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Abstract Training feedforward neural networks (FNNs)

is considered as a challenging task due to the nonlinear

nature of this problem and the presence of large number of

local solutions. The literature shows that heuristic opti-

mization algorithms are able to tackle these problems much

better than the mathematical and deterministic methods. In

this paper, we propose a new trainer using the recently

proposed heuristic algorithm called social spider opti-

mization (SSO) algorithm. The trained FNN by SSO

(FNNSSO) is benchmarked on five standard classification

data sets: XOR, balloon, Iris, breast cancer, and heart. The

results are verified by the comparison with five other well-

known heuristics. The results prove that the proposed

FNNSSO is able to provide very promising results com-

pared with other algorithms.

Keywords Optimization � Training neural network �
Social spider optimization � Feedforward neural networks �
Learning

1 Introduction

The problem of improving the learning of artificial neural

networks (ANNs) is considered as a challenging task as the

literature shows. This problem is to find optimal values for

structural parameters of ANNs (mostly weights and biases)

to achieve the minimum classification, predication, or ap-

proximation errors. In fact, learning is the main and key

process in any type of ANNs. Due to the high dimen-

sionality of this problem and varying search space with

respect to the given data set, the problem of ANN learning

enhancement is considered as a challenging task.

Generally speaking, there are three types of learning in

ANNs: supervised [1, 2], unsupervised [3, 4], and rein-

forcement [5, 6]. As its name implies, in a supervised

learning process, a supervisor provides feedbacks about the

performance of an ANN based on the given training sam-

ple. So, an ANN is provided with its performance and

allowed to adjust its structural parameters with respect to it.

In contrary, there is no feedback from an external super-

visor in unsupervised learning. In this case, an ANN has to

assess its performance individually. Finally, ANNs are

punished or rewarded with incorrect or correct actions

during an enforced learning process. So, the feedbacks are

limited to two types: right or wrong. In this case, an ANN

has to adapt itself to the training samples based on the

provided feedbacks. This type of learning is highly similar

to learning mechanism of trained animals.

Regardless of the differences between the three types of

learning in ANNs, the similarity is the objective. The ul-

timate goal of a learning process is the find the best

structural parameters of NNs to achieve highest perfor-

mance. In feedforward neural network (FNN) [7], which is

the focus of this study, the most important structural pa-

rameters are weights of the connections between various
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neurons in different layers and the biases of the neurons

themselves. There are other parameters that are of interest

as well: number of hidden neurons and number of hidden

layers. Since the structure of a FNN is defined before the

learning process, however, the weights and biases are

mostly considered as the main variables in learning en-

hancement of FNN.

The conventional learning algorithm for FNNs is the

so-called back-propagation (BP) algorithm [8]. This al-

gorithm is a mathematical gradient-based algorithm that is

indeed the most popular algorithm in this field. In this

algorithm, the training samples are fed to the FNN and the

difference between the desirable output and obtained

output (error) is propagated backward to adjust the

weights and biases. This iterative process is continued

until the satisfaction of an end criterion, which is mostly a

threshold of the error.

Although the BP algorithm can be very effective in

simple and mostly linear data sets, there is one main

drawback: premature convergence. The BP algorithm uti-

lizes gradient descent. Therefore, the initial random solu-

tion is guided towards the steepest valley in the search

space. In this case, the quality of the obtained solutions

highly depends of the initial solution. In addition, there is

high possibility of local optima stagnation. It is quite often

that the error stays constant during the learning process for

a long time and that there is no further improvement, which

shows that the algorithm entraps in local optima. The lit-

erature shows that heuristic algorithms are promising al-

ternatives for alleviating this main drawback in learning

FNNs [9].

Heuristic optimization algorithms mostly start the opti-

mization process by creating one or a set of random solu-

tions [10–14]. They then improve the initial random

solution(s) mostly using nature-inspired concepts until an

end condition is met [15, 16]. Since heuristics methods

randomly create solutions and improve them, they have

high ability to avoid of local optima [17–21]. Some of the

most popular algorithms in this field are as: ant lion opti-

mizer (ALO) [22], genetic algorithm (GA) [23], particle

swarm optimization (PSO) [24, 25], ant colony optimiza-

tion (ACO) [26], differential evolutions (DE) [27], evolu-

tion strategy (ES) [28], and PSOGSA [29]. Nearly, the

majority of these algorithms have been employed to im-

prove the learning of FNNs.

Montana and Davis was first utilized GA to improve

learning of NNs [30]. In 1990, the GA algorithm was

again applied to FNN [31]. The weights and biases of

FNN were the variables. Belew et al. showed that this

algorithm is able to effectively enhance the learning of

FNN. There are also other studies that integrate GA to NN

for improving learning using different methods [32–35].

The PSO algorithm was also employed as the trainer for

FNN in many studies [36–41]. Although ACO is suitable

for combinatorial problems, it was shown in [42–45] that

this algorithm is able to provide very promising results

when applying to NNs as well. Some other heuristic-based

learning algorithms in the literature are as follows: DE-

based trainer [46, 47], ABC-based trainer [48, 49],

gravitational search algorithm (GSA)-based trainer [50,

51], Tabu search (TS)-based trainer [52, 53], bio-geogra-

phy-based optimization (BBO)-based trainer [54], and ES-

based trainer [55], magnetic optimization algorithm

(MOA)-based trainer [56], and grey wolf optimizer

(GWO) [57].

Despite the merits of the above-mentioned works, the

problem of local optima entrapment still persists. In addi-

tion, there is a theorem in the field of heuristics called No

Free Lunch [58] that says there is no optimization algo-

rithm for solving all problems. Since FNNs are trained for

different data sets, there are possibilities that one algorithm

performs well on a data set but worse on another. These

reasons allow researcher to investigate the efficiencies of

new algorithms in enhancing learning of FNNs. This is also

the contribution of this study, in which the recently pro-

posed social spider optimization (SSO) algorithm [59, 60]

is chosen to be embedded to FNNs. The only similar work

in the literature is that of Pereira et al. [61], in which the

SSO algorithm has been employed to train neural networks

and classify Ionosphere, Satimage, Diadol, Mea, and Spiral

data sets. They only optimized the weights of the con-

nections, but this work optimizes the weights and biases of

MLPs simultaneously. Therefore, the problem of learning

MLP is more difficult in this work. We also solve five

different standard classification data sets. Other contribu-

tion of this work is the comparison of different heuristic

algorithms on classification data sets. The rest of the paper

is written as follows.

Section 2 presents the rudimentary concepts of FNNs.

The general concepts and mechanism of SSO algorithm is

provided in Sect. 3. The new SSO-based learning process

of FNN is proposed in Sect. 4. Section 5 includes the re-

sults, discussion, and analysis. Eventually, Sect. 6 con-

cludes the study and advises a couple of directions for

future studies.

2 Feedforward neural network

As the name of FNN show, data are cascaded in one di-

rection between the neurons in the network [7]. The neu-

rons are arranged in parallel layers, and each neuron in tth

layer receives data from the neurons t - 1th layer and

delivers data to the neurons in t ? 1th layer. The structure

of FNN with 1 input, 1 hidden, and 1 output layer is il-

lustrated in Fig. 1.
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As shown in Fig. 1, the input layer is the layer that is

given the inputs. Then, the inputs are multiplied by the

weights and delivered as the inputs of the hidden layer. The

same scenario occurs for the data transition between the

hidden layer and output. The actual outputs of neurons are

calculated by a transfer function. Interested authors are

referred to [7] for more details. Although the structure and

workflow of FNN is very simple, it has been proven that a

three-layer FNN is able to approximate any given function

[62].

When providing inputs for a FNN, the weighted sum of

inputs are first calculated as follows:

sj ¼
Xn

i¼1

ðWij:XiÞ � hj; j ¼ 1; 2; . . . h ð2:1Þ

where n is the number of the input nodes, Wij shows the

connection weight from the ith node in the input layer to

the jth node in the hidden layer, hj is the bias (threshold) of
the jth hidden node, and Xi indicates the ith input.

Then, a sigmoid function defines the final output of each

hidden node as follows:

Sj ¼ sigmoid sj
� �

¼ 1

1þ exp �sj
� �� � ; j ¼ 1; 2; . . . h

ð2:2Þ

Finally, the same two steps define the output of the

network as follows:

ok ¼
Xh

j¼1

ðwjk:SjÞ � h
0

k; k ¼ 1; 2; . . .;m ð2:3Þ

Ok ¼ sigmoid okð Þ ¼ 1

1þ exp �okð Þð Þ ; k ¼ 1; 2; . . .;m

ð2:4Þ

where wjk is the connection weight from the jth hidden

node to the zth output node, and hk
’ is the bias (threshold) of

the kth output node.

As discussed in Sect. 1, the most important structural

parameters of FNN are weights and biases. Equations (2.1)

and (2.3) show how they define the final output of FNN.

We propose a new learning algorithm in the next section to

find the optimal values for weights and biases.

3 Social Spider Optimization Algorithm

The social spider optimization (SSO) algorithm was pro-

posed by Cuevas et al. in [60]. This algorithm is a swarm-

based algorithm, which mimics the social intelligence of

spiders who live in a colony. In fact, the social commu-

nication of spiders using the vibration throughout the web

was the main inspiration of this algorithm. In this algo-

rithm, the search space of optimization problems is con-

sidered as the web and the search agents as the spiders of

the colony. The search agents are divided to two types:

males (M) and females (F). The weight of each spider is

defined as its fitness. The general operators that apply for

modifying spiders (candidate solutions) are defined based

on the gender. In the SSO algorithm, similar to a spider

colony, the number of females is higher than the number of

males and initially considered as 60 to 90 % of the

population.

During optimization, spiders communicate with vibrat-

ing the strings in web. The vibration that a spider receives

is defined with respect to the size of the sender spider and

its distance. The mathematical model that was proposed by

Cuevas et al. is as follows [60]:

Vibsi ¼ wje
d2i;j

where wj indicates the weight of the jth spider, and di,j is

the Euclidean distance between ith and jth spiders.

It is assumed in SSO that every spider is only able to

feel three vibrations from other spiders as follows:

• The nearest spider subject to having higher fitness

(Vibci).

• The best spider in the swarm (Vibbi).

• The nearest female, which is applicable for men (Vibfi).

As mentioned above, the operator for position updating

of search agents is defined based on their gender. A female

updates its position as follows [59]:

Xi t þ 1ð Þ ¼ Xi tð Þ þ a � Vibci � Sc � Xi tð Þð Þ þ b � Vibbið
� Sb � Xi tð Þð Þ þ d � r � 0:5ð ÞÞ ð3:1Þ

where a, b, d, and r are random values in [0,1], Sc indicates

the closest best neighbour, and Sb shows the fittest spider in

the swarm.

This formula is applicable when a female is attracted

towards the source of vibrations. In SSO, it is assumed that

females can make a decision randomly to move towards or

outwards the source. If they decide to move away from the

source, the following formula is utilized [59]:
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Fig. 1 Three-layer FNN
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Xi t þ 1ð Þ ¼ Xi tð Þ � a � Vibci � sc � Xi tð Þð Þð
þ b � Vibbi � Sb � Xi tð Þð Þ þ d � r � 0:5ð ÞÞ

ð3:2Þ

where a, b, d, and r are random values in [0,1], Sc indicates

the closest best neighbour, and Sb shows the fittest spider in

the swarm.

Male spiders have different position updating procedure.

Firstly, they are divided to two groups: dominated (D) and

non-dominated (ND). ND spiders tend to be attracted to-

ward females, whereas D spiders move towards the centre

of male population. This behaviour is inspired by the ten-

dency of ND spider to go to the more populated male areas

and feed from the leftovers of other males and grow up to

become an ND spider in future [59]. In order to define what

make spider D, we have to calculate the median of the

fitness (weight) of all male spiders in every iteration. Then,

the spiders with fitness below the calculated median are

considered as D-type and the rest are ND-type spiders. The

mathematical model that was proposed to mimic the

movement of males is as follows [59]:

For ND-type spiders:

Xi t þ 1ð Þ ¼ Xi tð Þ þ a � Vibfi � Sf � Xi tð Þ
� �

þ d � r � 0:5ð Þ
� �

ð3:3Þ

For D-type spiders:

Xi t þ 1ð Þ ¼ Xi tð Þ þ a �
PNm

j¼1 m
k
j �WNf

þ j
PNm

j¼1 WNf

 !
� XiðtÞ

 !

ð3:4Þ

where Sf is the closest female to ith make, and b, d, and
r are random values in [0,1].

It may be seen in these equations that ND-type spiders

are only able to move toward females and that there is no

backward movement in contrast to female’s movement

methods.

The last mechanism of the SSO algorithm for modify-

ing the search agents is the mating operator. The ND

males are required to mate with females who are within a

certain radius called mating radius. There might be more

than one male and female in the mating radius. Therefore,

a roulette wheel mechanism randomly chooses parents

proportional to their fitness values. A new spider is then

constructed by the combination of genes (variables) of

males and females. After producing new spiders, the fit-

ness of them are calculated and compared to the worst

spiders in the population. If any of the new spiders are

fitter than a spider, it is added to the population with

eliminating the less fit spider.

The SSO algorithm follows the following steps to solve

optimization problems:

(a) Begin the optimization process by generating spiders

in random positions on the search space.

(b) The spiders are assigned a gender (65–90 % female

and the rest male).

(c) The fitness of spiders is calculated by the objective

function.

(d) The best spider in the swarm, best female, and

closest spider to each spider are defined.

(e) Position of a spider is updated by (3.1) or (3.2) if it is

female.

(f) Position of a spider is updated by (3.3) or (3.4) if it is

male.

(g) The males and females located in the mating radius

mate to create new spiders.

(h) Produced new spiders are substituted with the worst

spiders if they have better fitness value.

(i) Steps c–h is iterated until the satisfaction of an end

criterion.

Cuevas et al. [60] proved that the SSO algorithm is able

to provide very competitive results compared with the

well-known algorithms such as PSO and ABC. They ob-

served and concluded that the division of spiders based on

gender maintains the diversity of the balance between ex-

ploration and exploitation by each group. In addition, the

vibration mechanism and movement methods promote

exploration.

These observations also motivates our attempts to pro-

pose a SSO-based FNN trainer and investigate the perfor-

mance of this algorithm in training NNs.

4 SSO-based Feedforward Neural Network

Ad discussed in Sect. 1, the learning of FNN mostly refers

to the process of finding the best values of weights and

biases. However, improving the learning of FNN is done

with three methods when using heuristic algorithms [31]:

1. Defining the weights and biases.

2. Defining the structure of FNN.

3. Tuning the parameters of other learning methods (e.g.

learning rate and momentum in BP).

In the first method, which is the most common method,

the weights and biases are optimized by a meta-heuristic.

The second method deals with optimizing the structure of

FNN such as connections between neurons, number of

neurons, number of hidden nodes, and number of hidden

layers. The third method employs a heuristic algorithm as

auxiliary method for another learner. In fact, meta-heuris-

tics plays the role of parameter tuner in this case. In this

study, we concentrate on the first method.
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In order to formulate the problem of learning enhance-

ment of FNN for a meta-heuristic, two steps should be

taken:

1. Representing the weights and biases in a suitable

format.

2. Defining the objective function.

The first step represents the variable of the problem for a

given meta-heuristic. There are three main methods in the

literature: vector, binary, and matrix approaches. Since the

SSO algorithm employed in this work considers solutions

in a vector, we choose the vector representation method [31,

39, 50]. An example of this approach is shown in Fig. 2.

Figure 2 shows that the vector representation is a very

simple method, in which the weights and biases are just

added to a vector in order to be delivered to heuristic al-

gorithms. After defining the vector of variables, an objec-

tive function should define its fitness. In FNN, generally

speaking, the performance is defined by looking at the

desirable output and the actual output of the network. The

most common performance metric in the literature is mean

squared error (MSE), which is calculated as follows:

MSE ¼
Xm

i¼1

oki � dki
� �2 ð4:1Þ

where m is the number of outputs, di
k is the desired output

of the ith input unit when the kth training sample is used,

and oi
k is the actual output of the ith input unit when the kth

training sample appears in the input.

The key point here is that there is always more than one

training sample in data sets. Therefore, a given FNN should

be assessed based on its performance on all training sam-

ples. In this case, average of the MSE on all training

samples is fruitful.

With problem representation and the objective function,

the FNN is ready to be trained by the SSO algorithm. The

flow chart of the proposed training algorithm is illustrated

in Fig. 3.

5 Results and discussion

In this section, we employ five data sets to benchmark

the performance of the proposed method as presented in

Table 1. This table show that we select five standard

classification data sets from the University of California

at Irvine (UCI) Machine Learning Repository [63]:

XOR, balloon, Iris, breast cancer, and heart. It should

be noted that the number of attributes is increased from

the first to the last data set. We deliberately choose this

set of data sets with different attributes to challenge the

proposed algorithm and observe its performance.

Obviously, the number of hidden nodes, weights, and

biases are increased proportional to the number of at-

tributes of data sets. To define the structure of FNNs

for solving each data set, we chose 2 9 N?1 hidden

nodes where N is the number of attributes as per the

recommendation of [64]. Other details of the data sets

are available in Table 1.

For data verification, we compare the results with PSO

and ACO as the best candidates and most well-known al-

gorithms in the family of swarm-based optimization tech-

niques. In addition, GA, ES, and PBIL are chosen as the

best representatives of evolutionary algorithms. The initial

values for the main parameters of SSO and these algo-

rithms are provided in Table 2.

For generating the results, each algorithm is run 10

times and the average (AVE) and standard deviation (STD)

of MSE are chosen as the comparison metrics. Average of

MSE will indicate the ability of algorithms in avoiding

local solutions. In addition, the standard deviations show

the variation of the results and stability of algorithm

in avoiding local solutions. Another comparison metric

Weight

BiasVector 
representation

Fig. 2 Vector representation of

weights and biases for heuristic

algorithms
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reported in the results is the classification rate. We chose

the best structure over 10 runs and calculate the classifi-

cation rate using the test samples. This metric will assist us

to see how well an algorithm in providing accurate results

is. After all, we report the results in Tables 3, 4, 5, 6 and 7.

Please note that we name the proposed learning method of

Create random initial N spiders in a predefined range

Assign each spider a gender

Calculate the fitness of each spider using average of 
Eq. (3.1) for every training sample

Definite the best spider in the swarm, the best female, 
and the closest spider to each spider in the population

Is the spider 
female? Is rand < PF?Is the male 

ND-type?

Update the position of the 
spider using Eq. (3.1)

Update the position of 
the spider using Eq. (3.2)

Update the position of 
the spider using Eq. (3.3)

Update the position of 
the spider using Eq. (3.4)

YesNo

No

Yes Yes

No

Update the mating radius

Mate the males and females to create new spiders

Is the created spider 
fitter than the worst 

spider?

Add the new spider to the population and emilinate the 
worst spider

Is End criterion 
satisfied?

Return the best spider

Yes

No

Yes

No

Fig. 3 General steps of the proposed SSO-based trainer
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this work FNNSSO and highlight the best results in bold-

face in the table of results.

The results of the algorithm on XOR data set are pro-

vided in Table 3. This table shows that the minimum av-

erage of MSE is provided by the proposed FNNSSO

algorithm. The standard deviations show that this algorithm

performs very stable on this data set. The results of this

algorithm is significantly better than FNNPSO and

FNNACO in this data set, so this proves the merits of this

algorithm in avoiding local solutions compared with other

swarm-based optimization techniques. The FNNGA algo-

rithm shows very competitive results compared with

FNNPSO in terms of local optima avoidance and accuracy.

It can be seen in Table 3 that the classification rate for

FNNGA and FNNSSO are both equal to 100 %.

The results of the algorithms on the balloon data sets are

almost similar to those of the XOR data set. Table 4 shows

that the best result belong to FNNGA, closely followed by

FNNSSO. Although the classification accuracies are simi-

lar for all algorithms, the average and standard deviation of

MSE are different. Again, the results show that the local

optima avoidance of the majority of evolutionary algo-

rithms are higher than that of FNNPSO and FNNACO. As

a swarm-based algorithm, however, FNNSSO provides

very competitive results compared to evolutionary-based

FNN trainers.

The results of Iris data set are shown in Table 5. The

results are highly consistent with those of Table 3, in which

FNNSSO shows the best results for AVE, STD, and clas-

sification rate. The significantly improved MSE and clas-

sification accuracy of FNNSSO algorithm are noticeable.

The results of evolutionary algorithms (especially classifi-

cation accuracy) are again better than FNNPSO and

FNNACO.

The most difficult data sets in terms of dimensionality of

learning problems are breast cancer and heart data sets. It

may be observed in Tables 6 and 7 that the average and

standard deviation of MSE are much better for FNNSSO

algorithm This highly proves that the SSO algorithm is

Table 1 Data sets

Classification

data sets

Number of

attributes

Number of

training

samples

Number

of test

samples

Number of

classes

3-Bit XOR 3 8 8 as training

samples

2

Balloon 4 16 16 as training

samples

2

Iris 4 150 150 as training

samples

3

Breast cancer 9 599 100 2

Heart 22 80 187 2

Table 2 Initial parameters of algorithms

Algorithm Parameter Value

SSO PF 0.7

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

generations

250

PSO Topology Fully connected

Cognitive constant (C1) 1

Social constant (C2) 1

Inertia constant (w) 0.3

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

iterations

250

ACO Initial pheromone (s0) 1e-06

Pheromone update

constant (Q)

20

Pheromone constant (q0) 1

Global pheromone decay

rate (pg)

0.9

Local pheromone decay

rate (pt)

0.5

Pheromone sensitivity (a) 1

Visibility sensitivity (b) 5

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

iterations

250

GA Type Real coded

Selection Roulette wheel

Crossover Single point

(probability = 1)

Mutation Uniform

(probability = 0.01)

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

generations

250

ES k 10

r 1

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

generations

250

PBIL Learning rate 0.05

Good population member 1

Bad population member 0

Elitism parameter 1

Mutational probability 0.1

Population size 50 for XOR and balloon,

200 for the rest

Maximum number of

generations

250
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suitable for training FNNs due the high dimensional nature

of this problem. The high exploration of this algorithm

resulted in such a performance on these two challenging

data sets. The classification accuracy of this algorithm is

also good on these two data sets.

To sum up, the FNNSSO shows superior results com-

pared with FNNGA on the majority of data sets. This is due

to high exploration ability of this algorithm. Another be-

haviour observed is the better results of the evolutionary

algorithms compared to the swarm-based optimization

techniques employed in this work except SSO. This is

because of the recombination operators of evolutionary

algorithm which highly promote exploration. Despite this

high exploration, the result of this work evidences that SSO

algorithm also has a very high exploration.

Another behaviour observed in the results is the better

performance of the FNNSSO algorithm on data sets as the

difficulty increases. The results show that FNNSSO pro-

vide very good results on Iris, cancer, and heart data sets.

The number of variables for these data sets to be optimized

is 75, 209, and 1081, respectively. This evidences that the

SSO algorithm is very good in optimizing high dimen-

sional problems, which again is due to the high exploration

of this algorithm. However, the classification accuracies

are not as good as local optima avoidance, which is due to

the exploitation of the SSO algorithm. Therefore, it seems

that exploration of SSO is better that its exploitation, which

assist this algorithm to show very high local optima

avoidance and reasonable classification accuracy.

6 Conclusion

This work proposed a new training algorithm based on the

recently proposed SSO algorithm for FNNs. The vector

representation method was chosen to provide SSO with the

weights and biases for optimization. The objective function

was to minimize the average of MSE on all training sam-

ples. The performance of the proposed FNN trainer was

benchmarked on five standard classification problems:

XOR, balloon, Iris, breast cancer, and heart. The results of

the proposed FNNSSO algorithm were compared to five

other algorithms in the literature for verification: PSO,

ACO, GA, ES, and PBIL. The results showed that the

proposed method is very efficient in learning FNN, which

is due to exploration and high local optima avoidance of

this algorithm. We also observed that the results of

FNNSSO were better on the majority of the data sets in

terms of classification accuracy. Another finding was the

Table 3 Statistical results for XOR data set over 10 independent runs

Algorithm MSE (AVE ± STD) Classification rate (%)

FNNSSO 2.8075e-05 ± 0.0000 100.00

FNNPSO 0.084050 ± 0.035945 37.50

FNNACO 0.180328 ± 0.025268 62.50

FNNGA 0.000181 ± 0.000413 100.00

FNNES 0.118739 ± 0.011574 62.50

FNNPBIL 0.030228 ± 0.039668 62.50

Table 4 Statistical results for balloon data set over 10 independent

runs

Algorithm MSE (AVE ± STD) Classification rate (%)

FNNSSO 1.7395e-15 ± 0.0000 100.00

FNNPSO 0.000585 ± 0.000749 100.00

FNNACO 0.004854 ± 0.007760 100.00

FNNGA 5.08e-24 ± 1.06e-23 100.00

FNNES 0.019055 ± 0.170260 100.00

FNNPBIL 2.49e-05 ± 5.27e-05 100.00

Table 5 Statistical results for iris data set over 10 independent runs

Algorithm MSE (AVE ± STD) Classification rate

FNNSSO 0.0210 ± 3.6571e-18 91.3333

FNNPSO 0.228680 ± 0.057235 37.33 %

FNNACO 0.405979 ± 0.053775 32.66 %

FNNGA 0.089912 ± 0.123638 89.33 %

FNNES 0.314340 ± 0.052142 46.66 %

FNNPBIL 0.116067 ± 0.036355 86.66 %

Table 6 Statistical results for breast cancer data set over 10 inde-

pendent runs

Algorithm MSE (AVE ± STD) Classification rate (%)

FNNSSO 0.001600 ± 2.28 e-19 98.00

FNNPSO 0.034881 ± 0.002472 11.00

FNNACO 0.013510 ± 0.002137 40.00

FNNGA 0.003026 ± 0.001500 98.00

FNNES 0.040320 ± 0.002470 06.00

FNNPBIL 0.032009 ± 0.003065 07.00

Table 7 Statistical results for heart data set over 10 independent runs

Algorithm MSE (AVE ± STD) Classification rate

FNNSSO 0.0627 ± 1.4628e-17 67.5000

FNNPSO 0.188568 ± 0.008939 68.75 %

FNNACO 0.228430 ± 0.004979 00.00 %

FNNGA 0.093047 ± 0.022460 58.75 %

FNNES 0.192473 ± 0.015174 71.25 %

FNNPBIL 0.154096 ± 0.018204 45.00 %
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relevancy of the performance of the FNNSSO algorithm

and difficulty of the data set in terms of number of features.

It was observed that the proposed algorithm outperforms

other algorithms in Iris, breast cancer, and heart data sets,

which is again due to high exploration of this algorithm.

The paper also considered the comparison of other algo-

rithms employed in this work. We found evolutionary al-

gorithms outperformed swarm-based algorithms. The

reason was discussed in terms of the intrinsic promotion in

exploration using recombinations operators in evolutionary

algorithms.

For future work, it is recommended to see the effec-

tiveness of the proposed FNNSSO in training other types of

NNs. In addition, methods for improving the exploitation

of SSO algorithm are worth studying.
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