
ORIGINAL ARTICLE

A heuristic optimization method inspired by wolf preying
behavior

Simon Fong • Suash Deb • Xin-She Yang

Received: 16 September 2014 / Accepted: 23 January 2015 / Published online: 10 February 2015

� The Natural Computing Applications Forum 2015

Abstract Optimization problems can become intractable

when the search space undergoes tremendous growth.

Heuristic optimization methods have therefore been cre-

ated that can search the very large spaces of candidate

solutions. These methods, also called metaheuristics, are

the general skeletons of algorithms that can be modified

and extended to suit a wide range of optimization prob-

lems. Various researchers have invented a collection of

metaheuristics inspired by the movements of animals and

insects (e.g., firefly, cuckoos, bats and accelerated PSO)

with the advantages of efficient computation and easy

implementation. This paper studies a relatively new bio-

inspired heuristic optimization algorithm called the Wolf

Search Algorithm (WSA) that imitates the way wolves

search for food and survive by avoiding their enemies. The

WSA is tested quantitatively with different values of pa-

rameters and compared to other metaheuristic algorithms

under a range of popular non-convex functions used as

performance test problems for optimization algorithms,

with superior results observed in most tests.

Keywords Metaheuristic � Bio-inspired optimization �
Wolf Search Algorithm

1 Introduction

An optimization problem generally aims to find xopt =

maxx2X f(x) where R
n is the search space and f(x) is a

fitness function measuring the goodness of the solution.

The global optimum represents a best solution xopt that is

assumed to exist in the problem space. In many real-life

applications, the optimization functions may not behave

well mathematically and hence do not always conceive a

globally convex shape (see Fig. 1).

In such cases, especially when the data carry high-di-

mensional variables, the optimization problems can be

complex and the problem sizes may thwart efficient cal-

culation. For example, in the traveling salesman problem,

the search space of candidate solutions grows more than

exponentially as the size of the problem increases, which

makes an exhaustive search for the optimal solution in-

feasible. A heuristic optimization method is a heuristic

strategy for searching the search space of an ultimately

global optimum in a more or less intelligent way [1]. This

is also known as a metaheuristic or stochastic optimization.

Metaheuristics are grounded in the belief that a stochastic,

high-quality approximation of a global optimum obtained

at the best effort will probably be more valuable than a

deterministic, poor-quality local minimum provided by a

classical method or no solution at all. Iteratively, it opti-

mizes a problem by attempting to improve the candidate

solution with respect to a given measure of quality defined

by a fitness function. It first generates a candidate solution

xcandidate, and as long as the stopping criteria are not met, it

checks its neighbors against the current solution (SELECT

S. Fong (&)

Department of Computer and Information Science,

University of Macau, Taipa, Macau SAR

e-mail: ccfong@umac.mo

S. Deb

Department of Computer Science and Engineering,

Cambridge Institute of Technology, Ranchi, India

e-mail: suashdeb@gmail.com

X.-S. Yang

School of Design engineering and Mathematics,

Middlesex University, London, UK

e-mail: x.yang@mdx.ac.uk

123

Neural Comput & Applic (2015) 26:1725–1738

DOI 10.1007/s00521-015-1836-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1836-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-015-1836-9&domain=pdf

xneighbor 2 NðxcandidateÞ). The candidate solution is updated

with its neighbor if it is better (IF f(xneighbor)\ f(xcandidate)

THEN xcandidate = xneighbor), such that the global optimum

at the end is xopt = xcandidate. As such, metaheuristic algo-

rithms are often based on local search methods in which the

solution space is not explored systematically or exhaus-

tively, but rather a particular heuristic is characterized by

the manner in which the walk through the solution space is

organized. Some computer science researchers have re-

cently invented a collection of bio-inspired metaheuristic

algorithms, including firefly [2], cuckoos [3], bats [4] and

accelerated particle swarm optimization (PSO) [5]. These

bio-inspired metaheuristic algorithms have local search

methods that are largely based on the movement patterns of

animals and insects found in nature. Their performance in

heuristic optimizations has proven superior to that of many

classical metaheuristic methods such as genetic algorithms

(GAs), simulated annealing, ant colonies and tabu search.

This paper reports a relatively new bio-inspired meta-

heuristic algorithm, the Wolf Search Algorithm (WSA),

which is based on wolf preying behavior. WSA is different

from the aforementioned bio-inspired metaheuristics be-

cause it simultaneously possesses both individual local

searching ability and autonomous flocking movement. In

other words, each wolf in WSA hunts independently by

remembering its own trait and only merges with its peer

when the peer at sight is in a better position. In this way,

long-range inter-communication among the wolves which

are the searching agents for candidate solutions is eliminated

because wolves are known to stalk their prey in silence.

Assembly depends on visual range. Therefore, the swarming

behavior of WSA, unlike most bio-inspired algorithms, is

delegated to each individual wolf rather than to a single

leader, as in PSO [4], fish [6] and firefly [2]. Effectively,

WSA functions as if there are multiple leaders swarming

from multiple directions to the best solution, rather than a

single flock that searches for an optimum in one direction at

a time. The appearance of a hunter that corresponds to each

wolf is added at random. On meeting its hunter, each wolf

jumps far out of its hunter’s visual range to avoid being

trapped in local optima by the algorithm’s design.

This paper is organized into the following sections.

Section 2 explains wolf preying behavior in layman’s terms.

Section 3 provides a detailed description of the algorithm’s

logics and operation. Section 4 reports on the experiment

and discusses the results. Section 5 concludes the paper.

2 Background

Wolves are social predators that live in nuclear families

consisting of a mated couple, their offspring and occa-

sionally adopted immature wolves. Wolves typically com-

mute in groups of 5–11, which is different from PSO and

fish swarm, which usually move in relatively large groups.

Wolves communicate over long distances by howling, but

remain silent and use stealth when hunting prey together.

Unlike ants in ant colony optimization, which use pher-

omones to communicate with their peers about food traits,

WSA forgoes this kind of communication and collective

stigmergy, which shortens the run time of the search.

Although wolf packs cooperate strategically when

bringing down prey, they do not do so in the same way as

lionesses because, unlike lions, wolves rarely remain with

their pack for more than 2 years. This leaves them less time

to learn how to hunt cooperatively. Wolves have therefore

developed unique, semi-cooperative characteristics; that is,

they move in a group in a loosely coupled formation, but

tend to take down prey individually. This detail is impor-

tant because some optimization algorithms, such as those

that are swarm-based, focus on group coordination,

whereas algorithms that emphasize individual movements

fall on the other end of the spectrum. As a synonym in

computing, WSA naturally balances scouting the problem

space in random groups (breadth) and searching for the

solution individually (depth).

When hunting, wolves will attempt to conceal them-

selves as they approach their prey. This characteristic

prompts the searching agents in WSA to always look for

and move to a better position in the same way that wolves

continuously change their positions for better ones with

more shelter, fewer terrain obstacles or less vulnerability.

When hunting, wolves simultaneously search for prey and

watch out for threats such as human hunters or tigers. Each

wolf in the pack chooses its own position, continuously

moving to a better spot and watching for potential threats.

WSA is equipped with a threat probability that simulates

incidents of wolves bumping into their enemies. When this

Fig. 1 Example of a non-convex optimization function with complex

local optima

1726 Neural Comput & Applic (2015) 26:1725–1738

123

happens, the wolf dashes a great distance away from its

current position, which helps break the deadlock of getting

stuck in local optima. The direction and distance they

travel when moving away from a threat are random, which

is similar to mutation and crossover in GA when changing

current solutions while evolving into a better generation.

Another important feature of wolf hunting is that they

hunt by wearing down their prey with short chases. When

chasing small prey, wolves attempt to catch up with their

prey as soon as possible, whereas in the pursuit of larger

animals, the chase is prolonged to exhaust the prey. Like-

wise, WSA is able to track moving or evolving global

optima when the best position is non-stationary, whereas

convergence is quicker when the global optima are not of a

significantly greater value than the best of the local optima.

Otherwise, the convergence slows down to widen the

breadth of the search when the final optimum is expected to

be of great value. This speed of convergence is somewhat

similar to that of a hill-climbing algorithm.

Wolves have an excellent sense of smell and often lo-

cate prey by scent. Similarly, each wolf in the WSA has a

sensing distance that creates a sensing radius or coverage

area—generally referred to as visual distance. This visual

distance is applied to the search for food (the global opti-

mum), an awareness of their peers (in the hope of moving

into a better position) and signs that enemies might be

nearby (for jumping out of visual range). Once they sense

that prey is near, they approach quickly, quietly and very

cautiously because they do not wish to reveal their pres-

ence. In search mode, when none of the abovementioned

items are detected within visual range, the wolves move in

Brownian motion (BM), which mimics the random drifting

of particles suspended in fluid.

3 Formulation of the Wolf Search Algorithm

3.1 Logics

Based on wolves’ hunting behavior, as described above, we

present the three rules that govern the logics of the WSA.

1. Each wolf has a fixed visual area with a radius defined

by v for X as a set of continuous possible solutions. In

2D, the coverage would simply be the area of a circle

by the radius v. In hyperplane, where multiple

attributes dominate, the distance would be estimated

by Minkowski distance, such that v� d xi; xcð Þ ¼

Pn

k¼1

xi;k � xc;k
�
�

�
�k

� �1=k
; xc 2 X where xi is the current

position; xc are all the potential neighboring positions

near xi and the absolute distance between the two

positions must be equal to or less than v; and k is the

order of the hyperspace. For discrete solutions, an

enumerated list of the neighboring positions would be

approximated. Each wolf can only sense companions

who appear within its visual circle and the step

distance by which the wolf moves at a time is usually

smaller than its visual distance.

2. The result or the fitness of the objective function

represents the quality of the wolf’s current position.

The wolf always tries to move to better terrain. But

rather than choosing the best terrain, it opts to move to

better terrain that already houses a companion. If there

is more than one better position occupied by its peers,

the wolf will choose the best terrain inhabited by

another wolf from the given options. Otherwise, the

wolf will continue to roam randomly in BM.

3. At some point, it is possible that the wolf will sense an

enemy. The wolf will then escape to a random position

far from the threat and beyond its visual range.

Given these rules, we summarize the WSA in

pseudocode:

There are some conceptual similarities between WSA

and the artificial fish school algorithm [6]. Both use the

visual distance concept, and both types of searching agents

only care about the things that are happening within their

visual circle. However, in the artificial fish school algo-

rithm, the fish are always following and swarming as a

whole when searching because the algorithm does not

contain the WSA’s individual search capabilities or jump

out mechanism.

The function Generate_new_location() returns

a valid position that is unseen by a wolf, given its short-

term memory. WSA implements one step as the previous

step, which means that the new location generator ran-

domly produces a new position from a pool of candidates

within s step from the wolf’s current position with the

exception of the position that the wolf occupied in the

previous cycle. This generation of each candidate’s pool

of positions follows the rules of BM. In addition, the

length of the back-track trail can be increased to a greater

number assuming that the wolf has more memory about

its walked path. This can be compromised at significant

computational cost and time when the wolf population is

substantial.

3.2 Following and approaching other wolves

WSA assumes that the result/fitness of the objective

function reflects the quality of a terrain position that will

eventually lead to food. This quality can be defined as

either secludicity from predators, higher ground from

Neural Comput & Applic (2015) 26:1725–1738 1727

123

which it is easier to hunt, or another similar benefit. The

intention behind a wolf’s decision to change location is to

simultaneously secure an increased chance of finding food

and a decreased chance of being hunted. Wolves are ex-

pected to trust other wolves, because they never prey on

each other; therefore, a wolf will only move into terrain

inhabited by another wolf when that terrain is better. If the

new position is better, the incentive is stronger provided

that it is already inhabited by a companion wolf. There is

another factor that must be considered, specifically the

distance between the current wolf’s location and its com-

panion’s location. The greater this distance, the less at-

tractive the new location becomes, despite the fact that it

might be better. This decrease in the wolf’s willingness to

move obeys the inverse-square law. Therefore, we get a

basic formula of betterment r ¼ Io
r2
, where Io is the origin of

food (the ultimate incentive) and r is the distance between

the food or the new terrain and the wolf. There is a similar

formula for calculating attractiveness in the firefly algo-

rithm [4]. It is also added with the absorption coefficient,

such that using the Gaussian equation, the formula is

bðrÞ ¼ boe
�r2 where bo equals Io. For simplicity, we use

the following as the incentive formula in our wolf search:

bðrÞ ¼ boe
�r2 ð1Þ

Given that all wolves want to move to better positions

inhabited by their peers and based on the assumption that

their visual distance is good but limited, each wolf can only

spot its peers when they enter the initial wolf’s sensing

coverage. The wolf cannot sense and therefore will not

move toward companions beyond this range. Furthermore,

if the positions of a wolf’s peers are no better than its current

position, then there is no incentive for the wolf to move.

Other wolves will, however, eventually merge to the wolf’s

current position if it is the best option. The tri-step operation

works in the following way. First, each wolf checks the

quality of its companions’ positions within its visual range

and the best location out of all qualified locations is iden-

tified. Second, the wolf compares its own position with that

best location. Third, the wolf moves to that best location and

will stay with its companion if there is a gain in adopting

that position. Otherwise, the wolf continues preying via a

BM random walk with an incremental step size that is

shorter than its visual distance. The preying operation will

be introduced in detail in the next section. Afterward, the

wolf moves to join its companion and the movement is

implemented using the following formula:

xðiÞ ¼ xðiÞ þ boe
�r2 xðjÞ � xðiÞð Þ þ escapeðÞ ð2Þ

where escape() is a function that calculates a random po-

sition to jump to with a constraint of minimum length; x is

the wolf, which represents a candidate solution; and x(j) is

the peer with a better position as represented by the value

of the fitness function. The second term of the above

equation represents the change in value or gain achieved by

progressing to the new position. r is the distance between

the wolf and its peer with the better location. Step size must

be less than the visual distance.

3.3 Preying

Wolves pursue their prey using a stalking process. In real

life, a wolf scouts every part of its territory to search for

ungulates and its movement pattern obeys BM because

wolves who live and hunt together remain as a nuclear

family rather than as a big colony. No two wolves come

close to each other in random movement unless they are

feeding on the same food or using the same shelter (e.g.,

holed up in a cave). WSA features three different types of

preying behavior that take place in sequence. In the context

of an algorithm, these three types of behavior occur in an

atomic manner in each iteration or generation of execution.

1. Preying initiatively: The wolf feeds on food, which

represents the ultimate objective of the optimization

function. This step essentially allows the wolf to check

its visual perimeter to detect prey. The step is placed at

the beginning of the execution loop, and it repeats after

checking whether the current location should be changed

or after a random step in the random walk, such that the

wolf will constantly be looking for its prey. Once the

prey is spotted within the wolf’s visual distance, it will

diligently move step by step toward the prey (the food)

that has the highest fitness, in which circumstance the

wolf will omit looking out for its companions. In WSA,

this is reflected by the fact that the wolf will change its

own position for that of the prey, which has the highest

value, and because no other position is higher than the

highest, the wolf will maintain this direction.

2. Prey passively: If the wolf does not find any food or

better shelter inhabited by a peer in the previous step,

then it will prey passively. In this passive mode, the

wolf only stays alert for incoming threats and attempts

to improve its current position by comparing it to those

of its peers.

3. Escape: Wolves have numerous enemies in nature.

When a threat is detected, the wolf escapes very

quickly by relocating itself to a new position with an

escape distance that is greater than its visual range.

The emergence of threats is modeled randomly at a

probability defined at will by the user. Escape is an

important step that helps keep all of the wolves from

falling into and getting stuck at a local optimum. We

use mathematics to define the abovementioned types of

preying behavior:

1728 Neural Comput & Applic (2015) 26:1725–1738

123

if moving ¼ xðiÞ ¼ xðiÞ þ a � r � randðÞ Prey

xðiÞ ¼ xðiÞ þ a � s � escapeðÞ Escape

�

ð3Þ

where x(i) is the wolf’s location; a is the velocity; v is the

visual distance; rand() is a random function whose mean

value distributed in [-1,1], s is the step size, which must

be smaller than v; and escape() is a custom function that

randomly generates a position greater than v and less than

half of the solution boundary. Preying initiatively and

preying passively both use the upper part of the formula

for movement, whereas escape uses the lower part.

Additional modifications, such as ensuring that the walk

is in BM and considering the merging of peer positions,

are also implemented according to the logics defined in

Fig. 2.

Figure 3 illustrates the wolves’ movement. x(i) is in

range with x(j) and x(m). x(i), however, is moving toward

x(j) because it has a better terrain or is closer to the food (as

represented by the better fitness function value). x(m) will

follow x(i), and x(k) will leap a large distance away when

the threat alert is trigged by the probability. Otherwise, it is

probable that x(k) may sense x(j) in its range and merge if

f(x(j))[f(x(k)). x(j) will ignore its nearby peers and move

toward the food, which has the highest fitness value. x(l) is

roaming in BM some distance away.

4 Validation and comparison

4.1 Experiments for optimization algorithm validation

To validate the efficacy of this new algorithm, we imple-

mented WSA in MATLAB and tested various famous

optimization functions. They have been adopted popularly

in the optimization research community for performance

validation. In general, the functions can produce a large

Fig. 2 Pseudocode for the WSA algorithm

Fig. 3 Snapshot of WSA in action

Neural Comput & Applic (2015) 26:1725–1738 1729

123

multidimensional search space where both local minima

and global minimum are mathematically distributed. The

fitness functions of the testing functions are shown in the

‘‘Appendix.’’ Here, we use one of them to demonstrate

WSA converges. Rastrigin’s function [7] is a non-convex

function for testing an optimization algorithm. There are

many local minima in Rastrigin’s function, which makes it

highly multimodal. The function is defined as follows:

f ðxÞ ¼ 10nþ
Xn

i¼1

x2i � 10 cosð2p � xiÞ
� �

ð4Þ

where xi [[-5.12, 5.12]. The visualization of Rastrigin’s

function in 3D is shown in Fig. 4. The global minimum of

Rastrigin’s function is f(�) = 0 at (0, 0). We set the pa-

rametersW = 20 wolves, step size = 1, visual = 2, escape

probability = 0.25 and a tolerance criterion equal

to ±1.0e-8, under which circumstances WSA eventually

reaches the minimum. Given e\ 10-8, the optimization

functions are executed iteratively until the difference in

best fitness between the current and the previous iteration is

smaller than 10-8. The initial step and final result are

shown graphically in Fig. 5a, b, respectively. The blue

points are the locations of the wolves. The computing en-

vironment is a MacBook Pro (with CPU: 2.3GHZ, RAM:

4 GB).

Although the Rastrigin’s test function has numerous

local minima distributed all over the space, after running

the algorithm, almost all of the wolves clearly gather at (0,

0), which suggests that WSA deals with multimodal

problems pretty well given the right set of parameters; that

is, they are able to find the global optimum and converge

eventually there. The same convergence is observed in the

other testing functions.

The experiment is then extended to test the effects of its

parameters with varying values, such as population,

memory tenure, escape probability and visual distance. Six

testing functions from ‘‘Appendix’’ are used. In common,

these testing functions have the global minima:

x* = (0,…,0), f(x*) = 0. The six functions are visualized

in three dimensions as shown in Fig. 6.

The first parameter to be tested is population which ac-

counts for the total number of wolves as search agents to be

deployed in the search. Intuitively, the more search agents in

use, the greater the computational cost the algorithm incurs.

With a large number of distributed agents searching over the

space, a better final fitness value should be obtained.

Although the search agents could be potentially pro-

grammed and operating in parallel, the implementation in

this experiment here is sequential execution. The wolf

agents take turn to compute their own fitness functions and

Fig. 4 Overview of Rastrigin’s function

Fig. 5 a Wolves’ locations at initial step. b The wolves’ locations at

final step

1730 Neural Comput & Applic (2015) 26:1725–1738

123

update their moves one iteration at a time, until the stopping

criteria are met. The performance indicators hence are the

fitness and the time consumption. Given the other pa-

rameters at default values as above, the relation between the

fitness and time would be investigated across the six testing

functions, in the hope of finding a balance. Six diagrams of

various populations that show the fitness–time relations are

in Fig. 7a–f. The unit of time is in second, which is the total

runtime elapsed from the initial to the final iterations. The

fitness values are graphed in logarithmic scale for easy vi-

sual comparison. The wolf agents converge near the global

optima for all the cases. The resultant fitness is the best

fitness retained from the last iteration before convergence.

Unlike deterministic functions that find an absolute global

minimum by brute force but it may take forever, the WSA

that is stochastic in nature locates an approximate solution

very close to the absolute best.

The charts from Fig. 7a–f indeed show a general rela-

tion between fitness and time as the population increases—

better fitness is gained at the cost of longer runtime. The

time cost is about the same for all the testing functions. At

the population of 100 wolves, the runtime ranges from

1,209 to 1,814 s. However, the curves of the fitness values

differ in each testing functions with different gradients. A

steep fitness curve implies that the marginal gain in terms

of fitness by using more search agents is higher. Testing

functions that produce steep curves are Rosenbrock, Grie-

wank and Rastrigin. Coincidentally, these functions in

common have relatively steeper parabolic shapes and filled

more with challenging local minima and maxima. Some

fitness curve takes the form of steps, like the one tested in

Schaffer’s function. The large steps in this curve resemble

the folding shape of the Schaffer’s function (c.f. Fig. 6).

Except Schaffer’s and moved axis which have relatively

apparent hill-climbing and flat plateaus, the fitness curves

reach the best optima only in high populations. The optimal

population should be one that is located at the intersection

of the fitness curve and the time consumption trend,

maintaining a balance between solution quality and time

requirement. For example, Schaffer’s and moved axis have

an optimal population at W = 35. The results from this

population experiment hint that for multimodal functions

(and problems), having a large population is definitely

advantageous in yielding better solutions, as evidenced by

the gradient of the curves. A relatively small population

would be sufficient for easy problems of flat plateau, for a

quality solution considering the trade-off of time cost.

The experiment now proceeds to evaluate the effects of

intensification and diversification. Intensification relates to

the local search conducted by the search agents. It is about

how smart the agents scout for better solutions around and

near their current positions. Wolves in nature can make use

of stigmata such as their pawprints that marked their pre-

vious trails, for improving their search direction. The

pawprints of the wolves which are analogous to past trails

are maintained in a global memory in our implementation

(with the MP, minus previous parameter setting), with the

visited places in the search place and their associated

Fig. 6 Visualization of the six testing functions

Neural Comput & Applic (2015) 26:1725–1738 1731

123

fitness values in store. Instead of memorizing the best po-

sition and the highest fitness value in every iteration, a tabu

list is used to accumulate all the visited places except the

best ones from previous iterations. In other words, the

relatively less desirable places which have already been

visited by the wolves are collectively memorized from

iteration to iteration. So the search agents will not waste

time and computational resource in going back there again

from their random walk. By not considering those tabu

places, the search agents are likely to move away from

undesirable places (out of the local search) and swarm into

a better terrain in general. The MP parameter is in use in

Fig. 7 a Effect of population by function Schaffer’s F6. b Effect of population by function sphere. c Effect of population by function

Rosenbrock. D Effect of population by function Griewank. e Effect of population by Rastrigin. f Effect of population by function moved axis

1732 Neural Comput & Applic (2015) 26:1725–1738

123

this experiment. The MP value is equivalent to the memory

tenure (long- or short-term memory) for the wolves re-

member how many previous steps they took in the search

space especially the undesirable ones (with low fitness

values). The overall fitness is compared with the length of

the memory tenure (which is proportional to MP) or the

memory strength, as shown in Fig. 8. The parameter setting

is the same as those reported earlier in this paper, and the

testing function used is Schaffer’s F6. Various memory

tenures are used for the wolves to compute a final best

possible fitness value in each run. The fitness curve is

plotted at logarithmic scale. As it can be seen in Fig. 8,

along with some fluctuations possibly due to the

probabilistic nature of the search operation, the fitness in-

deed improves with increasing memory tenure. That means

the stronger the memory that the wolves possess, the better

solution they can produce. To illustrate this effect more

clearly, a linear regression trend in red color is added to the

chart. The trend dips, however, only after certain length of

memory tenure (i.e., MP[&5,000). This shows that the

memory effect has little impact on the fitness if the

memory tenure is relatively short. A considerable amount

of memory strength is required for the fitness improvement

to emerge. This memory-based version of WSA certainly

yields better fitness values; however, the cost of heavy

memory may need to be taken into consideration in

implementation.

The parameter of escape probability controls the extent

of diversification over the wolves’ movements. The higher

the escape probability means more often the wolves will

transport to other dimensions afar. The experiment again is

conducted using the default parameters as earlier, except

the escape probability is varied. The fitness performance

fluctuates considerably as the escape probability increases.

The best fitness is attained when the escape probability is

moderate (at &0.25). This clue testifies that a moderate

frequency of escape is good, for the wolves to balance

between intensive local search and exploring new solutions

afar. On the end where the escape probability is high, the

wolves may not converge easily or not at all, leading to a

forced termination when the maximum allowed number of

iterations is reached. As a result, the wolves stopped at the

relatively poor-quality solutions. To see the effect more

clearly, a trend line is added. Too high the escape prob-

ability may not be desirable in optimization.

With respect to flocking or swarming characteristic,

WSA relies on its visual range. This is another main factor

that governs the swarming (merging) behavior of the

wolves. The effect of this important parameter visual dis-

tance is evaluated, and the results are shown in Fig. 10a–f.

It can be generally noticed that similar to the effect of

escape probability in Fig. 9, too large the visual range does

not yield good fitness. Having too large, the visual distance

means the wolves get merged together too easily; vice

versa too short the visual range the wolves seldom get to

merge. The optimal visual distance is usually found at the

moderate range of visual distance. An interesting phe-

nomenon is observed that the fitness representing the

quality of the found solution declines by different extents

in different testing functions. Moved axis yields poor so-

lution as soon as the visual distance grows, probably due to

its smooth parabola search space—the wolves get merged

too easily if they are not shortsighted. Similar trends are

observed from Schaffer’s, Sphere and Rosenbrock func-

tions, where the fitness worsens by rising up the fitness

curve gradually in log scale as the visual distance in-

creases. In particular, Sphere that is a very smooth

parabolic function has a smooth and consistent curve

showing the decline of the solution quality gradually.

However, in contrast, in the highly multimodal functions

Fig. 8 Effect of memory tenure

over the testing functions

Neural Comput & Applic (2015) 26:1725–1738 1733

123

Fig. 9 Effect of escape

probability over the testing

functions

Fig. 10 a Effect of visual distance by function Schaffer’s F6. b Effect

of visual distance by function Sphere. c Effect of visual distance by

function Rosenbrock. d Effect of visual distance by function

Griewank. e Effect of visual distance by function Rastrigin. f Effect
of visual distance by function moved axis

1734 Neural Comput & Applic (2015) 26:1725–1738

123

Griewank and Rastrigin, the fitness curves versus the in-

crease in visual distance perceived to be a flat line when

averaging out a few sharp drops and rises. It looks as if the

length of visual distance has relatively little effect on the

fitness. From Fig. 6, it can be seen that these two particular

testing functions are mathematically toughest that have

complex and dense clusters of local optima. These complex

characteristics contribute to the confusion of the wolves’

search regardless of the visual distances. As a concluding

remark, a moderate range of visual distance helps achiev-

ing a good fitness hence quality solution.

4.2 Comparison of WSA to PSO and GA

PSO [4] and GA [8] are two classical nature-inspired op-

timization algorithms to which we compared WSA.

Numerous studies have shown that PSO outperforms GA,

and the GA and PSO used in this comparison are standard

versions with default parameters used for benchmarking

purposes.

Our following experiment uses two approaches to test

WSA. The first approach uses a fixed tolerance criterion,

e\ 10-5. The optimization functions are executed it-

eratively until the difference in best fitness between the

current and the previous iteration is smaller than 10-5. The

first approach only tests PSO and WSA because GA falls

too easily into the local minimum, and the tolerance is too

small. In the second approach, we run for a fixed number of

iterations of 1,000 rounds, regardless of yielded improve-

ments, and then compare the mean of premature fitness

after stop. Each algorithm is repeated 100 times to produce

a meaningful statistical analysis. In addition to the six

testing functions, Bohachevsky’s and Michalewicz’s

functions are used too for they test the convergence at other

points that represent their global minima than (0,…0).

In this experiment, the memory-based version of WSA,

WSA with Step Minus Previous (WSA-MP) is imple-

mented. In a scenario where a wolf takes a subsequent

random step to escape from a threat or roam randomly, the

wolf is likely to take any random step in any random di-

rection except its old position from the previous round of

calculations. This indicates that wolves possess a photo-

graphic memory that remembers not to backtrack. This

variation in metaheuristics can enhance the search by

avoiding a return to old states.

Table 1 shows the mean of the number of function

evaluations with the ±sign as the standard deviation. In our

implementation, the population of all three algorithms is 20

and the acceleration factor equals 1.5. For GA, the muta-

tion probability of p = 0.05 and the crossover probability

of 0.8, such that there is no elitism in our GA.

The above two tables indicate that WSA is much better

than PSO, which is much better than GA. Table 1 shows

that WSA uses less rounds of evaluations than PSO and

can find the global optimum efficiently and accurately.

Table 2 demonstrates that GA easily moves into a local

Table 1 Comparison using fixed tolerance threshold

Function/algorithm PSO WSA WSA-MP

Griewangk’s 1,070 ± 633 (100 %) 398 ± 390 (100 %) 365 ± 303 (100 %)*

Sphere model 1,670 ± 1,024 (100 %) 549 ± 542 (100 %)* 600 ± 623 (100 %)

Rastrigrin’s 24,206 ± 16,000 (100 %) 14,813 ± 2,170 (100 %)* 15,579 ± 16,466 (100 %)

Schaffer’s F6 34,046 ± 7,461 (97 %) 6,537 ± 4,671 (100 %) 3,306 ± 4,867 (100 %)*

Moved axis parallel 4,779 ± 3,186 (100 %) 2,180 ± 5,764 (100 %)* 4,518 ± 6,691 (100 %)

Bohachevsky’s 3,993 ± 3,186 (100 %)* 4,019 ± 4,001 (100 %) 5,546 ± 5,236 (100 %)

Michalewicz’s 14,283 ± 8,615 (92 %) 4,295 ± 3,357 (100 %) 4,001 ± 3,342 (100 %)*

Rosenbrock’s 15,197 ± (9,554) (100 %) 6,003 ± 7,018 (100 %) 5,197 ± 5,740 (100 %)*

Table 2 Comparison using

1,000 fixed evaluations
Function/algorithm GA PSO WSA WSA-MP

Griewangk’s 0.1,860 2.7559e-8 1.9126e-7 1.0690e-7

Sphere model 0.0019 9.5715e-8 2.8765e-8* 1.6620e-7

Rastrigrin’s 0.0677 1.5829e-5 1.0297e-5 1.2153e-5

Schaffer’s F6 0.0090 3.8226e-4 1.930e-4 9.7579e-5*

Moved axis parallel 0.0078 5.9182e-7 1.8917e-6 1.8770e-6

Bohachevsky’s 0.0081 -0.2400* -0.2400* -0.2400*

Michalewicz’s 0.0004 -1.1801* -1.8012* -1.8012*

Rosenbrock’s 0.3060 8.2129e-6 2.5192e-6 6.1665e-7

Neural Comput & Applic (2015) 26:1725–1738 1735

123

minimum that PSO and WSA avoid. Moreover, WSA

achieves more accurate results. The superior results are

marked with a asterisk for easy observation in each entry

of comparison.

5 Discussion of the characteristics of WSA

The WSA’s features are discussed here with respect to its

consideration as a metaheuristic algorithm candidate based

on its main components as documented and tested in this

paper. Four basic metaheuristic characteristics are used as

references in the subsequent discussion, and WSA is

compared to other metaheuristic algorithms based on these

characteristics.

5.1 Trajectory method

Unlike most bio-inspired algorithms, the solutions tested

(wolves) inWSAmove in a 2-step or hybrid mode involving

individual scans of immediately neighboring areas for food

and better positions for peer merging. Trajectory is therefore

distributed, and the directions are independent for each

wolf. When neither food nor peer wolves are within visual

distance, the walk is in Brownian movement.

5.2 Discontinuous method

In simulated annealing [9], threshold accepting [10] and

tabu search algorithms [11], the full solution space is

available for a new solution. Discontinuity induced by the

generation of starting solutions, such as the genetic and ant

colonies algorithms [12], corresponds to jumps in search

space. WSA also has jumps in search space.

5.3 Population-based method

Similar to the genetic and ant colonies algorithms, but

different from simulated annealing and tabu search algo-

rithms, the population of searching agents all contribute to

the collective experience. In WSA, the searching agents

(wolves) merge at a solution when they cannot find any-

thing better. Multiple wolves gathering at the same solution

implies common agreement that the solution is good, which

could technically be the global optimum or a very good

local optimum. The random generator for each wolf,

however, will probably relinquish it from the point to look

for better solutions. A ‘jumped out’ wolf will eventually

merge back into the crowd when no better situation is

found. If the separate wolf does find a better solution, it

will stay there and its peers will eventually shift to that

solution as their random enemy hits and as long as that

position is found to be the best.

5.4 Guided search (with memory use) or unguided

search (memory-less) method

In a guided search, additional rules and hints are incorpo-

rated about where to search. For instance, the GA

population represents the memory of recent search expe-

rience; the pheromone matrix in the ant colonies algorithm

represents the adaptive memory of previously visited so-

lutions; and the tabu list provides short-term memory.

WSA lies between these search methods in achieving the

minimum use of memory. In nature, a moving wolf occa-

sionally looks back and remembers its past trail to a certain

extent. In WSA, only the previous step (solution) is re-

membered by a searching agent, so the new solution will

always be different from the previous one. The memory of

the past trail can be extended from one step to as long as

the memory constraint can hold. Conceptually, remem-

bering the past trail to a certain length should provide

better performance at the cost of memory and time. In

addition, WSA uses no amount of information for inter-

communications. Ants in ACO leave chemical marks

(pheromones) for orientation and attracting the crowd and

prefer trails with high pheromone concentrations that

supposedly lead to better food. The wolves in WSA keep

silent and depend largely on their sensing ability and in-

stincts to decide whether their current positions are less

desirable than those of their peers; if so, they give up their

current positions and join their peers. Their positions and

the relative distances to the food are then progressively

updated, purely by heuristics.

Possible extensions, in addition to visual range, include

that fact that each wolf can sense its peers using body heat

and/or scent. Similar to the pheromones used in the ACO

algorithm, WSA can flock more smoothly by having some

wolves follow others. The other extension is that the step

size should be adaptive rather than constant. Specifically,

the proximity of food would accelerate convergence. The

last extension suggests that when the wolves are in a bigger

pack, the probability of an enemy emerging would de-

crease. In nature, this would translate as a pack of wolves

being less afraid of an enemy (presumably, the enemy is an

animal of similar capacity and size, not a human hunter

holding a gun). Decreasing the chances that the searching

agents will swoop out of a group that may have reached an

optimum should speed up runtime. Nevertheless, there

should be a balance between seeking better optimums and a

quick convergence at a quality solution.

6 Conclusion and future work

Heuristic optimization methods have an edge over their

classical counterparts because they can incrementally

1736 Neural Comput & Applic (2015) 26:1725–1738

123

induce a globally optimum solution by using heuristics to

efficiently search a large space. A special kind of heuristic

optimization known as nature-inspired optimization or

metaheuristics is gaining substantial popularity in the

research community due to its advantages, which are

applicable in computational intelligence, data mining and

their applications. Borrowed from the wonders of nature,

such algorithms computationally optimize complex search

problems with superior performance and search efficiency

compared to earlier optimization techniques. This paper

presents a new metaheuristic algorithm, the WSA, which

imitates the preying behavior of wolves and has displayed

unique advantages in efficiency because each searching

agent simultaneously performs autonomous solution

searching and merging. Local optima are overcome when

the searching agents leap far away upon being triggered

by the random emergence of an enemy. In this paper, the

performance in terms of fitness which is equivalent to the

solution quality is thoroughly validated over different

algorithmic parameters. Furthermore, WSA is tested

against classical algorithms such as GA and PSO and it

outperformed them in most of the testing cases. The

WSA’s potential contributions to finding optimal solu-

tions in applications include but are not limited to the

following: traveling salesman problems, quadratic as-

signment problems, job scheduling problems and se-

quential ordering problems. Readers who are interested in

testing WSA with a wide spectrum of optimization

problems are encouraged to download the WSA program

written in Matlab for free, at www.researchgate.net/pro

file/Simon_Fong.

Future work should involve testing WSA with a non-

stationary global optimum; that is, the point of the global

optimum moves in time. This is common in moving data

streams in which the concept drifts and therefore the po-

sition of the globally optimal point may also drift. WSA

should be able to adapt to a moving global optimum, at

least in principle, by choosing appropriate speed, visual

range and step size parameters.

Acknowledgments The authors are thankful for the financial sup-

port from the research grant ‘‘Adaptive OVFDT with Incremental

Pruning and ROC Corrective Learning for Data Stream Mining,’’

Grant no. MYRG073(Y3-L2)-FST12-FCC, offered by the University

of Macau, FST and RDAO.

Appendix: fitness functions

We used the following test functions to test our algorithms.

1. Griewangk’s function: In this test function, there are a

lot of local minima,

f ðxÞ ¼
Xn

i¼1

x2i
4000

�
Yn

i¼1

cos
xi
ffiffi
i

p
� �

þ 1

The global minimum is fmin = 0 at (0,…,0), where the

-600\ xi\ 600.

2. Sphere function:

f ðxÞ ¼
Xd

i¼1

x2i ; where the � 5:12\xi\5:12

The global minimum is fmin = 0 at (0,…,0).

3. Rastrigin’s function: This function is difficult due to its

large search space and large number of local minima.

f ðxÞ ¼ Anþ
Xn

i¼1

x2i � A cosð2pxiÞ
� �

where the A = 10, xi 2 [-5.12, 5.12] and the global

minimum is fmin = 0 at (0,…,0).

4. Schaffer F6:

f ðxÞ ¼ 0:5þ sin2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5

ð1þ 0:001� ðx2 þ y2ÞÞ2

where xi 2 [10, 10] and the global minimum is

fmin = 0 at (0,…,0).

5. Moved axis parallel hyperellipsoid function:

f ðxÞ ¼
Xn

i¼1

5i � x2i

where xi 2 [-5.12, 5.12]and the global minimum is

fmin = 0 at (0,…,0).

6. The third Bohachevsky function:

f ðxÞ ¼ x21 þ 2x22 � 0:3 cosð3px1Þ þ 0:3 cosð4px2Þ
þ 0:3

This function only has two variables, where x [[-10,

10], the global minimum is fmin = -0.24 located in

[-0.24,0], [0,0.24].

7. Michalewicz’s function:

f ðxÞ ¼ �
Xd

i¼1

sinðxiÞ sin
ix2i
p

� �	
2m

where m = 10. xi 2 [0, p]. When d = 2, the global

minimum is fmin = -1.803 at position (2.0230,

2.0230).

8. Rosenbrock function:

f ðxÞ ¼
Xd�1

i¼1

ð1� xiÞ2 þ 100ðxiþ1 � x2i Þ
2

h i

where the global minimum is fmin = 0 at positions

(1,…1).

Neural Comput & Applic (2015) 26:1725–1738 1737

123

http://www.researchgate.net/profile/Simon_Fong
http://www.researchgate.net/profile/Simon_Fong

References

1. Özcan E, Basaran C (2009) A Case Study of Memetic Algorithms

for Constraint Optimization. Soft Comput Fusion Found

Methodol Appl 13(8–9):871–882

2. Yang X-S (2009) Firefly algorithms for multimodal optimization.

Stochastic algorithms: foundations and applications, SAGA 2009.

Lecture notes in computer sciences, 5792. Springer, Heidelberg,

pp 169–178

3. Yang X-S, Deb S (2009) Cuckoo search via Levy flights. In:

World congress on nature and biologically inspired computing

(NaBIC 2009). IEEE Publication, USA. 2009, pp 210–214

4. Yang X-S, Deb S, Fong S (2011) Accelerated particle swarm

optimization and support vector machine for business optimiza-

tion and applications, the third international conference on net-

worked digital technologies (NDT 2011), Springer CCIS 136,

Macau, 11–13 July 2011, pp 53–66

5. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In:

Gonzalez JR et al (eds) Nature inspired cooperative strategies for

optimization (NISCO 2010), vol 284., Studies in computational

intelligenceSpringer, Berlin, pp 65–74

6. Peng Y (2011) An improved artificial fish swarm algorithm for

optimal operation of cascade reservoirs. J Comput 6(4):740–746

7. Törn A, Zilinskas A (1991) Global Optimization. Lect Notes

Comput Sci Parallel Comput 17:619–632

8. Golfberg D (1975) Genetic algorithms in search, optimization

and machine learning. Addison-Wesley, Reading

9. Kalender M, Kheiri A, Özcan E, Burke EK (2013) A greedy

gradient-simulated annealing selection hyper-heuristic. Soft

Comput 17(12):2279–2292. doi:10.1007/s00500-013-1096-5

10. Dueck G, Scheuer T (1990) Threshold accepting: a general pur-

pose optimization algorithm appearing superior to simulated an-

nealing. J Comput Phys 90(1):161–175 Elsevier

11. Glover F (1989) Tabu search—part 1. ORSA J Comput 1(2):

190–206

12. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: opti-

mization by a colony of cooperating agents. IEEE Trans Syst

Man Cybern Part B 26(1):29–41

1738 Neural Comput & Applic (2015) 26:1725–1738

123

http://dx.doi.org/10.1007/s00500-013-1096-5

	A heuristic optimization method inspired by wolf preying behavior
	Abstract
	Introduction
	Background
	Formulation of the Wolf Search Algorithm
	Logics
	Following and approaching other wolves
	Preying

	Validation and comparison
	Experiments for optimization algorithm validation
	Comparison of WSA to PSO and GA

	Discussion of the characteristics of WSA
	Trajectory method
	Discontinuous method
	Population-based method
	Guided search (with memory use) or unguided search (memory-less) method

	Conclusion and future work
	Acknowledgments
	Appendix: fitness functions
	References

