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Abstract Inspired by the invasive tumor growth

mechanism, this paper proposes a new meta-heuristic al-

gorithm. A population of tumor cells can be divided into

three subpopulations as proliferative cells, quiescent cells,

and dying cells according to the nutrient concentration they

get. Different cells have different behaviors and interac-

tions among them for competition. In the tumor growing

process, an invasive cell is born around a proliferative cell

for the higher nutrient concentration and a necrotic cell

occurs around a dying cell for the lower nutrient concen-

tration, which presents the balance between life and death.

To evaluate the performance of the intrusive tumor growth

optimization algorithm (ITGO), we compared it to the

many well-known heuristic algorithms by the Wilcoxon’s

signed-rank test with Bonferroni–Holm correction method

and the Friedman’s test. At the end, it is applied to solve

the data clustering problem, which is a NP-hard problem.

The experimental results show that the proposed ITGO

algorithm outperforms other traditional heuristic algo-

rithms for several benchmark datasets.

Keywords Meta-heuristic algorithm � Intrusive tumor

growth optimization � Data clustering

1 Introduction

Nature-inspired meta-heuristic algorithms are powerful and

effective in solving optimization problems [1, 2], which

have now been used in many fields such as computer sci-

ence [3], data mining [4], medicine and biology [5],

economy [6], and engineering [7]. Over the last few dec-

ades, many nature-inspired meta-heuristic algorithms have

emerged. For instance, genetic algorithm (GA) [8] which

works on the principle of the Darwinian theory of the

survival of the fittest by genetic mutation, crossover, and

selection operators; differential evolution (DE) [9] which is

similar to GA with specialized crossover and selection

method; ant colony optimization (ACO) [10] which was

inspired by the foraging behavior of the ant for the food;

particle swarm optimization (PSO) [11, 12] which was

inspired by the foraging behavior of the birds; teaching

learning-based optimization (TLBO) which was inspired

by the effect of the influence of a teacher on the output of

learners in a class [13]; cuckoo search algorithm (CSA)

[14] which was inspired by the cuckoo brood parasitism

behavior; gravitational search algorithm (GSA) [15], the

searcher agents are a collection of masses which interact

with each other based on the Newtonian gravity and the

laws of motion. Black hole approach (BH), which was

inspired by the BH phenomenon [16]; Krill Herd algorithm

(KH) [17], which was inspired by the herding behavior of

krill individuals; artificial bee colony (ABC) algorithm,

which simulates the foraging behavior of bees for multi-

modal and multi-dimensional numerical optimization

problems [18]; biogeography-based optimization (BBO)
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was initially developed in [19], which can be seen as an

evolutionary algorithm (EA) motivated by the optimality

perspective of natural biogeography; artificial cooperative

search algorithm (ACS) [20], which was inspired of mu-

tualism and cooperation-based biological interaction of two

eusocial superorganisms living in the same habitat; Grey

wolf optimizer (GWO) [21], which mimics the leadership

hierarchy and hunting mechanism of gray wolves in nature;

and invasive weed optimization (IWO) [22], which was

inspired from colonizing weeds.

This paper presents a new optimization method and its

application to data clustering, which is inspired by the in-

vasive tumor growth mechanism. A tumor is a cluster of

abnormal cells in body. The deep investigation and study

show that tumor is a complex system. Tumor cells can be

divided into the main three types: proliferative cells, quies-

cent cells, and dying cells, which grow for the nutrient

(oxygen and glucose etc.). The adequate nutrient makes the

invasive cell born around the proliferative cell, while the

lower nutrient make the dying cell convert into necrotic cell.

Different cells run with different behaviors by cooperation.

A proliferative cell grows with a levy flight behavior to

obtain more nutrients, and a quiescent cell grows by the

leading of a proliferative cell and the interaction among

themselves. For dying cell, they can obtain more nutrients by

the leading of a proliferative cell and a quiescent cell. The

more interactions and behaviors ensure that our proposed

algorithm can easily jump out of the local optimum.

The rest of the paper is organized as follows: In Sect. 2,

the clustering problem is discussed. A brief explanation of

the tumor growth modeling is given in Sect. 3. In Sect. 4,

we introduce our proposed invasive tumor growth model

and algorithm. The performance of the proposed algorithm

is tested with several benchmark functions such as CEC

2005 and CEC 2008 and applied to the data clustering for

the benchmark datasets, which are compared with many

well-known algorithms in Sect. 5. Parameter tuning is

discussed in Sect. 6. Section 7, we discuss the proposed

algorithm (ITGO); finally, Sect. 8 includes a summary and

the conclusion of this work.

2 Cluster analysis

Data clustering is an important and popular method in data

mining techniques, which has been widely used in many

fields such as pattern recognition, document clustering,

image processing, marketing, costumer analysis, and bi-

ology. Clustering can be seen as a classification process

without supervision, in which, a set of data objects is

grouped into some clusters. Especially, the data of a cluster

must have the great similarity, and the data of different

clusters must have high dissimilarity.

Strictly speaking, clustering problem is to determine a

partition G ¼ C1;C2; . . .;Ckf g; 8k Ck 6¼ [ and 8h 6¼
k;Ch \ Ck ¼ [ such that objects belong to the same cluster

are as similar as possible, while objects belong to the dif-

ferent clusters are as dissimilar as possible. One object can

only belong to one cluster. To achieve this, a mathematical

model can be described as follows [23]:

Min
Xn

i¼1

Xk

j¼1

wijjjXi � Cjjj ð1Þ

0\
Xn

i¼1

wij\n; j ¼ 1; 2; . . .; k ð2Þ

Xk

j¼1

wij ¼ 1; i ¼ 1; 2; . . .; n ð3Þ

wij 2 0; 1f g ð4Þ

wij 2 ½0; 1� ð5Þ

where n is the number of objects and k is the number of

clusters, Xi denotes the object i, Cj denotes the cluster

center j. jjXi � Cjjj is the euclidean distance between the

object Xi, and the cluster center Cj. wij denotes the degree

of membership. Using formula (1), (2), (3), and (4), the

model was called ‘hard partition,’ while using formula (1),

(2), (3) and (5), it can be called ‘soft partition,’ or called as

fuzzy clustering. It was proven that the clustering problem

is NP problem [24].

There are many clustering algorithms in the literature.

The classical clustering algorithms are hierarchical algo-

rithm and partitional algorithm [25, 26]. Among all these

algorithms, K-means algorithm was the most well known

because of its simplicity and efficiency. However, it suffers

from some problems. For instance, the number of the initial

cluster centers needs to be defined, and the initial cluster

center are chosen randomly so that the algorithm is easy to

fall into the local optimal solution. To overcome the

weakness of the K-means, many heuristic methods have

been used, such as DE algorithm [27], GSA [28, 29], PSO

algorithm [30], firefly algorithm [31], ACO [32], big bang–

big crunch algorithm [33], honey bee mating optimization

[34], and TLBO [35].

3 Modeling of invasive tumor growth

Tumor is a cluster of abnormal cells which grows around

some tissues. It is a generally accepted view that genome

level changes in cells turn a normal cell into a tumor cell.

Usually, the cell growth is controlled by the deactivation of

growth pathway and activation of programmed cell death

pathway in a normal tissue. When both of these regulatory
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mechanisms fail with an overproduction of growth factors

and inhibition of programmed cell death, tumor occurs [36,

37]. From the point of view of the system science, the

tumor can be considered as a complex linear dynamic

system. The tumor cells proliferate and invade into sur-

rounding tissue as seen in Fig. 1. The main experimental

observations show that tumor cells proliferate when they

are in a high nutrient (oxygen and glucose etc.) level, the

tumor cells trigger cell death (apoptosis) in low nutrient

levels, and in intermediate nutrient levels, the tumor cells

stay quiescent [38]. In order to apprehend the mechanism

of tumor growth, many mathematical models have been

established [38–41]. All these models can be divided into

two categories: (1) continuum mathematical models that

use space averaging and thus consist of partial differential

equations and (2) discrete cell population models that

consider processes that occur on the single-cell scale and

introduce cell–cell interaction using cellular automata-type

computational machinery. For many continuum mathema-

tical models, heat conduction equation was used to present

the diffusion of nutrient concentration for the tumor cells.

The equation [39] is as follows:

on

ot
¼ Dnr2nþ re� uc� kn ð6Þ

where n, Dn, r, u, and k are the nutrient concentration,

diffusion coefficient, production, consumption, and natural

decay rates of the nutrient, respectively. To survive and

grow, a tumor cell consumes nutrients at a certain rate, and

if the nutrient concentration around it in the microenvi-

ronment is lower than the specified value, it will become a

quiescent cell or dying cell or apoptosis (dead). Moreover,

for the discrete cell population models, in order to simulate

the process of the tumor growth, they consider the influ-

ence of the interactions between tumor cells and their

microenvironment, including their surrounding cells, as

well as the extracellular matrix (ECM), chemical signals,

metabolic substrates such as oxygen and glucose. More of

these models can really simulate the process of the tumor

growth including the space and time, which makes it more

easier to understand the mechanism of the tumor growth.

Summarized from the models of tumor growth [39–41],

tumor cells have the following characteristics:

1. Tumor can be regarded as a isotropic sphere, and a

concentric spatial layered structure consists of an outer

rim of proliferative cells, an intermediate layer of

viable, but dormant, quiescent cells, and an inner

necrotic core.

2. In order to survive and grow, tumor cells must get

enough nutrients, and the tumor cells have the invasive

ability.

3. Tumor cells will move toward the direction of higher

nutrient concentrations.

4. There is a complex interaction between tumor cells.

5. They have a random walk of motivation.

6. When nutrient concentration is lower than a certain

value, the proliferative cells may turn into quiescent

cells; while nutrient concentration is lower than the

minimum value, the quiescent cells turn into dying

cells, or even apoptosis.

7. Nutrient concentration corresponds to different types

of tumor cells.

4 Intrusive tumor growth optimization algorithm

(ITGO)

4.1 Modeling of Intrusive tumor growth

As mentioned above, two kind of mathematical models

were used to simulate the tumor growth: continuum

Fig. 1 GBM multi-cellular tumor spheroid (MTS) gel assay showing

dendritic invasive branches. a The invasive branches centrifugal

evolve from the central MTS. The linear size of central MTS is

approximately 400 mm. b The invasive branches are composed of

chains of invasive cells. The images are adapted from Ref. [40]
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mathematical models and discrete cell population models.

Continuum mathematical models present the diffusion of

nutrient concentration for the tumor, and discrete cell

population models present the interactions of cells in tu-

mor. However, these models were used only to simulate the

processes of tumor growth. How to create a new model to

solve the optimization problem should be studied deeply.

According to the principle of the Darwinian theory of the

survival of the fittest, tumor cells must compete for the

nutrient to be survival. If a tumor cell cannot get adequate

nutrients, it may be dead. Different tumor cells get the

different nutrient by competition, which influences their

growing ways. As we all know, tumor is not an individual

but a complex system, so competition and interaction for

all the tumor cells must be needed. Then a model of in-

trusive tumor growth optimization can be established.

Different from the previous mathematical models, to im-

plement the evolution process of tumor growth for solving

optimization problems, five kinds of cells were considered:

invasive cell, proliferative cell, quiescent cell, dying cell,

and necrotic cell, depending on the nutrient supply they

get.

Figure 2 shows the tumor cell’s competition and in-

teraction. In our model, invasive cells and proliferative

cells locate at the outer layer of the tumor, where they

can get best nutrients and grow fast, and invasive cells

are the daughters of proliferative cells by mutation;

quiescent cells locate at the middle layer of the tumor,

and they can get general nutrients and grow relatively

slow. For competition, they must obtain enough nutrients

by leading of proliferative cells; dying cells are located

at the inner layer of the tumor, due to the least nutrient

concentration, they can grow slowly or may develop into

necrotic cells (dead cells). For competition, they obtain

nutrient by leading of proliferative cell and quiescent

cells; necrotic cells locate at the core of the tumor; they

are dead, and they cannot grow or move. Figure 3 shows

the diffusion of nutrient, and different colors from dark

red to light pink present the diffusion of nutrient from

the outer layer to the inner layer of tumor. Different

nutrient concentration I, P, Q, D, and N corresponds to

different kind of cells: Invasive cell (Icell), proliferative

cell (Pcell), Quiescent cell (Qcell), Dying cell (Dcell),

and Necrotic cell (Ncell). In addition, necrotic cells have

been dead, so they do not move and there are no inter-

actions for them.

In our model, tumor growth is a complex system using

the interaction among proliferative cells, quiescent cells,

dying cells, and invasive cells, which compete for survival.

Different cells have different behaviors.

1. The growth of proliferative cells

The proliferative cell locates at the outer layer of the

tumor with the highest nutrient concentration, so it is a

‘leader role.’ For the other kind of cells, all the prolif-

erative cells are leaders. It is to say, tumor has many

leaders, which grow by the stronger invasive behaviors

(seen as Fig. 1). A remarkable characteristic of prolif-

erative cells is that they move short distance, occasionally

moves long distance. To achieve this goal, we use the Levy

distribution. Formula is as following:

Pcelli;jðt þ 1Þ ¼ Pcelli;jðtÞ þ a � LevyðsÞ ð7Þ

Pcelli;j presents the position of proliferative cell, LevyðsÞ
presents the intrusive behavior of the proliferative cell, and

a is the control size of step.

a ¼ rand � t

T

� �
ð8Þ

where t is the current iterative number, and T is the total

iterative number.

Levy distribution usually appears in a simplified form,

as follows:

LevyðsÞ� jsj�1�t; ð1\t� 2Þ ð9Þ

Broadly speaking, Levy flight is a random walk, and the

step size obeys Levy distributions and walk direction obeys

uniform distribution. To perform the Levy distributions, we

use the Levy distribution characterized with Mantegna law

[42, 43] to select the step length vector. In Mantegna law,

the step size is designed as follows:

step ¼ u

jvj1=x
ð10Þ

where u, v obeys normal distribution, i.e.,

Dcell

Icell

Pcell

Qcell

Necrotic cells (dead cells)

Fig. 2 The optimization model of invasive tumor growth
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u�Nð0; r2
uÞ; v�Nð0; r2

vÞ ð11Þ

rv ¼
Cð1 þ xÞ sinðpx=2Þ

C ð1 þ xÞ=2½ �x2ðx�1Þ=2

� �1=x

ð12Þ

x is a constant.

In the search process of the proliferative cell, LevyðsÞ
presents the search in different regions, and control size of

step a achieves the balance of exploration and exploitation.

In the early search stage, when t
T
� 0:5; a obtains a more

small value, each proliferative cell visits those regions of a

search space within the neighborhood of previously visited

points, and it can be seen as an exploitation, while in the

late search stage, when t
T
[ 0:5; a perhaps obtains a more

large value, each proliferative cell visits entirely new re-

gions of a search space, and it can be seen as an

exploration.

2. The growth of quiescent cells

The quiescent cells are the general but most members of

the tumor, which locate at the middle layer. Due to the low

nutrient they get, they grow relatively slow. For competi-

tion, the quiescent cells move toward the higher nutrient

concentration, guided by proliferative cells, and they in-

teract with each others.

b ¼ randð0; 1Þ � normalð0; 1Þ � step ð14Þ

Qcelli;jðtþ 1Þ ¼ Qcelli;jðtÞ; rand\e
t
T�1ð Þ

sQcelli;jðtþ 1Þ; else

(
ð15Þ

Here, hPcellp;jðtÞ is the historical best position of prolif-

erative cell, and cPcellp;jðtÞ is the current position of prolif-

erative cell. Qcelli;jðtÞ is the old position of quiescent cell, and

sQcelli;jðt þ 1Þ is the current position of quiescent cell. The

step presents the step size of Levy flight such as formula (10);

b presents the growing speed; p is an integer, presents a

proliferative cell selected randomly from the group of pro-

liferative cell; x and y are integers, present two quiescent cells

selected randomly from the group of quiescent cells, and

x 6¼ y, x and y are two quiescent cells near the i quiescent cell.

Formula (15) presents the mutation of quiescent cell.

In the search process of quiescent cells, we consider the

balance of exploration and exploitation, too. Though qui-

escent cell population is the main body of the tumor, many

cells should search including exploration and exploitation.

In formula (13), we can see that, each quiescent cell is

guided by the historical best position of proliferative cell

hPcellp;jðtÞ and the current position of proliferative cell

cPcellp;jðtÞ alternately, which means that each quiescent

cell search in a large region to find a best position, it can be

seen as an exploration; while the two neighbor’s operation

ensures the quiescent cell visits in the neighbor regions, it

can be seen as an exploitation.

3. The growth of dying cells

The dying cells locate at the inner layer of the tumor

with the least nutrient, so it is easy to be converted into

necrotic cell (dead). Luckily, other cells of them can grow

for competition. In dying cell region, nutrient concentration

is very low, so these cells move toward the direction of

Position of Pcell

Position of Qcell

Position of Dcell

Position of Ncell

Position of Icell Nutrient concentration I

Nutrient concentration P

Nutrient concentration Q

Nutrient concentration D

Nutrient concentration N

Fig. 3 Diffusion of Nutrient

concentration

sQcelli;jðt þ 1Þ ¼ Qcelli;jðtÞ þ b � ðhPcellp;jðtÞ � Qcelli;jðtÞÞ þ b � ððQcellx;jðtÞ � Qcellx;jðtÞÞÞ; rand\0:5
Qcelli;jðtÞ þ b � ðcPcellp;jðtÞ � Qcelli;jðtÞÞ þ b � ððQcellx;jðtÞ � Qcelly;jðtÞÞÞ; rand[ 0:5

�
ð13Þ
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quiescent cells and proliferative cells with a higher nutrient

concentration. Formula is as following:

Dcelli;jðt þ 1Þ ¼ Dcelli;jðtÞ þ c � ðhPcellp;jðtÞ � Dcelli;jðtÞÞ
þ c � ððQcellx;jðtÞ � Dcelli;jðtÞÞÞ

ð16Þ

Dcelli;jðtÞ presents the position of the old dying cell,

Dcelli;jðt þ 1Þ presents the position of the current dying cell,

Qcelli;jðtÞ presents the position of quiescent cell, hPcellp;jðtÞ
presents the position of proliferative cell (the historical best

position); p is an integer that presents a proliferative cell

selected randomly from the group of proliferative cells; x is

an integer that presents a quiescent cell selected randomly

from the group of quiescent cells. When c ¼ rand½�1; 1�:,
Formula (16) shows that hPcellp;jðtÞ and Qcellx;jðtÞ guide

Dcelli;jðtÞ to move for growth.

In the search process of the dying cells, formula (16)

means that each dying cell is guided by the proliferative

cell and the quiescent cell, and it can be seen as an ex-

ploration. Since each dying cell visits a new regions ac-

cording the position of the proliferative cell and the

quiescent cell, two leaders (proliferative cell and the qui-

escent cell) were chosen in different populations randomly,

which can enhance the diversity of our algorithm.

4. The growth of invasive cells

As mentioned above, invasive cells locate at the outer

layer of the tumor. They are the most active ones, born by

the proliferative cells. When an invasive cell is born, a

dying cell with the least nutrient will be dead. The balance

of life and death will always be the evolution of the tumor.

Formula (17) presents a new cell which is born ran-

domly in the tumor, and formula (18) shows that a mutant

daughter of a historical best proliferative cell is born,

which is an invasive cell Icelli;jðt þ 1Þ: Formula (19) pre-

sents that a dying cell is apoptosis and replaced by the

invasive cell Icelli;jðt þ 1Þ:

newCelli;jðtÞ ¼ Randomði;DÞ;D 2 ½D min;D max� ð17Þ

Icelli;jðt þ 1Þ ¼ hPcellp;jðtÞ þ g � ðnewCelli;jðtÞ
� hPcellp;jðtÞÞ ð18Þ

Dcelli;jðt þ 1Þ ¼ Icelli;jðt þ 1Þ ð19Þ

Here, g 2 rand½0; 1� presents the growing speed.

In the search process of invasive cells, an exploration is

achieved. Formula (17), (18) means that an invasive cell visits

a more larger search region nearby the proliferative cell.

Especially, for the multimodal problems, in the late search

process, many proliferative cells maybe obtained from dif-

ferent local optimum. So invasive cell ensures that they can

jump out the local optimum and find the best position; it is to

say, they can enhance the exploration ability of our algorithm.

In addition, formula (19) means that some bad solution (dying

cell) can be replaced by the best solution (invasive cell).

5. Random walk of cells

Each cell in tumor has a cycle of life. When a cell is not

affected by other chemotaxis within the specified cycle of

life, the cell performs a random walk as formula (20). Here,

newCelli;jðtÞ presents a new cell using formula (17).

Cellðt þ 1Þi;jðt þ 1Þ ¼ Celli;jðtÞ þ k � newCelli;jðtÞ
jjnewCelli;1:DðtÞjj

� �

ð20Þ

where jjnewCelli;j:DðtÞjj is an Euclidean norm.

k 2 rand½�1; 1�.
At here, the random walk can be seen as an exploitation.

newCelli;jðtÞ
jjnewCelli;1:DðtÞjj represents a small value in the search region.

So the random walk can be seen as a small fluctuation for

all the tumor cells. It is to say that each tumor cell can visit

its neighbor region.

4.2 Intrusive tumor growth algorithms

We implement an invasive tumor growth optimization al-

gorithm according to the mechanism of tumor growth.

There are the main five steps in our algorithm: proliferative

cell growth, quiescent cell growth, dying cell growth, in-

vasive cell growth and the random walk of all the tumor

cells. Details shows as Fig. 4. In Fig. 4, step 1–2 imple-

ments the initialization like other meta-heuristic algo-

rithms. Step 3–4 creates the three subpopulations:

proliferative cell subpopulation, quiescent cell subpopula-

tion, and dying cell subpopulation. Firstly, proliferative cell

growth is implemented as the step 5. For rand\ t
T
, t is the

number of the current iteration, and T is the number of total

iteration. It means that proliferative cell grows using a

higher probability with a liner function. This easily helps

proliferative cell to jump out of the local optimum. For-

mula (7)–(12) enhances the searching ability of prolif-

erative cell by Levy flight. Secondly, quiescent cell growth

is implemented as the step 7. Many ‘leaders’ (proliferative

cells) are chosen randomly to guide the quiescent cell for

the best search direction. Historical position and current

position of proliferative cell are used alternately, which

enhances the diversity of the algorithm. Third, dying cell

growth is implemented as step 9. The proliferative cell and

the quiescent cell are chosen randomly to lead the dying

cell for the better search. Fourth, invasive cell growth is

implemented as step 11. It achieves the balance of the life

and death of tumor. The old solution (position of the dying

cell) can be replaced by a better solution (the position of

the invasive cell), which can enhance the search speed of

354 Neural Comput & Applic (2016) 27:349–374
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the algorithm. Fifth, random walk is used for all the tumor

cells as step 6, 8, 10. h is a threshold value, generally, it is

an integer. It controls the random walk frequency. The

random walk method can help the algorithm jump out of

the local optimum.

5 Experiments analysis

In order to solve the data clustering problem, object

function shown as formula (1) was used as fitness

function of meta-heuristic algorithms. The data cluster-

ing problem can be seen to find the best centers for all

the clusters. For our algorithm, the position of each tu-

mor cell (solution) is encoded by a link of the centers of

all the clusters.

Our experiments are divided into two categories: (1) We

choose the benchmark functions for comparison with other

algorithms to verify the performance of our proposed al-

gorithm. (2) To verify the performance of our algorithm,

we use six benchmark datasets to compare our algorithm

with other algorithms for data clustering.

5.1 Comparison of CEC 2005 and CEC 2008

We choose the CEC 2005 [44] and CEC 2008 [45] dataset to

verify the performance of the proposed algorithm (ITGO),

which are compared with the well-known algorithm such as

PSO, DE, GSA, CLPSO, cPSO, rcGA, and TLBO. We

choose 15 functions from CEC 2005 with low dimension

and five functions from CEC 2008 with high dimension.

F1–F4, F16, and F17 are unimodal functions and F5–F15,

F18, F19, and F20 are multimodal functions. These func-

tions are shifted or rotated or separable or non-separable or

both. So, the 20 functions we choose can reflect the reality

problem better. Details are shown in Table 1. Figure 5

shows F11 and F14 function, which are multimodal.

For purposes of avoiding any negative effects of the

structure of the initial population during the tests, the

benchmark problems are solved 20 times by using a

1. parameters setting: population size, iteration number etc.
2.initialization: create the initial tumor cells population.
3. Sort tumor cells according to the fitness (nutrient concentration). 
4. Create three subpopulations according to the fitness: Proliferative Cells (20%), Quiescent Cells    

(60%), Dying Cells (20%). 
5. for all the proliferative cells:

if trand
T

<

update position of proliferative cells using formula (7)~(12).
End

6. If  the fitness of new position is not better than the old one for  θ times(θ is threshold value)
update position of proliferative cells using formula (20) . 

end
7.for all the quiescent cells:

update position of quiescent cells using formula (13)~(15).
8. If  the fitness of new position is not better than the old one for  θ times(θ is threshold value)

update position of quiescent cells using formula (20) . 
end

9. for all the dying cells:
update position of dying cells using formula (16) .

10. If  the fitness of new position is not better than the old one for  θ times(θ is threshold
value)

update position of dying cells using formula (20) .
end

11. for all the dying cells :
If nutrient concentration is lower than the average nutrient concentration in dying cells

update position of dying cells using fomula (17)(18)(19) .
end 

12. If meeting end of criterion, output the best solution, else go to the step 3.

Fig. 4 Invasive tumor growth

algorithm
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different initial population each time. Population size is 30

for all the algorithms. The data such as the mean, standard

deviation obtained as a result of the tests have been saved

for detailed statistical analysis.

For these algorithms, parameter settings are as followings:

1. PSO, c1 = c2 = 2 and inertia factor (w) is decreasing

linearly from 0.9 to 0.2 [46].

2. DE, F = 0.5, CR = 0.5 [9].

3. GSA, Rpower = 2, Rnorm = 2, ElitistCheck = 1 as

in [15].

4. CLPSO [47], c ¼ 1:49335; m ¼ 0; pc ¼ 0:5 � et�ð
etð1ÞÞ= etðpsÞ � etð1Þ

� 	
; t ¼ 0:5 � 0 : 1

ps�1
: 1

� �
as in the

Matlab code given in [48].

5. cPSO, Np ¼ 300; u1 ¼ �0:2; u2 ¼ �0:007; u3 ¼
3:74; c1 ¼ 1; c2 ¼ 1 as in [49].

6. rcGA, Np ¼ 300 [50].

7. TLBO with no parameter [13]. Matlab Code provided

by author in [51].

Table 1 Details of CEC2005

and CEC2008
Fnc Benchmark problem Type low Low Up Dim

1 Shifted sphere U -100 100 10

2 Shifted Schwefel’s problem 1.2 U -100 100 10

3 Shifted Schwefel’s problem 1.2 with noise U -100 100 10

4 Schwefel’s problem 2.6 U -100 100 10

5 Shifted rotated Griewank’s M 0 600 10

6 Shifted rotated Ackley’s M -32 32 10

7 Shifted Rastrigin’s M -5 5 10

8 Shifted rotated Weierstrass M -0.5 0.5 10

9 Schwefel’s problem 2.13 M -100 100 10

10 Expanded rotated extended Scaffes M -100 100 10

11 Rotated hybrid comp. Fn 1 M -5 5 10

12 Rotated hybrid comp. Fn 1 with noise M -5 5 10

13 Rotated hybrid comp. Fn 3 with high condition number matrix M -5 5 10

14 Rotated hybrid comp. Fn 4 M -5 5 10

15 Rotated hybrid comp. Fn 4 without bounds M -5 5 10

16 Shifted sphere function U -100 100 100

17 Shifted Schwefel’s problem 2.21 U -100 100 100

18 Shifted Rosenbrock’s function M -100 100 100

19 Shifted Griewank’s function M -600 600 100

20 Shifted Ackley’s function M -32 32 100

Fig. 5 Benchmark problems. a F11 rotated hybrid comp. Fn 1, b F14 rotated hybrid comp. Fn 4
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8. ITGO, c = 8, d = 8, beta ¼ 1:5. C is the cycle size of

the cell; d is the number of neighbors in quiescent

cells; beta is the parameter of Levy flight.

The tests of all algorithms are rooted on a uniform

standard:

1. For CEC2005, dimension is 10, population size is 30,

MAX_FES (total fitness evaluations number) = 1e5

[44]

2. For CEC2008, dimension is 100, population size is 30,

MAX_FES = 5e5 [45]

Table 2 Comparison with

ITGO and PSO, DE, and GSA
PSO DE GSA ITGO

F1 SD 5.7387e?001 7.6855e2009 1.7665e?004 8.5149e-009

Means 8.7142e?001 1.8512e-009 5.1465e?003 9.6323e2010

F2 SD 5.0758e?001 1.6192e?001 2.2892e?004 7.5104e2006

Means 4.9926e?001 4.0329e?001 5.7967e?003 8.9117e2006

F3 SD 7.6559e?001 1.3213e?001 2.2919e?004 1.1999e2003

Means 8.9703e?001 4.0938e?001 6.0041e?003 2.5778e2003

F4 SD 2.7513e?004 7.2226e2009 2.0163e?004 4.9194e-004

Means 6.6915e?003 1.8458e2009 2.4464e?003 1.6068e-003

F5 SD 3.6044e?003 1.2671e?003 3.6126e?003 1.2670e1003

Means 4.6759e?002 4.0256e-002 3.4695e?002 2.2737e2013

F6 SD 2.0352e?001 2.0345e?001 2.0038e1001 2.0261e?001

Means 9.0376e-002 6.8602e-002 2.4513e2002 5.9821e-002

F7 SD 2.0866e?001 7.6897e2009 4.6763e?000 1.0655e-001

Means 6.8771e?000 1.8368e2009 1.5847e?000 3.0546e-001

F8 SD 4.1819e?000 7.4047e?000 5.4331e2002 2.9985e?000

Means 1.1166e?000 6.9087e-001 8.0375e2003 1.1665e?000

F9 SD 2.7663e?004 1.2983e?003 9.0255e?004 1.4029e1002

Means 6.6915e?003 7.5726e?002 3.0778e?004 1.5898e1002

F10 SD 3.1728e?000 3.5887e?000 4.3143e?000 2.7712e1000

Means 3.3975e-001 1.3351e2001 1.4205e-001 2.8920e-001

F11 SD 1.5236e?002 1.5150e?002 8.9496e1001 1.1391e?002

Means 1.7445e?001 2.3391e?001 2.7819e?001 1.1448e1001

F12 SD 1.7295e?002 1.7982e?002 9.2977e1001 1.2022e?002

Means 2.2291e?001 3.2664e?001 2.6041e?001 1.5719e1001

F13 SD 8.4998e?002 7.9262e?002 7.2876e?002 6.9863e1002

Means 6.4274e?001 3.7308e1001 5.8108e?001 1.7374e?002

F14 SD 7.7302e?002 8.0320e?002 3.0000e?002 200e1000

Means 2.2678e?002 3.0946e?002 2.2478e?002 0

F15 SD 1.1772e?003 8.1692e?002 1.3139e?003 8.1497e1002

Means 1.6188e?002 2.5439e?000 1.1608e?001 2.7029e?000

F16 SD 3.0009e?004 1.3168e?002 4.7878e?005 9.8599e2009

Means 1.0092e?004 1.3508e?002 3.5312e?004 1.1644e2010

F17 SD 3.9188e?001 6.2165e?001 1.5073e?002 2.2062e1001

Means 1.6924e?001 2.1631e?001 5.4376e?000 3.9608e1000

F18 SD 1.3449e?009 3.1709e?004 3.7126e?011 5.4122e1002

Means 1.0628e?009 3.3904e?004 3.8252e?010 1.4815e1001

F19 SD 2.3698e?002 1.8279e?000 4.6133e?003 8.6268e2004

Means 8.7682e?001 7.6548e-001 2.7035e?002 2.6851e2003

F20 SD 1.1412e?001 1.3318e?000 1.9180e?001 5.1900e2006

Means 7.0655e-001 6.2024e-001 6.9656e-002 5.8889e2006
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3. Pre-determined stopping criteria: If the absolute error

obtained by the algorithm is smaller than err = 1e-8,

then stop.

The Wilcoxon’s signed-rank test with Bonferroni–Holm

correction method and the Friedman’s test [52] were used

to compare ITGO with other algorithms. When using

Wilcoxon’s test in our experimental study, the first step is

to compute the R? and R- related to the comparisons

between ITGO and the rest of algorithms, then p values can

be computed. The null hypothesis H0 was used for the

Wilcoxon’s signed-rank tests for purposes of this paper.

The statistical significance value used to test H0 hypothesis

is s = 0.05. The Bonferroni–Holm procedure adjusts the

value of s in a step-down manner. Let p1; p2; . . .; pk�1 be

the ordered p values (from smallest to largest), so that

p1 � p2 � ; . . .; � pk�1; and let H1;H2; . . .;Hk�1 be the

Table 3 Comparison with

ITGO and CLPSO, cPSO,

QIGSA, rcGA, and TLBO

CLPSO [58] CPSO [60] RcGA [61] TLBO [61] ITGO

F1 SD 1.6995e-007 9.7969e-002 4.4054e-013 7.8161e-009 8.5149e-009

Means 2.6648e-007 6.5420e-002 7.5760e-014 1.3371e-009 9.6323e-010

F2 SD 1.0566e?002 3.3007e?000 1.5015e-001 8.2962e-009 7.5104e-006

Means 1.3176e?002 1.7627e?000 5.8963e-001 1.1618e-009 8.9117e-006

F3 SD 1.0998e?000 4.1923e?001 8.7665e?001 8.4358e-009 1.1999e-003

Means 1.4692e?000 5.2061e?001 1.1250e?002 1.0647e-009 2.5778e-003

F4 SD 6.2789e?000 1.1225e?002 1.2712e-004 8.2777e-009 4.9194e-004

Means 1.0314e?001 4.6718e?001 4.4181e-005 1.2328e-009 1.6068e-003

F5 SD 1.2670e?003 1.2707e?003 1.2670e?003 1.2671e?003 1.2670e?003

Means 2.3328e-013 5.8400e?000 1.8308e-005 4.0256e-002 2.2737e-013

F6 SD 2.0682e?001 2.0321e?001 2.0160e1001 2.0335e?001 2.0261e?001

Means 3.1638e-001 5.7115e-002 9.4724e-002 8.6351e-002 5.9821e-002

F7 SD 4.4064e?001 1.0992e?001 1.9551e?001 8.5946e?000 1.0655e-001

Means 4.5880e?001 6.0154e?000 1.1244e?001 3.3635e?000 3.0546e-001

F8 SD 4.8000e?000 4.8252e?000 5.4259e?000 5.4080e?000 2.9985e1000

Means 6.6154e-001 1.1053e?000 2.4877e?000 1.3843e?000 1.1665e?000

F9 SD 1.4656e?003 2.0232e?004 7.4280e?002 2.2109e?004 1.4029e1002

Means 6.4697e?002 6.9820e?003 8.6740e?002 7.2890e?003 1.5898e1002

F10 SD 3.1218e?000 3.2195e?000 3.5708e?000 2.7111e1000 2.7712e?000

Means 2.5833e-001 2.5072e-001 3.1913e-001 4.4291e-001 2.8920e-001

F11 SD 1.1078e1002 1.6305e?002 1.4775e?002 1.2072e?002 1.1391e?002

Means 1.6331e?001 3.0796e?001 2.9385e?001 2.1296e?001 1.1448e1001

F12 SD 1.3077e?002 1.8138e?002 1.7112e?002 1.2075e?002 1.2022e1002

Means 1.1988e?001 4.1862e?001 3.2693e?001 1.1176e1001 1.5719e?001

F13 SD 7.5627e?002 7.6540e?002 8.2237e?002 7.7748e?002 6.9863e1002

Means 7.1650e?001 1.1261e?002 5.7475e?001 3.4844e1001 1.7374e?002

F14 SD 2.0000e?002 2.8041e?002 2.6500e?002 2.6000e?002 200 e1000

Means 5.7123e-006 2.0700e?002 1.7554e?002 1.2312e?002 0

F15 SD 8.1777e?002 8.8992e?002 9.0791e1001 8.7119e?002 8.1497e?002

Means 4.3980e?001 2.7205e?001 5.6032e?002 1.5822e?002 2.7029e1000

F16 SD 8.0013e?000 3.9197e?003 1.6545e?003 5.4437e-002 9.8599e-009

Means 1.8695e?000 8.3951e?002 2.1456e?003 2.4189e-001 1.1644e-010

F17 SD 8.5174e?001 7.3141e?001 1.2189e?002 8.7203e?001 2.2062e1001

Means 4.0196e?000 4.5574e?000 2.8556e1000 4.1943e?000 3.9608e?000

F18 SD 5.9350e?004 4.5974e?005 2.0503e?008 1.1942e?005 5.4122e1002

Means 1.7576e?004 1.7270e?005 3.1487e?008 5.3208e?005 1.4815e1001

F19 SD 1.0218e?000 2.2173e?001 5.6988e?000 1.6295e?003 8.6268e-004

Means 4.4770e-002 4.7487e?000 1.9974e?000 1.9587e-001 2.6851e-003

F20 SD 4.2750e?000 1.9491e?001 1.9727e?001 2.1307e?001 5.1900e-006

Means 6.4858e-001 9.2799e-002 2.7665e-001 5.9884e-002 5.8889e-006
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corresponding hypotheses. The Bonferroni–Holm proce-

dure rejects H1 to Hi-1 if i is the smallest integer such that

pi [ a=ðk � 1Þ: In addition, Friedman’s test was used for a

multiple comparisons test that aims to detect significant

Table 4 Comparison results by Wilcoxon’s signed-rank test

PSO versus

ITGO

DE versus

ITGO

GSA versus

ITGO

CLPSO versus

ITGO

CPSO versus

ITGO

RcGA versus

ITGO

TLBO versus

ITGO

F1 ? - ? ? ? - -

F2 ? ? ? ? ? ? -

F3 ? ? ? ? ? ? -

F4 ? - ? ? ? - -

F5 ? ? ? = ? ? ?

F6 ? ? - ? ? - ?

F7 ? - ? ? ? ? ?

F8 ? - - ? ? ? ?

F9 ? ? ? ? ? ? ?

F10 ? ? ? ? ? ? -

F11 ? ? - - ? ? ?

F12 ? ? - ? ? ? ?

F13 ? ? ? ? ? ? ?

F14 ? ? ? ? ? ? ?

F15 ? ? ? ? ? - ?

F16 ? ? ? ? ? ? ?

F17 ? ? ? ? ? ? ?

F18 ? ? ? ? ? ? ?

F19 ? ? ? ? ? ? ?

F20 ? ? ? ? ? ? ?

?/=/- 20/0/0 17/0/3 16/0/4 18/1/1 20/0/0 16/0/4 15/0/5

Table 5 Comparison with

ITGO and other algorithms

using Wilcoxon’s signed-rank

test and Bonferroni–Holm

correction (means)

I Algorithm R? R- p Value a/i Hypothesis

7 ITGO versus PSO 0.0 210.0 8.85e-5 0.0071 REJECT

6 ITGO versus CPSO 0.0 210.0 8.85e-5 0.0083 REJECT

5 ITGO versus DE 7.0 203.0 2.53e-4 0.01 REJECT

4 ITGO versus

CLPSO

8.00 182.0 4.63e-4 0.0125 REJECT

3 ITGO versus TLBO 16.0 1940 8.91e-4 0.0167 REJECT

2 ITGO versus GSA 17.0 1930 1.01e-3 0.025 REJECT

1 ITGO versus rcGA 24.0 186.0 2.49e-3 0.05 REJECT

Table 6 Average ranks of eight

algorithms by Friedman test

(means)

Algorithm Average ranks

ITGO 1.88

TLBO 3.95

CLPSO 4.03

DE 4.30

rcGA 4.55

cPSO 5.4

GSA 5.75

PSO 6.15

Table 7 Results of Friedman test for eight algorithms by CEC 2005

and CEC 2008

Method Statistical value p Value

Friedman test 41.2 5.25e-7

Neural Comput & Applic (2016) 27:349–374 359

123



differences between the behaviors of two or more algo-

rithms. At the end, average ranks are used to comparison.

In Tables 2 and 3, we compare ITGO to the well-known

algorithm including PSO, DE, GSA, CLPSO, cPSO, rcGA,

and TLBO by the means and standard of the error value.

Bold font means the winner. Table 4 shows the comparison

results by Wilcoxon’s signed-rank test; ‘?’ means the al-

gorithm is winner, ‘=’ means the two algorithms are equal,

and ‘-’ means the algorithm is lost. The statistical results

show the winner number, equation number, and lost

number as follows:

ITGO versus PSO:20/0/0

ITGO versus DE: 17/0/3

ITGO versus GSA:16/0/4

ITGO versus CLPSO:18/1/1

ITGO versus cPSO:20/0/0

ITGO versus rcGA:16/0/4

ITGO versus TLBO:15/0/5

We can see that ITGO algorithm has best performance

than other algorithms. Table 5 shows the comparison re-

sults by Wilcoxon’s signed-rank test with Bonferroni–

Holm correction. For ITGO vs PSO, cPSO, DE, CLPSO,

TLBO, GSA and rcGA, the p values are 8.85e-5, 8.85e-5,

2.53e-4, 2.54e-4, 4.63e-4, 8.91e-4, 1.01e-3, and

2.49e-3, which are less than a/i values. So the hypothesis

H0 was rejected. In other words, ITGO algorithm has better

performance than other algorithm. Tables 6 and 7 show the

comparison results by Friedman test. Average ranks show

that ITGO is better than other algorithms.

In order to understand the characteristic of our algo-

rithm, we analyze the experimental results deeply. For

F1–F4 functions, they are unimodal functions. These

functions are used to verify the local search ability of

algorithms. From Tables 2 and 3, we can see that the

performance of rcGA is better than others for F1 function,

and TLBO has better performance than others for F2, F3,

and F4. Though ITGO is not the best one, its performance

is better than PSO, GSA, CLPSO, and cPSO for F1 and

better than PSO, DE, GSA, CLPSO, cPSO, and rcGA for

F2 and F3. Sometimes, one algorithm has so fast con-

vergence speed for unimodal problems, and it is not a

Table 8 Comparison with

ITGO and other improved PSO

version

The results of improved PSO

versions originated from paper

[52]

Fun (Global)PSO-w (Global)PSO-cf UPSO CLPSO SG-PSO SP-PSO ITGO

F1 1.00e?03 1.82e?03 9.07e?03 0.00e100 0.00e100 1.48e-06 2.1525e-031

F2 1.07e?02 4.60e?02 1.03e?03 4.81e?01 2.08e?02 2.20e101 2.4816e?001

F3 4.46e?03 5.84e?03 7.98e?03 5.46e?03 4.20e?03 4.03e?03 2.0726e1003

F4 4.11e?01 1.38e?02 2.00e?02 5.68e?00 2.86e?01 3.28e?00 1.8064e1000

F5 1.83e?00 2.70e?01 2.64e?01 2.42e-01 1.60e?00 0.00e100 3.8775e-004

F6 9.87e?03 1.43e?04 3.19e?04 1.36e?04 1.24e?04 1.63e?01 1.4495e2013

F7 6.00e?06 5.88e?06 7.85e?06 5.49e?06 5.70e?06 1.73e?05 9.6187e2002

F8 2.48e?09 2.43e?09 1.47e?10 1.11e?10 2.99e?09 1.45e?05 3.5497e1001

F9 1.38e?02 2.41e?02 2.48e?02 2.16e?02 1.57e?02 1.29e?02 2.3719e?000

F10 2.28e?02 3.96e?02 3.90e?02 1.70e?02 2.31e?02 1.72e?02 1.3099e?002

F11 2.99e?01 3.53e?01 3.98e?01 3.27e?01 2.77e?01 2.89e?01 2.2163e1001

Table 9 Comparison with ITGO and other improved PSO versions

using Wilcoxon’s signed-rank test and Bonferroni–Holm correction

(means)

I Algorithm R? R- p Value a/i Hypothesis

3 ITGO versus

PSO-w

6.0 60.0 0.003 0.017 REJECT

2 ITGO versus

PSO-cf

0.0 55.0 0.003 0.025 REJECT

2 ITGO versus UPSO 0.0 55.0 0.003 0.025 REJECT

1 ITGO versus

CLPSO

0.0 66.0 0.005 0.05 REJECT

1 ITGO versus

SGPSO

0.0 66.0 0.005 0.05 REJECT

1 ITGO versus

SPPSO

0.0 66.0 0.016 0.05 REJECT

Table 10 Average ranks of

seven algorithms for data

clustering dataset by Friedman

test (means)

Algorithm Average ranks

ITGO 1.27

SPPSO 2.18

SGPSO 3.82

CLPSO 3.82

PSO-w 4.00

PSO-cf 5.82

UPSO 6.82

Table 11 Results of Friedman test for seven algorithms

Method Statistical value p Value

Friedman test 52.51 1.47e-9
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Fig. 6 Comparison results of five algorithms by box plot
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good thing, because it is perhaps easy to fall into the local

optimum for multimodal problems. So good algorithms

must consider it. F5–F15 functions are multimodal prob-

lems. These functions are used to verify the global search

ability of algorithms. From Table 2, we can see that the

performance of ITGO is better than PSO, DE and GSA for

F5, F9, F10, F13, F14, and F15, while the performance of

ITGO is better than CLPSO, cPSO, rcGA, and TLBO for

F7, F8, F9, F12, F13, and F14. The results show that

ITGO has powerful global search ability than many other

Fig. 7 Results of data clustering by ITGO. a Iris, b wine, c glass, d cancer, e vowel, f CMC
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algorithms for multimodal problems. Especially, F1–F15

functions only verify the performance of ITGO in low

dimension (dimension = 10), so we verify the perfor-

mance of ITGO for F16–F20 functions in high dimension

(dimension = 100). From Tables 2 and 3, we can see that

the performance of ITGO algorithm outperforms PSO,

DE, GSA, CLPSO, CPSO, rcGA, and TLBO in high di-

mension including unimodal and multimodal functions. It

is to say that our algorithm can solve more large complex

problems.

Table 12 Details of six

datasets
Datasets Number of clusters Dimension Distribution (sample numbers of each class)

Iris 3 4 150 (50, 50, 50)

Wine 3 13 178 (59, 71, 48)

Glass 6 9 214 (70, 76, 17, 13, 9, 29)

Cancer 2 9 683 (444, 239)

Vowel 6 3 871 (72, 89, 172, 151, 207, 180)

CMC 3 9 1473 (629, 334, 510)

Table 13 The sum of intra-cluster distances obtained by algorithms on different datasets

Datasets Criterion K-medoid K-means TLBO DE GSA ITGO

Iris Min 9.8214e?001 97.3259 96.6554 96.6554 96.6554 96.6554

Max 1.2584e?002 123.8497 125.0844 124.5916 127.6676 96.9682

MeanS 1.0674e?002 104.8645 103.6115 100.2417 98.2060 96.7117

Std 1.1890e?001 11.8063 11.0483 8.8373 6.9345 0.1065

Meadian 9.9482e?001 97.3462 96.6686 96.6913 96.6554 96.6554

Wine Min 1.6637e?004 16,555.6794 16,295.1447 16,292.1888 17,123.2430 16,292.1904

Max 1.8811e?004 19,436.9520 16,461.2366 16,333.0285 22,259.2894 16,294.1875

MeanS 1.7188e?004 16,962.0423 16,329.2662 16,296.0207 19,767.6886 16,293.1343

Std 9.6150e?002 733.8995 52.4949 9.0831 1194.7086 0.7129

Meadian 1.6637e?004 16,555.6794 16,306.1358 16,293.8157 20,029.2376 16,292.6767

Glass Min 2.2014e?002 215.7316 218.3590 382.3724 214.4027 213.4988

Max 2.7309e?002 250.0580 303.1350 410.2468 265.2572 241.1775

MeanS 2.4174e?002 228.7861 253.1780 405.0525 239.0503 228.5708

Std 1.8643e?001 7.6414 18.3250 9.2617 16.8698 10.2850

Meadian 2.3741e?002 218.6841 249.1153 410.2468 236.1694 234.1775

Cancer Min 3.0891e?003 2986.9613 2964.3870 2964.3869 2964.3869 2964.3869

Max 3.0891e?003 5115.4278 3542.0871 2974.8663 3071.7828 2964.3874

MeanS 3.0891e?003 3031.7678 3097.1951 2965.0402 2980.4701 2964.3871

Std 9.3312e-013 0.7485 195.5960 2.3327 27.7893 0.0001

Meadian 3.0891e?003 2998.4278 2970.8433 2964.3870 2968.6077 2964.3871

Vowel Min 1.5173e?005 149,413.1753 149,056.1753 154,016.1650 219,794.0771 149,013.3922

Max 1.8338e?005 172,056.4440 158,615.9159 181,701.7314 302,756.5419 150,172.0665

MeanS 1.5965e?005 169,190.1505 152,698.5111 169,612.0376 261,555.3147 149,516.4777

Std 8.5940e?003 7002.5058 3372.3409 8317.1979 21692.0729 441.3491

Meadian 1.5953e?005 153,992.5367 153,052.7057 172,055.3090 261,013.4525 149,370.6384

CMC Min 5.7308e?003 5542.1821 5532.2446 5532.1847 5532.1847 5532.1881

Max 5.7835e?003 5545.2928 5598.0817 7018.0412 5532.9950 5532.2435

MeanS 5.7487e?003 5543.7253 5542.5356 5885.6379 5532.2642 5532.2008

Std 1.8850e?001 1.5841 18.5901 627.5897 0.2123 0.0127

Meadian 5.7450e?003 5545.0497 5532.7779 5532.1848 5532.1847 5532.1964

Bold values indicate the best fitness values for all the algorithms

Neural Comput & Applic (2016) 27:349–374 363

123



5.2 Comparison with ITGO and improved PSO

versions

In this test, we choose the 11 benchmark functions from the

paper [44, 53]. Population size and maximum iteration

number are set to 30 and 10,000 according to the sugges-

tion of paper [53]. The benchmark functions are multi-

modal functions except for F1 and F6 function. In addition,

F1–F5 are standard benchmark functions, F6–F9 are

shifted functions, and F10–F11 are shifted rotated func-

tions. Details can be seen in paper [53].

In Table 8, we compare ITGO to the currently improved

algorithms including PSO-w [53], PSO-cf [53, 54, 55],

UPSO [56], CLPSO [47], SG-PSO [53], and SP-PSO [53]

by the means of the error value. Bold font means the

winner. Table 9 shows the comparison results by Wilcox-

on’s signed-rank test with Bonferroni–Holm correction.

For ITGO versus PSO-w, PSO-cf, UPSO, CLPSO, SG-

PSO, and SP-PSO, the p values are 0.003, 0.003, 0.003,

0.005, 0.005, and 0.016, which are less than a/i values. So

the hypothesis H0 was rejected. In other words, ITGO al-

gorithm has better performance than other algorithm.

Tables 10 and 11 show the comparison results by Friedman

test. Average ranks show that ITGO is better than other

algorithms. Especially, from the results of Table 8, we can

also see that the performance of ITGO is better than PSO-

w, PSO-cf, UPSO, CLPSO, SG-PSO, and SP-PSO for F3,

F4, F6, F7, F8, and F11 including standard or shifted or

shifted rotated functions. It is to say that our algorithms can

solve many different complex problems.

5.3 Comparison for data clustering

We choose six benchmark datasets with different dimen-

sions from the repository of the machine learning databases

[57], namely, iris, wine, glass, Wisconsin breast cancer,

vowel, and contraceptive method choice (CMC). This

dataset has been used to solve the data clustering problem

widely in other algorithms [16, 33–35].

The iris dataset contains three categories, where each

category refers to a type of iris plant. In the iris dataset,

there are four attributes, which are sepal length in cm, sepal

width in cm, petal length in cm, and petal width in cm.

The wine dataset contains chemical analyses of wines

derived from three different cultivars, with 13 attributes,

namely, alcohol, malic acid, ash, alkalinity of ash, mag-

nesium, total phenols, flavonoids, non-flavonoid phenols,

proanthocyanins, color intensity, hue, OD280/OD315 of

diluted wines, and praline.

The glass identification dataset contains six different

types of glass, which are, float-processed building win-

dows, non-float-processed building windows, float-pro-

cessed vehicle windows, containers, tableware, and

headlamps. There are nine attributes, namely, refractive

index, sodium, magnesium, aluminum, silicon, potassium,

calcium, barium, and iron.

The Wisconsin breast cancer dataset consists of two

categories in the data: malignant and benign. There are nine

features: clump thickness, cell size uniformity, cell shape

uniformity, marginal adhesion, single epithelial cell size,

bare nuclei, bland chromatin, normal nucleoli, and mitoses.

The vowel dataset consists of 871 patterns (rows). There

are six overlapping vowel classes (Indian Telugu vowel)

and three input features (formant frequencies).

The CMC dataset is a subset of the 1987 National In-

donesia Contraceptive Prevalence Survey. The objects are

married women who either were not pregnant or did not

know if they were at the time of interview. The problem

involves predicting the choice of the current contraceptive

method of a woman based on her demographic and so-

cioeconomic characteristics.

Table 12 summarizes the main characteristics of the used

six datasets. The performance of the ITGO algorithm is

compared against well-known and the most recent algo-

rithms reported in the literature, including K-means [26],

K-medoid, DE [9], GSA [28], and the TLBO [35]. In order

Table 14 Comparison with

ITGO and other algorithms for

data clustering dataset using

Wilcoxon signed-rank test and

Bonferroni–Holm correction

(means)

I Algorithm R? R- p Value a/i Hypothesis

1 ITGO versus DE 0.0 21.0 0.028 0.05 REJECT

1 ITGO versus GSA 0.0 21.0 0.028 0.05 REJECT

1 ITGO versus TLBO 0.0 21.0 0.028 0.05 REJECT

1 ITGO versus K-means 0.0 21.0 0.028 0.05 REJECT

1 0.0 21.0 0.028 0.05 REJECT

Table 15 Average ranks of six

algorithms for data clustering

dataset by Friedman test

(means)

Algorithm Average ranks

ITGO 1.00

GSA 3.67

TLBO 3.83

K-means 3.83

DE 4.00

K-medoids 4.67
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Fig. 8 Trajectory of one of the search agents in one of the dimension as well as the convergence curves
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Fig. 8 continued
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to evaluate and compare the performance of the algorithms,

criteria can been defined as follows: The distance between

each data object and the center of each cluster can be found

according to the formula (1). The smaller the sum of intra-

cluster distances, the higher the quality of the clustering. So,

the sum of intra-cluster distances is the evaluation values in

our work, namely, fitness value for meta-heuristic algo-

rithms. Each algorithm is run for 20 times independently,

and the min, max value, means, standard, median for the

fitness are used to comparison. In addition, box plots are

used to verify the performance of the algorithms. Box plots

can be very convenient to compare the performance of al-

gorithms in graphical form. In a typical case, endpoint I of

the box is on the quarter point, the length of the box is the

distance of the quarter point 3 plus quarter point 1, median

number marks with line, two dotted lines in the box (called a

beard) extends to the maximum and minimum values, and

discrete points can also be displayed in box.

Table 13 shows the fitness values obtained by algo-

rithms. For iris datasets, ITGO is better than K-medoid,

K-means, DE, GSA, and TLBO according to the max,

means and standard value. ITGO equals GSA by min and

median value, and smaller than our algorithms. For wine

datasets, ITGO is better than K-medoid, K-means, DE,

GSA, and TLBO according to the max, means, standard

value, and medians. For glass datasets, ITGO is better than

other algorithms by the min and max value except for the

means, SD, and median. For cancer and vowel datasets,

ITGO is better than other algorithms by the min, max,

Table 16 Results of Friedman test for six algorithms

Method Statistical value p Value

Friedman test 13.91 0.016

Table 17 The best cluster center of Iris dataset obtained by ITGO

Iris

Center 1 Center 2 Center 3

5.9343618044 6.7333769288 5.0121702151

2.7978170955 3.0679155552 3.4031157613

4.417933082 5.6301165765 1.4716522725

1.4173204962 2.1068108464 0.2353811945

Table 18 The best cluster center of wine dataset obtained by ITGO

Wine

Center 1 Center 2 Center 3

12.8155322802 12.5108007404 13.6993223399

2.5332961783 2.3151926224 1.8705547120

2.3703969396 2.3384118602 2.3996847854

19.5109267095 21.3027113363 16.8885868716

98.9411828106 92.5260451024 105.2378750705

2.0654697960 2.0413978786 2.8574204986

1.4875042173 1.7832298798 3.0570760079

0.4290907179 0.4241488015 0.2870843030

1.42638999441 1.4267508945 2.0208455221

5.7840510615 4.3715599107 5.6431297110

0.9180374962 0.9448212694 1.057125834

2.2139961273 2.4537720286 3.028053459

686.9558829111 463.6155503031 1137.3766459926

Table 19 The best cluster

center of glass dataset obtained

by ITGO

Glass

Center 1 Center 2 Center 3 Center 4 Center 5 Center 6

1.5208199521 1.5323359710 1.5235646736 1.5195830179 1.5227745060 1.5195076554

13.2886409616 13.7842639421 13.0794266036 13.8716820038 11.8980458215 14.6484918869

0.4066367468 3.5091029793 3.5267122885 2.2553041540 0.1415268861 0.0957039581

1.4989757453 1.0351739927 1.3537539771 2.6947371581 1.0254221336 2.2457734782

73.0381403173 71.8934956113 72.8628305544 71.3379456629 71.9542173382 73.2916682433

0.3813479545 0.2102331969 0.5733710000 2.5980806592 0.2352618299 0.0214452200

11.1973938945 9.4220745593 8.3710078600 6.0183574563 14.4575952997 8.7322876219

0.0684541398 0.0410425993 0.0118450934 1.4446776413 0.2403338127 0.9688689870

0.0823057996 0.0692142244 0.0703303122 0.2145966979 0.1418565074 0.0381674712

Table 20 The best cluster cen-

ter of Wisconsin breast cancer

dataset obtained by ITGO

Cancer

Center 1 Center 2

2.8892052753 7.1170611327

1.1277263106 6.6410829399

1.2005263587 6.6256351703

1.1641527738 5.61446411312

1.9933892969 5.2406332698

1.1209414044 8.1008978365

2.0055231423 6.0788141111

1.1013696495 6.0219507718

1.0316155511 2.3257067501
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means SD, and median value. For CMC dataset, ITGO is

better than other algorithms, too. To verify the robustness,

box plots are used in Fig. 6. The number 1, 2, 3, 4, 5, and 6

of the horizontal ordinate corresponds to the K-medoid, K-

means, TLBO, DE, GSA, and ITGO algorithms. We can

see that ITGO algorithm is superior to K-medoid, K-means,

TLBO, DE, and GSA for the five datasets, except for the

glass dataset. For glass dataset, ITGO algorithm is still

better than TLBO, DE, and GSA algorithms. At the end,

Fig. 7 shows the best results of ITGO algorithm for data

clustering of the six datasets in three-dimensional space.

Three features are chosen randomly from the six datasets.

Tables 17, 18, 19, 20, 21, and 22 show the best center of

clusters for the six datasets. Tables 14, 15, and 16 show the

comparison results of ITGO for K-medoid, K-means,

TLBO, DE and GSA using Wilcoxon signed-rank test and

Bonferroni-Holm correction and Friedman test, which

indicates that the performance of ITGO is better than other

algorithms. In addition, the Fig. 8 shows the trajectory and

the convergence curve of the first particle, in which

changes of the first search agent in its first dimension can

be observed. It can be seen that there are abrupt changes in

the initial steps of iterations which are decreased gradually

over the course of iterations. According to van den Bergh

and Engelbrecht [58], this behavior can guarantee that a SI

algorithm eventually convergences to a point in search

space.

5.4 The computation complexity of ITGO algorithms

In this section, we use the method proposed in [59] for the

computational complexity. The computational complexity

of the proposed method depends on the number of it-

erations, the number of cells (particles), the number of fit-

ness evaluations, the repartition of tumor, the mechanism of

proliferative cell growth, the mechanism of quiescent cell

growth, the mechanism of dying cell growth, the mechan-

ism of invasive cell growth, and the random walk

mechanism. So, the overall computational complexity is as

follows:

O ITGOð Þ ¼ O T � O repartitionð Þ þ O proliferative cellð Þðð
þ O quiescent cellð Þ þ O dying cellð Þ
þO invasive cellð Þ þ O randomwalkð ÞÞÞ

where T is the maximum number of iterations. The com-

putational complexity of the repartition of tumor cells is of

O(p * p) in the worst. p is the number of population size.

We utilized quicksort to the repartition of tumor cells, and

the computational complexity of the repartition is of

O(p * logp) in the best case. The computational com-

plexity of proliferative cell growth is of O(npFes) in the

implementation where npFes is the number of fitness

evaluations for the proliferative cell. Note that the npFes

belong to [0, Max_num], Max_num is the number of the

proliferative cell. Because the proliferative cell operator is

used due to the probability rand\ t
T
, t is the current

number of iteration and T is the max number of iteration.

The computational complexity of quiescent cell growth is

of O(qpFes?qp*qp) in the implementation where qp is the

number of the implemented quiescent cell and qpFes is the

number of fitness evaluations for quiescent cell. To choose

the best two neighbors of quiescent cell, sort operator

should be used. We utilized quicksort to the quiescent cell

growth, the computational complexity is of O(qpFes?q-

p * log(qp)) in the best case. The computational com-

plexity of dying cell growth is of O(dpFes) in the

implementation where dpFes is the number of fitness

evaluations for dying cell. The computational complexity

of invasive cell growth is of O(qpFes/2) in the imple-

mentation where qpFes/2 is the number of fitness evalua-

tions for invasive cell. Since half of the dying cells are

replaced by the invasive cells, the computational

Table 21 The best cluster center of vowel dataset obtained by ITGO

Vowel

Center 1 Center 2 Center 3 Center 4 Center 5 Center 6

377.8087719786 405.1074838756 508.1473570044 357.2783180237 629.4973795450 445.3023937825

2144.8307319333 1017.2479668195 1828.9373876649 2291.4942826890 1304.6896612483 992.42058353785

2677.6725686875 2326.6606192387 2550.9674148433 2977.4104518448 2326.2986386547 2675.0376202512

Table 22 The best cluster center of CMC dataset obtained by ITGO

CMC

Center 1 Center 2 Center 3

24.4173448044 33.4928129132 43.6373284955

3.0412508930 3.1355623404 3.0025594997

3.5135065520 3.5533496585 3.4550662188

1.7934692739 3.6495463152 4.5853368309

0.9290658593 0.7888998679 0.7948559375

0.7945167688 0.6974427717 0.7628553012

2.3058817181 2.0998383876 1.8224881412

2.9716517275 3.2871792908 3.4340904083

0.0381008990 0.0593486457 0.0913074179
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complexity of random walk is of O(rwFes) in the imple-

mentation where rwFes is the number of fitness evaluations

by random walk. Therefore, the final computational com-

plexity of the proposed algorithm is as follows:

O ITGOð Þ ¼ O T � O p � logpþ O npFesð Þððð
þ O qpFesþ qp � log qpð Þð ÞÞ þ O dpFesð Þ
þ O dpFes=2ð ÞÞ þ O rwFesð ÞÞÞ

where T is the maximum number of iterations, p is the

population size, npFes is the number of fitness evaluations

for the proliferative cell, qpFes is the number of fitness

evaluations for the quiescent cell, qp is the number of

quiescent cell, dpFes is the number of fitness evaluations

for the dying cell, and rwFes is the number of fitness

evaluations by the random walk.

6 Parameter tuning

Three parameters were used in ITGO, namely, beta, c, and

d. Nevertheless, a complete evaluation on all possible

combinations of these parameters is impractical. The pa-

rameter tuning strategy, as reported in [60, 61], is used to

find an appropriate parameter combination of ITGO for the

good performances. Two multimodal functions (F8 and

F15) are chosen and beta ranges in [0.8, 1.8], c ranges in

[1, 10], whereas d ranges in [3, 12]. We first initialize the

parameter combination of [beta, c, d] as the mean values of

their respective lower and upper boundary values, i.e., [1.3,

5, 8], c and d are integer. Based on this initial combination,

we adjust the parameters one at a time. We first vary pa-

rameter beta from 0.8 to 1.8 with c and d are fixed. Then

we choose the best beta value due to the best fitness value.

In the next step, we fix the beta and d value, adjust c from 1

to 10. At the end, we vary parameter d value from 3 to 12

as so on.

From Tables 23 and 24, the simulation results show that

beta value should be chosen as 1.5, or 1.6 or 1.7 for

function 8 and 1.5 for function 15. Therefore, we set beta

value as 1.5. We use new beta value and fixed d value to

adjust c value from 1 to 10. From Tables 25 and 26, we can

see that c should be chosen as 4 or 8 or 9 for function 8 and

7 or 8 for function 15. So, we set c value as 8, because

when c = 8, the function 8 and function 15 can obtain

better fitness value, too. At the end, we set the beta value as

1.5 and c value as 8, adjust d value from 3 to 12. From

Tables 27 and 28, we can see that d value should be chosen

as 8 for function 8 and 4 or 8 or 9 for function 15. So we set

d value as 8. Then the parameter tuning process is com-

pleted. The experimental findings suggest that we can set

the parameter combination [beat, c, d] as [1.5, 8, 8] in the

performance evaluation.

7 Discussions

In this section, we discuss some aspects of the proposed

algorithm (ITGO). Though, some operations are similar to

the operations of particle swarm optimization, such as the

operation of the quiescent cell and dying cell and some

operations are similar to the DE or rcGA, because the cross

operation is used; it is different from them. Firstly, there

are many ‘leaders’ (chosen randomly from the proliferative

cell group) which guide other agents; secondly, the cross

operation is different from DE or rcGA. In addition, there

are many new operations such as the invasive behavior of

the proliferative cell with the Levy distribution, the random

walk operations, and the search of invasive cell. Especially,

we achieved the interaction of the different subpopulations,

which can enhance the diversity of the proposed algorithm.

In addition, the analysis of the experimental results shows

that the proposed algorithms has fast convergence speed

for many multimodal or high dimension problems. Stan-

dard value shows the stability of our algorithm. It is shown

that our algorithm is convenient and efficient to solve the

data clustering problems. Then we analyze the computation

complexity, the proposed algorithm is ranked third, maybe

due to other computation such as the levy distribution and

the neighbor numbers of quiescent cell. Though, there are

some disadvantages of the proposed algorithm such as the

complexity of realization and parameter tuning, there are

many advantages such as, fast convergence speed, better

stability, and better search ability.

8 Conclusion

In this paper, we proposed a new meta-heuristic algorithm

called ‘ITGO’ for data cluttering. According to the

mechanism of tumor growth, tumor cells can be divided

into five types, namely: invasive cell, proliferative cell,

quiescent cell, dying cell, and necrotic cell. In order to

implement the invasive tumor growth optimization, five

different behaviors occur in tumor for different cells: in-

vasive cell growth, proliferative cell growth, quiescent cell

growth, dying cell growth, and random walk. Necrotic cell

has been dead, so it does not grow. Many interactions

among invasive cell, proliferative cell, quiescent cell and

dying cell enhance the search ability of our algorithm.

Then, we use CEC 2005 and CEC 2008 benchmark func-

tions to verify the performance of our algorithm, compared

with the well-known algorithms including PSO, DE, GSA,

CLPSO, cPSO, PSO-w, PSO-cf, UPSO, SG-PSO, SP-PSO

rcGA, and TLBO by the Wilcoxon’s signed-rank test with

Bonferroni–Holm correction method and the Friedman’s

test. At the end, six benchmark datasets are chosen to

verify the performance of our algorithm for data clustering,
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compared with K-means, DE, GSA, and TLBO. Ex-

perimental results show that ITGO algorithm can not only

be used to solve data clustering problem better, but also be

used to solve other optimization problems, which can be

widely used in other engineering and science fields. In

future, many improvements in ITGO can be started due to

the disadvantages of it, such as the better operations and

better parameter tuning method.
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