l

l
; 0; 0

� �
ð14Þ

One the most important concerns when modeling an

infectious disease is to determine its ability to invade a

population. The basic reproductive number R0 is a

measure of the prospective for the disease spread in a

target population and is inarguably one of the principal

and precious ideas that mathematical accepted wisdom

has brought to epidemic theory [8]. This measurement

presents the average number of secondary cases gener-

ated by an infected individual if introduced into a sus-

ceptible population with no invulnerability to the

disease in the absence of interventions to control the

infection. If 1\R0 then on average, an infected indi-

vidual produces less than one newly infected individual

over the course of his infectious period. In this case, the

infection may die out in the long run. Contrary if

R0 [ 0, then each infected individual produces, on av-

erage, more than one new infection, and the infection

will be able to spread in a population. It is worth noting

that a large value of R0 may indicate the possibility of a

major epidemic. In our case, the reproductive number is

given as

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4Chc

p

B
ð15Þ

Accordingly, if B is negative, then R0\1 and the dis-

ease-free equilibrium is stable and the endemic equilibrium

points are unstable. If B is positive and Chc is positive, then

R0 [ 1 the disease-free equilibrium is unstable and the

endemic stable. Another way is to find the equation of

eigenvalues and check their sign.

4 Derivation of special solution

One of the key aspects of modeling is perhaps the

simulation or the prediction of the physical problem using

the mathematical formula. In order to achieve this, we

solve the proposed mathematical formula numerically or

analytically. Whether it is numerically or analytically,

when we are dealing with nonlinear equations, the problem

become more demanding. There are quite few methods in

the literature dealing with nonlinear equations [9–11]. In

this paper, we shall make use of the Laplace transform [13–

15] and the idea of an imbedding parameter to propose a

special solution for Eq. (8). We shall present some useful

tools for Laplace transform.

Definition 2 The Laplace transform is a widely used in-

tegral transform with many applications in physics and

engineering. The Laplace transform of the function f is

defined as follows

L f xð Þð Þ sð Þ ¼
Z1

0

e�sxf ðxÞdx ð16Þ
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Some useful tools are given as follows

L I fð Þð Þ ¼ L
Zx

0

f sð Þds

0
@

1
A sð Þ ¼ 1

s
L f xð Þð ÞðsÞ

L I2 fð Þ
� �

¼ L
Zx

0

Zx1

0

f sð Þdsdx1

0
@

1
A sð Þ ¼ 1

s2
L f xð Þð ÞðsÞ

ð17Þ

Now using the recursive method, we arrive at the

following

L In fð Þð Þ ¼¼ 1

sn
L f xð Þð ÞðsÞ ð18Þ

From the above equation, we can obtain the following

L In fð Þð Þ ¼ 1

sn
L f xð Þð Þ sð Þ ) In fð Þ ¼ L�1 1

sn
L f xð Þð Þ sð Þ

� �

ð19Þ

It is well known from the convolution theorem of

Laplace transform that,

L f � g xð Þð Þ sð Þ ¼ L f xð Þð Þ sð Þ � L g xð Þð Þ sð Þ ð20Þ

We finally consider the following one

L ont f ðtÞ
� �

¼ snL f ðtÞð Þ �
Xn
k¼1

sk�1f n�kð Þð0Þ ð21Þ

However, it is possible to use directly the Laplace

transform for this case due to the nature of the beta-

derivative. We shall therefore introduce a novel operator

called Atangana transform.

Definition 3 Let f be a function such that for any

0\b� n, the Laplace transform of t þ 1
C bð Þ

� �b�1

f ðtÞ ex-

ists, then the Atangana transform of f is defined as

Lb f tð Þð Þ sð Þ ¼
Z1

0

t þ 1

C bð Þ

� �b�n

f ðtÞe�stdt ð22Þ

We shall present some properties of the Atangana trans-

form operator

1. Lb af tð Þ þ bgðtÞð Þ sð Þ ¼ aLb f tð Þð Þ sð Þ þ bLb g tð Þð Þ sð Þ
2. If a function f is n-time differentiable, then

Lb
A
0D

b
t f tð Þ

� �
sð Þ ¼ snL f ðtÞð Þ �

Xn
k¼1

sk�1f n�kð Þð0Þ

3. Lb t þ 1
C bð Þ

� �n�b
f tð Þ

� �
sð Þ ¼ L f ðtÞð ÞðsÞ

Proof

1. The first property is very easy to prove since

Lb af tð Þ þ bgðtÞð Þ sð Þ ¼
Z1

0

t þ 1

C bð Þ

� �b�n

af tð Þ þ bgðtÞð Þe�stdt

ð23Þ
Z1

0

t þ 1

C bð Þ

� �b�n

af tð Þ þ bgðtÞð Þe�stdt

¼ a

Z1

0

t þ 1

C bð Þ

� �b�n

f ðtÞe�stdt

þ b

Z1

0

t þ 1

C bð Þ

� �b�n

gðtÞe�stdt

¼ aLb f tð Þð Þ sð Þ þ bLb g tð Þð Þ sð Þ

2. For the second property, we have the following

Lb
A
0D

b
t f tð Þ

� �
sð Þ ¼

Z1

0

t þ 1

C bð Þ

� �b�n
A
0D

b
t f ðtÞe�stdt

ð24Þ

Now since f is n-time differentiable, the, it beta-

derivative is given as follow

A
0D

b
t f tð Þ ¼ t þ 1

C bð Þ

� �n�b

lim
h!0

f ðn�1Þ t þ hð Þ � f ðn�1ÞðtÞ
h

Then, Eq. (24) can be rewriting as

Lb
A
0D

b
t f tð Þ

� �
sð Þ ¼

Z1

0

t þ 1

C bð Þ

� �b�n

t þ 1

C bð Þ

� �n�b
(

� lim
h!0

f ðn�1Þ t þ hð Þ � f ðn�1ÞðtÞ
h

	
e�stdt

After simplification, we obtain the following expression

Lb
A
0D

b
t f tð Þ

� �
sð Þ ¼

Z1

0

lim
h!0

f ðn�1Þ t þ hð Þ � f ðn�1ÞðtÞ
h


 	
e�stdt

After using the Laplace property Eq. (21) above ex-

pression give us

Lb
A
0D

b
t f tð Þ

� �
sð Þ ¼ snL f ðtÞð Þ �

Xn
k¼1

sk�1f n�kð Þð0Þ
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4.1 The special solution

Now making use of the above operator, on both sides of

Eq. (8), we obtain

Thus applying the inverse Laplace operator on both

sides of the above, we obtain

The iterative method of (26) can now be employed to

put frontward the main recursive formula connecting the

Lagrange multiplier as

S0 tð Þ ¼ Sð0Þ
I0 tð Þ ¼ Ið0Þ
R0 tð Þ ¼ Rð0Þ
D0 tð Þ ¼ Dð0Þ

8>><
>>:

ð27Þ

The special solution of this equation is therefore given

as

lim
n!1

Sn tð Þ ¼ SðtÞ
lim
n!1

In tð Þ ¼ IðtÞ
lim
n!1

Rn tð Þ ¼ RðtÞ
lim
n!1

Dn tð Þ ¼ DðtÞ

8>>>><
>>>>:

ð28Þ

S sð Þ ¼ Sð0Þ
s

þ 1

s
Lb �cS tð ÞI tð Þ þ bN � lN þ fR tð Þ � lS tð Þ þ hS tð Þf gðsÞ

I sð Þ ¼ Ið0Þ
s

þ 1

s
Lb cS tð ÞI tð Þ � f þ hð ÞI tð Þ � hS tð Þf gðsÞ

R sð Þ ¼ Rð0Þ
s

þ 1

s
Lb hI tð Þ � fR tð Þf gðsÞ

D sð Þ ¼ D 0ð Þ
s

þ 1

s
Lb fI tð Þ þ lN � bN þ lS tð Þf gðsÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ

S tð Þ ¼ Sð0Þ þ L�1 1

s
Lb �cS tð ÞI tð Þ þ bN � lN þ fR tð Þ � lS tð Þ þ hS tð Þf gðsÞ


 	

I tð Þ ¼ Ið0Þ þ L�1 1

s
Lb cS tð ÞI tð Þ � f þ hð ÞI tð Þ � hS tð Þf gðsÞ


 	

R tð Þ ¼ Rð0Þ þ L�1 1

s
Lb hI tð Þ � fR tð Þf gðsÞ


 	

D tð Þ ¼ Dð0Þ þ L�1 1

s
Lb fI tð Þ þ lN � bN þ lS tð Þf gðsÞ


 	

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð26Þ

Snþ1 tð Þ ¼ SnðtÞ þ L�1 1

s
Lb �cSn tð ÞIn tð Þ þ bN � lN þ fRn tð Þ � lSn tð Þ þ hSn tð Þf g sð Þ


 	
tð Þ

Inþ1 tð Þ ¼ InðtÞ þ L�1 1

s
Lb cSn tð ÞIn tð Þ � f þ hð ÞIn tð Þ � hSn tð Þf gðsÞ


 	
tð Þ

Rnþ1 tð Þ ¼ RnðtÞ þ L�1 1

s
Lb hIn tð Þ � fRn tð Þf gðsÞ


 	
tð Þ

Dnþ1 tð Þ ¼ DnðtÞ þ L�1 1

s
Lb fIn tð Þ þ lN � bN þ lSn tð Þf gðsÞ


 	
tð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Neural Comput & Applic (2015) 26:1895–1903 1899

123



4.2 Stability and uniqueness analysis

The efficiency of the used method can only be expressed

via the stability and the convergence analysis. Therefore,

we present in this section the stability analysis of the used

method for solving the novel system Eq. (8). To achieve

this, we consider the following operator

E S; I;R;Dð Þ ¼

A
0D

b
t S tð Þ

A
0D

b
t I tð Þ

A
0D

b
t R tð Þ

A
0D

b
t DðtÞ

8>>>><
>>>>:

¼

�cS tð ÞI tð Þ þ bN � lN þ fR tð Þ � lS tð Þ þ hSðtÞ
cS tð ÞI tð Þ � f þ hð ÞI tð Þ � hSðtÞ
hI tð Þ � fR tð Þ
fI tð Þ þ lN � bN þ lSðtÞ

8>>><
>>>:

ð29Þ

Theorem 1 Let us think about the above operator E and

think about the initial condition for the system of Eqs. (8),

then the method used leads to a special solution of system

Eq. (8)

Proof To achieve this, we shall think about the following

Z� sub-Hilbert space of the Hilbert space H ¼ L2 0; Tð Þð Þ
[12] that can be defined as the set of those functions the

following space

P : 0; Tð Þ ! R; Z ¼ u; v

Z t

0

sþ 1

C bð Þ

� �b�1

������
uvds\1

8<
:

9=
;

We agreeably undertake that the differential operators

are limited under the L2 norms. Exploiting the description

of the operator, E we ensure the succeeding

E S; I;R;Dð Þ � E S1; I1;R1;D1ð Þ

¼

cS1I1 � cSI þ f R� R1ð Þ � l S� S1ð Þ þ h S� S1ð Þ
�cS1I1 þ cSI � f þ hð Þ I � I1ð Þ � h S� S1ð Þ
h I � I1ð Þ � f R� R1ð Þ
f I � I1ð Þ þ l S� S1ð Þ

8>>><
>>>:

ð30Þ

We shall evaluate next the beta inner product of G ¼
A E S; I;R;Dð Þð �E S1; I1;R1;D1ð Þ; S� S1; I � I1;R� R1;ð
D� D1ÞÞ where the beta inner product is defined as [7]

Definition 4 Let f and g be two functions defined on

½0; b�: Assuming that fg is beta integrable, the beta inner

product is defined as

Aðf ; gÞ ¼
Zb

0

t þ 1

C bð Þ

� �b�1

f ðtÞgðtÞdt ð31Þ

Remark We can notice that if b is a finite number, then

the beta inner product can be bounded by the inner product

as follow

A f ; gð Þ ¼
Zb

0

t þ 1

C bð Þ

� �b�1

f tð ÞgðtÞdt� cb

Zb

0

f ðtÞgðtÞdt ð32Þ

cb ¼ bþ 1

C bð Þ

� �b�1

Therefore using the above remark, we obtain the

following

G ¼ A E S; I;R;Dð Þ � E S1; I1;R1;D1ð Þ;ð
� S� S1; I � I1;R� R1;D� D1Þð Þ

� cb E S; I;R;Dð Þ � E S1; I1;R1;D1ð Þ;ð
� S� S1; I � I1;R� R1;D� D1ð ÞÞ

ð33Þ

Our next concern now is to evaluate the inner product

E S; I;R;Dð Þ � E S1; I1;R1;D1ð Þ;ð
S� S1; I � I1;R� R1;D� D1ð ÞÞ

¼

cS1I1 � cSI þ f R� R1ð Þ � l S� S1ð Þ þ h S� S1ð Þ; S� S1ð Þð Þ
�cS1I1 þ cSI � f þ hð Þ I � I1ð Þ � h S� S1ð Þ; I � I1ð Þð Þ
h I � I1ð Þ � f R� R1ð Þ; R� R1ð Þð Þ
f I � I1ð Þ þ l S� S1ð Þ; D� D1ð Þð Þ

8>>><
>>>:

ð34Þ

We shall examine case by case

cS1I1 � cSI þ f R� R1ð Þ � l S� S1ð Þ þ h S� S1ð Þ; S� S1ð Þð Þ
� S� S1k k f R� R1ð Þk k þ l� hð Þ S1 � Sk k þ c S1I1 � cSIk kf g

ð35Þ

However, due to the physical problem under investiga-

tion, all the representative are bounded, implied, we can

find some positive parameters O1;O2;O3; such that

R� R1ð Þk k�O1; S1 � Sk k�O2 and S1I1 � cSIk k�O3

Thus replacing the above inequalities in (35) to obtain

cS1I1 � cSI þ f R�R1ð Þ � l S� S1ð Þ þ h S� S1ð Þ; S� S1ð Þð Þ
� S� S1k k fO1 þ l� hð ÞO2 þ cO3f g ¼ p1 S� S1k k

ð36Þ

Using the same footsteps, we obtain the following

�cS1I1 þ cSI � f þ hð Þ I � I1ð Þ � h S� S1ð Þ;ð
I � I1ð ÞÞ� p2 ðI � I1Þk k
h I � I1ð Þ � f R� R1ð Þ; R� R1ð Þð Þ� p3 R� R1k k
f I � I1ð Þ þ l S� S1ð Þ; D� D1ð Þð Þ� p4 D� D1k k

ð37Þ

Thus replacing the above inequalities (37), (36) and (35)

into (34) to obtain
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E S; I;R;Dð Þ � E S1; I1;R1;D1ð Þ;ð

S� S1; I � I1;R� R1;D� D1ð ÞÞ�

p1 S� S1k k
p2 I � I1ð Þk k
p3 R� R1k k
p4 D� D1k k

8>>><
>>>:

ð38Þ

Thus, Eq. (32) becomes

G� cb

p1 S� S1k k
p2 I � I1ð Þk k
p3 R� R1k k
p4 D� D1k k

8>>><
>>>:

ð39Þ

Following the same line of ideas, we can find a positive

vector Fðf1; f2; f3; f4Þ such that for all vector

V V1;V2;V3;V4ð Þ 2 H

G� cb

f1 S� S1k k V1k k
f2 I � I1ð Þk k V2k k
f3 R� R1k k V3k k
f4 D� D1k k V4k k

8>>><
>>>:

ð40Þ

Putting together (40) and (39) completes the proof of

Theorem 1.

Theorem 2 Taking into account the initial conditions of

Eq. (8), there is only one unique special solution for

Eq. (8) while using the new variational iteration method.

Proof Assuming that I is the exact solution of system (8),

let T and T1 be two difference special solutions of system

and converge to I 6¼ 0 for some large number n and m (2)

while using the homotopy method, then using Theorem 1,

we have the following inequality

E u; v;w; s; zð Þ � E u1; v1;w1; s1; z1ð Þ; w1;w2;w3;w4;w5ð Þð Þ
� cbF T � T1k k Ik k F T � T1k k Ik k� cb

F T � I þ I � Tk k Ik k

Employing the triangular inequality, we arrive at the

succeeding

F T � T1k k Ik k� cbF I � T1k k þ T � Ik kf g Ik k ð41Þ

Nevertheless, subsequently T and T1 convergence to

W for large number n and m, then we can find a small

positive parameter e, such that:

I � T1k k\ e
2cbP Ik k ; for n

T � Ik k\ e
2cbP Ik k ; for m

Now consider M ¼ maxðn;mÞ, then
F T � T1k k Ik k� cbF I � T1k k þ T � Ik kf g Ik k

\
e

2Fcb Ik k þ
e

2Fcb Ik k ¼ e for M

Nonetheless using the topology knowledge, we have that

F T � T1k k Ik k ¼ 0

Since I 6¼ 0 and F 6¼ 0, then T � T1k k ¼ 0 implying

T ¼ T1. This shows the uniqueness of the special solution.

5 Numerical applications

It is important to give an instruction to the computer to

generate the iteratively the special solution. To achieve

this, we shall give the following code that will be used to

derive the special solution of system (2)

Input :

S0 tð Þ ¼ Sð0Þ
I0 tð Þ ¼ Ið0Þ
R0 tð Þ ¼ Rð0Þ
D0 tð Þ ¼ Dð0Þ

8>><
>>:

as preliminary input;

• i—number terms in the rough calculation

• Output :

SAp tð Þ
IAp tð Þ
RAp tð Þ
DAp tð Þ

8>><
>>:

; the approximate solution

Step 1: Put

S0ðtÞ ¼ Sð0Þ
I0ðtÞ ¼ Ið0Þ
R0ðtÞ ¼ Rð0Þ
D0ðtÞ ¼ Dð0Þ

8>><
>>:

and

SApðtÞ
IApðtÞ
RApðtÞ
DApðtÞ

8>><
>>:

¼

SApðtÞ
IApðtÞ
EApðtÞ
DApðtÞ

8>><
>>:

Step 2: for i = 1 to n–1 do step 3, step 4 and step 5

Snþ1 tð Þ ¼ SnðtÞ þ L�1 1

s
Lb �cSn tð ÞIn tð Þ þ bN � lN þ fRn tð Þ � lSn tð Þ þ hSn tð Þf g sð Þ


 	
tð Þ

Inþ1 tð Þ ¼ InðtÞ þ L�1 1

s
Lb cSn tð ÞIn tð Þ � f þ hð ÞIn tð Þ � hSn tð Þf gðsÞ


 	
tð Þ

Rnþ1 tð Þ ¼ RnðtÞ þ L�1 1

s
Lb hIn tð Þ � fRn tð Þf gðsÞ


 	
tð Þ

Dnþ1 tð Þ ¼ DnðtÞ þ L�1 1

s
Lb fIn tð Þ þ lN � bN þ lSn tð Þf gðsÞ


 	
tð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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Step 3: compute

b1 nþ1ð Þ tð Þ ¼ b1 nð Þ tð Þ þ SApðtÞ
b2 nþ1ð Þ tð Þ ¼ b2 nð Þ tð Þ þ IAp tð Þ
b3 nþ1ð Þ tð Þ ¼ b3 nð Þ tð Þ þ RAp tð Þ
b4 nþ1ð Þ tð Þ ¼ b4 nð Þ tð Þ þ DAp tð Þ

8>>>><
>>>>:

Step 4: compute

SApðtÞ
IApðtÞ
RApðtÞ
DApðtÞ

8>><
>>:

¼

SApðtÞ þ b1 nþ1ð Þ tð Þ
IAp tð Þ þ b2 nþ1ð Þ tð Þ
RAp tð Þ þ b3 nþ1ð Þ tð Þ
DAp tð Þ þ b4 nþ1ð Þ tð Þ

8>><
>>:

Stop.

The overhead procedure shall be employed to yield the

numerical replication of the physical problem under in-

vestigation (Table 1).

The parameters in table one are used to predict the

following Figs. 2, 3, 4, 5, and 6 for different values of b.

6 Conclusion

In the recent decade, many deadly diseases have revealed

their existence in many countries around the world. In

particular, in Africa, we have faced severe destruction of

human kind by strange disease classified as hemorrhagic

fever, for instance Ebola that started in Zaire in 1975, and

then in Sierra Leone, Nigeria, Guinea, and Liberia in 2014.

Beside this one, another one called Lassa was observed for

the first time 1969 in town of Lassa, in Borno state Nigeria.

The outbreaks of the disease have been observed in

Nigeria, Liberia, Sierra Leone, Guinea, and the Central

Africa Republic. However, this hemorrhagic fever is more

fatal for pregnant women, with the mortality rate of about
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Fig. 3 Prediction for b = 0.85
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Fig. 4 Prediction for b = 0.65
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Fig. 2 Prediction for b = 1

Table 1 Theoretical values

used for simulation
Parameters Theoretical values

N 1000

l 0.2

b 0.3

f 0.8

h 0.2

c 0.4

Sð0Þ 900

Ið0Þ 10

Rð0Þ 0

Dð0Þ 0
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80 %. Since mathematical tools have been always used to

model approximately some observed physical problems,

we have constructed a set of mathematical equations de-

scribing the spread of this disease amount in pregnant

women. We achieved this by employing the novel

derivative called beta-derivative. We studied the steady

state and also find the reproductive number. We proposed a

novel operator called the Atangana transform and used it to

solve iteratively the set of equations. We presented in detail

the stability and uniqueness analysis of this method for

solving the set of equations. We used some theoretical

parameters to show the numerical simulations.
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