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Abstract This paper addresses the trajectory tracking

control problem of an autonomous surface vehicle (ASV)

subject to unknown ocean currents, where smooth and

continuous velocity commands are desirable for safe and

effective operation. A novel bioinspired approach is pro-

posed by integrating three neural dynamics models into the

conventional Lyapunov synthesis. The tracking controller

is derived from the error dynamics analysis of the ASV and

the stability analysis of the control system. A simple ob-

server is proposed to estimate the unknown ocean currents,

which only requires the position of the ASV. The overall

control system under the controller and observer is rigor-

ously proved to be asymptotically stable by a Lyapunov

stability theory for cascaded systems. The most contribu-

tion is that the proposed tracking controller is capable of

eliminating the sharp velocity jumps due to sudden track-

ing error changes and generating smooth and continuous

control signals. In addition, it can deals with the situation

with unknown ocean currents. The effectiveness and effi-

ciency of the proposed approach are demonstrated through

simulation and comparison studies.

Keywords Neural dynamics � Tracking control �
Autonomous surface vehicles � Unknown ocean currents

1 Introduction

The last decades have witnessed a tremendous progress in

the development of autonomous surface vehicles (ASVs).

Real-time tracking control is one of important issues in the

motion control of ASVs, which is concerned to design

control commands/laws to force ASVs to reach and follow

the desired time parameterized curves [1, 2]. Due to dis-

turbance, severe operation condition and sensor noise, it is

often very difficult to avoid errors between the desired and

actual trajectories. Therefore, how to effectively and effi-

ciently control an ASV to precisely track the desired paths

is still an open challenging question.

There have been many studies on the tracking control of

ASVs in the past few years. Typical tracking control

methods are classified into sliding-mode control [3–6],

nonlinear Lyapunov-based control [7–9] and neural net-

work control [10–12]. Sliding-mode control has the out-

standing characteristics of insensitivity to parameter

variations and good rejection to disturbances. It is very

attractive to employ sliding-mode tracking controllers for

ASVs. However, one major drawback of the sliding-mode

approach is the high frequency of control action (chatter-

ing), which may result in discontinuous and non-smooth

control laws. Nonlinear Lyapunov-based approaches for

robotic systems usually start by constructing multiple

control Lyapunov functions and then employ recursive

backstepping or other combined techniques [7–9] to derive

the control laws. The stability of the control system is

guaranteed by a Lyapunov theory. However, the designed

control laws are directly related to the tracking errors that
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may be initially very large, and the generated velocity

commands start with very large values (velocity jumps). As

a result, the required accelerations and forces will be in-

finitely large at those sharp change points, which is not

practically possible.

To deal with the impractical problem of large initial

velocities, Ghommam et al. [7] proposed a dynamic con-

troller by generating torque signals using backstepping

design methodology. However, it requires the vehicle

nonlinear and complex dynamics, which are not always

available. As effective methods for uncertain nonlinear

systems, approximation-based neural networks (NNs) have

been widely employed. For example, Lin et al. [13] de-

veloped a recurrent wavelet neural network (RWNN)-

based controller. Chen et al. [14] proposed an adaptive NN

tracking controller by incorporating the actuator con-

figuration matrix and considering actuator saturation con-

straints. In [10, 12], a simple one-layer NN controller and

an adaptive output feedback NN controller were proposed.

Unfortunately, the existing NN-based tracking control al-

gorithms require either on-line learning or off-line training

procedures before the controllers are capable of controlling

the vehicle properly. The learning algorithms are compu-

tationally complicated. Recently, Guerrero-González

et al. [15] proposed a biologically inspired NN kinematic

controller, where the model algorithm is shown to be

computationally efficient. However, an on-line training

phase is still needed, making its applicability dubious.

On the other hand, ASVs in practice must also be ca-

pable of operating in the environment subject to unknown

ocean currents, which are usually unknown, stochastic and

hard to model. Considering the fact that some ocean waters

far away from the shore flow in one direction only, many

researchers studied the control design of marine vehicles

under the assumption that these currents are irrotational

and constant [16–18]. However, few results on the real-

time tracking control of ASVs can be found. In order to

compensate the influence of the currents, one feasible so-

lution is to find a suitable observer that can deduce the

unknown currents, and then design a proper feedback

control. For example, Yang et al. [19] constructed an ob-

server to provide an estimation of unknown time-variant

disturbances for the tracking control of a ship. Tee and

Ge [20] designed a high-gain observer for the surface

vessel to tackle the output feedback problem. Moreover, a

general observer scheme was presented in [21] for the path

following control of an underactuated surface vessel. In-

terested readers concerning the surveys on disturbance

observers are referred to [22, 23] and their references. In

this paper, we employ an efficient exponential observer for

the constant unknown ocean currents when a novel bio-

inspired neurodynamics-based controller is proposed to

directly tackle the impractical velocity-jump problem.

Motivated by the above considerations, this paper proposes

a novel bioinspired neural dynamics-based approach to di-

rectly handle the impractical velocity-jump problem in the

tracking control of ASVs subject to unknown ocean currents.

Similar to many existing path tracking control methods, it is

assumed that the location of the vehicle is completely and

accurately known through various sensor measurement and

signal processing systems, such as global positioning systems

(GPS) and ultra-short baseline (USBL) acoustic positioning

systems [24, 25]. The proposed tracking controller is first

derived based on the error dynamics using conventional

Lyapunov design method. Then, inspired by the unique fea-

tures of the neural dynamics models derived from Hodgkin

and Huxley’s membrane equation [26] for a biological neural

system, three neural dynamics shuntingmodels are integrated

into the tracking controller. Meanwhile, a simple but efficient

observer is designed to estimate the velocities of the unknown

ocean currents. The stability of the control system under the

controller and observer is rigorously guaranteed by a Lya-

punov stability theory for cascaded systems. Distinct from the

previous neural network-based approaches, the proposed

neurodynamics-based control approach is designed without

any on-line/off-line learning procedures. The control algo-

rithm is therefore computationally efficient. In addition, the

proposed approach is capable of eliminating the sharp velocity

jumps due to sudden tracking error changes, generating

smooth and continuous control signals, even under the influ-

ence of unknown ocean currents.

The paper is organized as follows. Section 2 briefly

introduces some background for the proposed approach,

including the kinematic model of an ASV, the tracking

control problem and the neural dynamics model. Section 3

presents the design of the proposed neural dynamics-based

tracking controller and the stable current observer. The

stability of the control system and the tracking error con-

vergence are analyzed in Sect. 4. Section 5 presents the

simulation studies of the ASV to track a straight line and an

elliptic path. A comparison to the conventional Lyapunov-

based controller is presented. Concluding remarks are fi-

nally summarized in Sect. 6.

2 Background and problem formulation

This section first briefly describes the kinematic model of

an ASV. Then, the corresponding tracking control problem

is formulated. The biological membrane model and bioin-

spired shunting neural dynamics model are finally outlined.

2.1 Model of ASV

Marine vehicles require six independent coordinates to

determine their complete configuration (position and
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orientation). The six different motion components are

conveniently defined as surge, sway, heave, roll, pitch, and

yaw [1]. It is common to reduce the general six degrees of

freedom of the model to motion in the surge, sway, and

yaw directions by neglecting the heave, roll, and pitch

modes, which consequently obtains a general model for an

ASV. Consider a two-dimensional (2D) Cartesian work-

space, two coordinate frames are defined as the inertial

reference frame fIg and the body-fixed coordinate frame

fBg (see Fig. 1). In the case of a fixed current vector

vc ¼ ½vcx ; vcy �
>
, the kinematic equations of motion for the

ASV can be written as

_x

_y
_/

2
64

3
75 ¼

cos/ � sin/ 0

sin/ cos/ 0

0 0 1

2
64

3
75

u

v

r

2
64

3
75þ

vcx

vcy

0

2
64

3
75; ð1Þ

where x and y represent the inertial coordinates of the

center of mass (CM) of the vehicle; u and v are the surge

(forward) and sway (side) velocities, respectively, defined

in the body-fixed frame; / is the orientation of the vehicle

measured from the inertial-X axis and r is its yaw (angular)

velocity; vcx and vcy are nonzero ocean current velocities. In

order to simplify the controller design, the ocean current

here is assumed to be irrotational and constant.

The posture of the ASV in the inertial reference frame is

uniquely determined by a vector P ¼ ½x; y;/�>. Given that

a reference path provides the desired posture

Pd ¼ ½xd; yd;/d�>, it connects a given set of way points.

Consider the tracking of trajectory Pd with the desired

velocities ud, rd, and vd ¼ 0, where no sway velocity is

desired. The trajectory thus satisfies

_xd

_yd
_/d

2
64

3
75 ¼

cos/ � sin/

sin/ cos/

0 0

2
64

3
75 ud

rd

� �
; ð2Þ

Define the tracking error in the initial reference frame as

EIðtÞ ¼ P� Pd ¼ ½xe; ye;/e�>. Then, the error expressed in

the body-fixed frame EBðtÞ ¼ ½ex; ey; e/�> is obtained using

the global diffeomorphic coordinate transformation

ex

ey

e/

2
64

3
75 ¼

cos/ sin/ 0

� sin/ cos/ 0

0 0 1

2
64

3
75

xe

ye

/e

2
64

3
75: ð3Þ

Clearly, EIðtÞ ¼ 0 , EBðtÞ ¼ 0. Taking the time deriva-

tive of Eq. (3) yields

_ex ¼ uþ rey � ud cos e/ þ vcx cos/þ vcy sin/

_ey ¼ v� rex þ ud sin e/ � vcx sin/þ vcy cos/

_e/ ¼ r � rd

8><
>:

: ð4Þ

Equation (4) describes the tracking error dynamics, which

will be used to derive the tracking controller.

2.2 Tracking control problem

Consider the ASV represented by (1) in the presence of

constant unknown ocean currents vcx and vcy . Given the

desired posturePd. Design a smooth and continuous velocity

control law forU ¼ ½u; v; r�> as a function of desired posture

Pd, which drives the ASV to move, such that the actual

vehicle statePðtÞ precisely tracks the desired posturePd, i.e.,

lim
t!1

PðtÞ ¼ PdðtÞ: ð5Þ

In other word, the tracking error converges to zero as the

time approaches infinite.

2.3 Model of shunting neural dynamics

Hodgkin and Huxley [26] proposed a model for a patch of

membrane in a biological neural system using electrical

circuit elements. This modeling work together with other

experimental work led them to a Nobel Prize in 1963, for

their discoveries concerning the ionic mechanisms involved

in excitation and inhibition in the peripheral and central

portions of the nerve cell membrane. In their membrane

model, the dynamics of voltage across the membrane, Vm,

can be described using the state equation technique as

Cm

dVm

dt
¼ �ðEp þ VmÞgp þ ðENa � VmÞgNa
� ðEK þ VmÞgK;

ð6Þ

where Cm is the membrane capacitance. Parameters

EK;ENa and Ep are the Nernst potentials (saturation po-

tentials) for potassium ions, sodium ions and the passive

leak current in the membrane, respectively. Parameters

gK; gNa and gp represent the conductance of potassium,

sodium and passive channels, respectively. This model

provided the foundation of the shunting model.

By setting Cm ¼ 1 and substituting nI ¼ Ep þ Vm; A ¼
gp; B ¼ ENa þ Ep; D ¼ EK � Ep; S

þ
I ¼ gNa and S�I ¼

gK in (6), a typical shunting model is obtained [26] as

Y

X
{I}

I

I

XBYB u

v rφvc

vcx

y {B}

(x, y)

Fig. 1 Model of an autonomous surface vehicle (ASV)
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dnI
dt

¼ �AnI þ ðB� nIÞSþI ðtÞ � ðDþ nIÞS�I ðtÞ; ð7Þ

where nI is the neural activity (membrane potential) of the

i-th neuron. Parameters A, B and D are nonnegative con-

stants representing the passive decay rate, the upper bound

and lower bound of the neural activity, respectively.

Variable SþI is the total external positive input to the neuron

called excitatory input; variable S�I is the total external

negative input to the neuron called inhibitory input [27].

Note that the passive decay rate A determines the transient

response to input signals, which play important roles in the

model dynamics. Large A causes large passive decay rate

of the neural activity and thus results in very slow response

of the control system. The transient response to input sig-

nals does not depend on B and D.

This shunting model was first proposed by Grossberg to

understand the real-time adaptive behavior of individuals

to complex and dynamic environmental contingencies. The

dynamics behavior of this shunting model is featured by

smooth and bounded output, that is, restricted to a bounded

interval ½�D; B� and an automatic gain control. The in-

terested reader is suggested to consult [27, 28] for more

details. The shunting dynamics model has a lot of appli-

cations in biological and machine vision, sensory motor

control and many other areas. For example, Yang and

Meng [29–31] developed the first innovative application to

real-time path planning and tracking control of a mobile

robot. Further, it was extended to various robotic systems

[32–34]. More recently, the similar control concept is used

in the tracking control of deeply manned submarine vehi-

cles [35].

3 Controller design

This section presents the fundamental idea of the proposed

approach to solve the above mentioned tracking control

problem. A tracking controller is designed by integrating

three bioinspired neurodynamics components into the

conventional Lyapunov synthesis to eliminate the sudden

velocity jumps due to the smooth dynamics in the shunting

neural models. In addition, an observer is proposed to es-

timate the unknown ocean currents.

3.1 Tracking controller

To drive the ASV reach the desired trajectory, a Lyapunov

function candidate is first chosen as

V ¼ 1

2
ðe2x þ e2y þ e2/Þ: ð8Þ

From (4), the time derivative of (8) is computed as

_V ¼ exðu� ud cos e/ þ rey þ vcx cos/þ vcy sin/Þ
þ eyðvþ ud sin e/ � rex � vcx sin/þ vcy cos/Þ
þ e/ðr � rdÞ:

ð9Þ

Obviously, if we choose

u ¼ �c1ex þ ud cos e/ � v̂cx cos/� v̂cy sin/

v ¼ �c2ey � ud sin e/ þ v̂cx sin/� v̂cy cos/

r ¼ �c3e/ þ rd

8><
>:

; ð10Þ

where c1; c2 and c3 are positive constants; v̂cx and v̂cy are

the estimates of the current velocities vcx and vcy , then the

time derivative of V becomes

_V ¼ �c1e
2
x � c2e

2
y � c3e/

2 þ d; ð11Þ

with

d ¼ ~vcxðex cos/� ey sin/Þ þ ~vcyðex sin/þ ey cos/Þ;
ð12Þ

where ~vcx and ~vcy are the error variables defined as

~vcx ¼ vcx � v̂cx ; ~vcy ¼ vcy � v̂cy : ð13Þ

Temporarily, d is treated as a variable, which will be ad-

dressed later by presenting a current observer based on

Lyapunov stability theory.

By analyzing the performance of the tracking con-

troller (10), it is found that velocity-jump problems are

caused by the sudden changes in tracking errors ex, ey and

e/. Inspired by the smooth neural dynamics of the

shunting neural model, three components nx, ny and n/
characterized by differential equations derived from the

shunting model are used to replace the ex; ey and e/ in

(10). Due to the dynamic behavior of xI in (7) as a

function of the tracking errors, the proposed control

commands should become smooth functions of tracking

errors. The output of the shunting model changes as the

input (tracking errors) changes, smoothly without any

jumps even when sudden sharp changes in the input occur.

Based on this control concept, the proposed tracking

controller is given as

u ¼ �nx þ ud cos e/ � v̂cx cos/� v̂cy sin/

v ¼ �ny � ud sin e/ þ v̂cx sin/� v̂cy cos/

r ¼ �n/ þ rd

8><
>:

; ð14Þ

where nx, ny and n/ are characterized by three shunting

neural models as
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dnx
dt

¼ �A1nx þ ðB1 � nxÞf ðexÞ � ðD1 þ nxÞgðexÞ

dny
dt

¼ �A2ny þ ðB2 � nyÞf ðeyÞ � ðD2 þ nyÞgðeyÞ

dn/
dt

¼ �A3n/ þ ðB3 � n/Þf ðe/Þ � ðD3 þ n/Þgðe/Þ

8>>>>>><
>>>>>>:

:

ð15Þ

In (15), Ai (i = 1, 2, 3) are nonnegative constants repre-

senting the passive decay rates; Bi and Di are the upper

bound and lower bound of the velocity components nx, ny
and n/, respectively. Function f ðxÞ is a linear-above-

threshold function of the input x defined as

f ðxÞ ¼ maxfx; 0g, and gðxÞ is also a function of x defined

as gðxÞ ¼ maxf�x; 0g. They can be explicitly expressed

as

f ðxÞ ¼
x; x� 0

0; x\0

�
; and gðxÞ ¼

0; x� 0

�x; x\0

�
:

Replacing the variable x with ex; ey; e/ , respectively,

yields the excitatory inputs f ðexÞ; f ðeyÞ and f ðe/Þ, and in-

hibitory inputs gðexÞ; gðeyÞ and gðe/Þ for Eq. (15).

3.2 Current observer

Let x̂ and ŷ be the estimates of the position x and y. Define

_̂x ¼ u cos/� v sin/þ v̂cx þ k11~x
_̂y ¼ u sin/þ v cos/þ v̂cy þ k21~y

(
; ð16Þ

where ~x ¼ x� x̂, ~y ¼ y� ŷ, k11 and k21 are positive con-

stants. From (1) and (16), we obtain

_~x ¼ �k11~xþ ~vcx
_~y ¼ �k21~yþ ~vcy

(
: ð17Þ

If we choose

_̂vcx ¼ k12~x
_̂vcy ¼ k22~y

(
; ð18Þ

where k12 and k22 are positive constants, then the error

system is obtained as

_~x

_~y

_~vcx
_~vcy

2
66664

3
77775
¼

�k11 0 1 0

0 � k21 0 1

�k12 0 0 0

0 � k22 0 0

2
6664

3
7775

~x

~y

~vcx
~vcy

2
6664

3
7775; ð19Þ

which can be written in a compact form as

_YðtÞ ¼ KY : ð20Þ

Notice that the model (20) is a linear system, whose so-

lution can be expressed as

YðtÞ ¼ Yð0ÞeKt; ð21Þ

where ~Yð0Þ is the initial state of the observer. Obviously,

the observer system (20) is globally asymptotically stable if

the gains k11; k12; k21 and k22 are chosen as positive such

that the matrix K has negative real part eigenvalues.

Therefore, the system architecture of the proposed

tracking controller can be depicted as Fig. 2. It contains

three parts in addition to the plant: a motion planner, a

neurodynamics-based tracker, and a current observer. The

motion planner is used to generate real-time paths for the

vehicle. The output of the motion planner gives the desired

vehicle posture Pd. The current vehicle posture P is ob-

tained through a positioning system. The error vector EB in

the body-fixed frame is obtained through a transformation

matrix Te using (3) from the posture error EI between the

current and desired postures in the inertial reference frame.

The inputs of the neurodynamics based tracker are the error

vector EB, the desired velocities ud and rd, and the current

estimate v̂c. The path tracker generates smooth and con-

tinues steering command vector U for the ASV. The cur-

rent observer includes a state estimate of the vehicle

position ½x̂; ŷ�>, a gain K and an integrator. The position

estimate error between ½x; y�> and ½x̂; ŷ�> is used to derive

the estimate of the current for the tracker. The gain K is

∫

Neurodynamics
Based Tracker

ASV

ASVeT
Motion 
Planner

Curent Observer

+

−

+

−

cv

PU

ˆ cv

BE Pd IE

K

[ , ]x y

ˆ ˆ[ , ]x y

Fig. 2 Architecture of the proposed neurodynamics-based tracking control system
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chosen such that the observer system is asymptotically

stable. The ASV in the control system is disturbed by the

unknown ocean current vc.

4 Stability analysis

The proposed control system can be proved to be globally

asymptotically stable, and the tracking errors converge to

zeros. In what follows, the stability of the overall system is

analyzed using a Lyapunov theory for cascaded systems.

From Eqs. (4, 14, 15) and (20), the proposed tracking

control system can be written in a cascaded form as

_X ¼ f1ðt;XÞ þ gðt;X; YÞY ; ð22Þ

_Y ¼ f2ðt; YÞ ¼ KY ; ð23Þ

where X ¼ ½ex; ey; e/; nx; ny; n/�>, Y ¼ ½~x; ~y; ~vcx ; ~vcx �
>
;

f1ðt;XÞ ¼

�nx þ rey

�ny � rex

�n/
� A1 þ f ðexÞ þ gðexÞ½ �nx þ B1f ðexÞ � D1gðexÞ½ �
� A2 þ f ðeyÞ þ gðeyÞ
� �

nx þ B2f ðeyÞ � D2gðeyÞ
� �

� A3 þ f ðe/Þ þ gðe/Þ
� �

nx þ B3f ðe/Þ � D3gðe/Þ
� �

2
666666664

3
777777775
:

f2ðt; YÞ ¼

�k11~x þ ~vcx
�k21~y þ ~vcy

�k12~vcx
�k22~vcy

2
6664

3
7775; gðt;X; YÞ ¼

0 0

0 0

cos/ � sin/

sin/ cos/

2
6664

3
7775

>

:

Notice that f1ðt;XÞ and f2ðt; YÞ are continuously differen-

tiable functions. If Y = 0, (22) becomes

_X ¼ f1ðt;XÞ: ð24Þ

Therefore, (22) can be viewed as the system

R1 : _X ¼ f1ðt;XÞ; ð25Þ

being perturbed by the output of the observer system

R2 : _Y ¼ f2ðt; YÞ: ð26Þ

The following Lemma [36] gives the stability for the cas-

caded systems (22) and (23).

Lemma 1 Consider the cascaded systems (22) and (23).

Assume that

(1) the system R1 in (25) is globally uniformly asymp-

totically stable with a Lyapunov function V1ðt;XÞ
satisfying

oV1

oX

����
���� Xk k� cV1ðt;XÞ; 8 Xk k� g; ð27Þ

where c[ 0 and g[ 0 are constants;

(2) the function gðt;X; YÞ satisfies
kgðt;X; YÞk� q1ðkXkÞ þ q2ðkYkÞkXk: ð28Þ

where q1; q2 : R� 0 ! R� 0 are continuous

functions.

(3) the system R2 is globally uniformly asymptotically

stable and for all t0 � 0,
Z 1

t0

kYðt; t0; Yðt0ÞÞkdt� hðkYðt0ÞkÞ; ð29Þ

where the function hð�Þ is a class Kfunction.

Then, the cascaded systems (22) and (23) are globally

uniformly asymptotically stable.

In order to apply Lemma 1 to prove the asymptotical

stability of the control system, a Lyapunov function can-

didate V1 for system (25) is chosen as

V1 ¼
1

2
e2x þ e2y þ e2/ þ 1

B1

n2x þ
1

B2

n2y þ
1

B3

n2/

� 	
; ð30Þ

where nx; ny and n/ are defined in (15). Taking the time

derivative of (30) yields

_V1 ¼ �exnx � eyny � e/n/ þ 1

B1

nx _nx þ
1

B2

ny _ny þ
1

B3

n/ _n/:

ð31Þ

Substituting (15) into (31) yields

_V1 ¼ �b1n
2
x þ

1

B1

½B1f ðexÞ � D1gðexÞ� � ex

� 

nx

� b2n
2
y þ

1

B2

B2f ðeyÞ � D2gðeyÞ
� �

� ey

� 

ny

� b3n
2
/ þ 1

B3

½B3f ðe/Þ � D3gðe/Þ� � e/

� 

n/;

ð32Þ

where b1 ¼ 1
B1
½A1 þ f ðex Þ þ gðexÞ�; b2 ¼ 1

B2
½A2 þ f ðeyÞ

þgðeyÞ�; b3 ¼ 1
B3
½A3 þ f ðe/Þ þ gðe/Þ�. From the definition

of functions f ð�Þ and gð�Þ, it knows that f ð�Þ � 0 and

gð�Þ � 0. In addition, the parameters Ai;Bi and Di

(i ¼ 1; 2; 3) are nonnegative constants, thus bi � 0.

Meanwhile, if we choose the constants Bi ¼ Di in the

shunting equations, then (32) is rewritten as

_V1 ¼ �b1n
2
x þ f ðexÞ � gðexÞ � ex½ �nx

� b2n
2
y þ f ðeyÞ � gðeyÞ � ey

� �
ny

� b3n
2
/ þ f ðe/Þ � gðe/Þ � e/

� �
n/:

ð33Þ

From the definition of functions f ðexÞ and gðexÞ, if ex � 0,

then f ðexÞ ¼ ex and gðexÞ ¼ 0. Thus,

f ðexÞ � gðexÞ � ex½ �nx ¼ ex � 0� ex ¼ 0: ð34Þ
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Similarly, if ex \ 0, then f ðexÞ ¼ 0 and gðexÞ ¼ ex. Thus,

f ðexÞ � gðexÞ � ex½ �nx ¼ 0� ð�exÞ � ex ¼ 0: ð35Þ

In the same way, we can obtain

f ðeyÞ � gðeyÞ � ey
� �

ny ¼ 0; ð36Þ

f ðe/Þ � gðe/Þ � e/
� �

n/ ¼ 0: ð37Þ

Hence, the time derivative of V1 is given as

_V1 ¼ �b1n
2
x � b2n

2
y � b3n

2
/ � 0: ð38Þ

Note that _V1 ¼ 0 only when nx ¼ 0; ny ¼ 0 and n/ ¼ 0.

By using (15) and the input–output properties of the

shunting models, it can infer that if the outputs converge to

some constant values (zeros), the inputs are supposed to go

to constant values (zeros), namely, ex; ey; e/ ! 0 as

nx; ny; n/ ! 0. By using invariance principle, it is known

that the system R1 is globally uniformly asymptotically

stable.

On the other hand, as shown in (21), the system R2 is

also globally asymptotically stable. Furthermore, since

sin/ and cos/ are bounded, gðt;X; YÞ satisfies (28).

Therefore, all the assumptions of Lemma 1 are satisfied,

and it concludes that the proposed tracking system is

globally asymptotically stable.

5 Simulation studies

In this section, the proposed tracking controller for the

ASV is first applied to the tracking of a straight path and a

circular path under unknown ocean currents. After that, a

comparison study to the conventional controller is pre-

sented to show the efficiency of the proposed controller.

5.1 Tracking a straight path

To illustrate the effectiveness of the proposed approach, a

simple straight line is first used as the desired path, which

is described y = 2 and x = 0 in the Cartesian workspace. It

can be generated using ud ¼ 2m=s and rd ¼ 0m=s for

model (2). The ASV starts at ½0; 0; p=18�>, while the de-

sired initial posture is ½0:5; 2; 0�>. The initial posture error

is thus ½�0:5;�2; p=18�>. At the beginning period, the

velocity of the ASV should be increase exponentially from

zero to reach the desired velocities. Hence, the used ref-

erence velocity is ud ¼ 2ð1� e�t=0:5Þ. In addition, at

t ¼ 7 s, the ASV is disturbed by unknown (from the point

of view of the controller) constant ocean currents described

by vcx ¼ 0:5m=s; vcy ¼ �0:5m=s. The parameters for the

proposed controller (14) are: A1 ¼ 5; B1 ¼ D1 ¼ 3;

A2 ¼ 5; B2 ¼ D2 ¼ 6; and A3 ¼ 5; B3 ¼ D3 ¼ 6. The

gains for the current observer are k11 ¼ k21 ¼ 2 and

k12 ¼ k22 ¼ 3. The initial condition for the observer is

v̂cx ¼ 0; v̂cy ¼ 0.

The tracking performance of the ASV is shown in Fig.

3a, where the actual vehicle path is denoted by the dash-dot

line and the desired path is the solid line. The vehicle

velocities generated using the proposed tracking controller

are shown in Fig. 3b. It shows that the velocity commands

are smooth and continues without any jumps. The error

dynamics are shown in Fig. 3c, and the estimates of the

unknown ocean currents are shown in Fig. 3d. Notice that

although the ASV is disturbed by the ocean currents at

t ¼ 7 s, the proposed control approach with the current

observer can drive the vehicle back to desired path shortly.

5.2 Tracking an elliptic path

Then, an elliptic path, described by

ðx� 1Þ2=1:52 þ ðy� 1Þ2 ¼ 1, is used in the simulation

study. Unlike the previous cases with a straight line, the

reference velocities of an ellipse are not constant, but are

time-varying, i.e., ud ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2

p
ð1� e�t=0:5Þ; rd ¼

1:5=ð _x2 þ _y2Þð1� e�t=0:5Þ for model (2). The initial posture

of the vehicle is ½�0:5;�0:6; p=10�>, and the desired

posture is ½1; 0; 0�>, resulting in a big initial error

½�1:5;�0:6; p=10�>. The parameters used in the controller

are the same as the straight-line case. Assume that there are

no ocean currents interfered in this case. The tracking

performance of the ASV is shown in Fig. 4a. It shows that

the ASV lands onto the desired circular path quickly. Fig.

4b shows the smooth and reasonable velocity commands.

Fig. 4c shows the tracking errors approaching to zero as

time increases.

5.3 Comparison to the conventional controller

To demonstrate the effectiveness of the proposed tracking

controller, a comparison study to the conventional Lya-

punov-based controller is conducted. The tracking con-

troller defined in (10) is used in our simulation study under

the same condition as that in Fig. 4. The control parameters

are selected as c1 ¼ 3; c2 ¼ 3 and c3 ¼ 0:2. The tracking

performance is shown in Fig. 5a. It is observed that the

ASV takes a longer time to land on the desired elliptic path.

The ASV velocities generated by the conventional con-

troller are shown in Fig. 5b. It shows that the velocities

change suddenly rather than gradually from zero at the

beginning. This implies that the required accelerations are

infinitely large at the beginning and also implies that the

forces/torques should be infinitely large as well, which is

not feasible in practice. However, using the proposed

neurodynamics-based controller, the sharp velocity jumps

Neural Comput & Applic (2015) 26:1929–1938 1935

123



are well eliminated, and the velocities become smooth and

reasonable, as shown in Fig. 4b. In addition, the proposed

controller tracks the elliptic path faster than the conven-

tional controller.

6 Conclusion

In this paper, a novel bioinspired neural dynamics-based

tracking controller is proposed by integrating three shunt-

ing neural models into the conventional Lyapunov syn-

thesis. A stable observer is designed to estimate the

unknown ocean currents. The proposed tracking controller

is capable of generating smooth, continuous control signals

with zero initial values, even in the presence of unknown

ocean currents. The tracking control system is proved to be

globally asymptotically stable, and the tracking errors are

guaranteed to converge to zeros. Simulation and
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proposed neurodynamics-based controller. a The dynamic tracking

performance; b the generated velocity commands u; v and r; c the

tracking errors xe; ye and e/; d the estimates of vcx and vcy
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comparison results show that the proposed tracking control

algorithm is effective and efficient.

It is worth mentioning that although the practically

impossible problem of velocity-jump is tackled by the

proposed bioinspired approach, the dynamics of the

surface vehicles with parameters which vary or are ini-

tially uncertain are not considered. In order to apply the

proposed approach in practice more widely, it is inter-

esting to integrating the proposed controller with other

robust control methods such as model predictive control

and adaptive control. This will be concerned in the fu-

ture work.
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