Neural Comput & Applic (2015) 26:1739-1749
DOI 10.1007/s00521-015-1835-x

CrossMark

@

ORIGINAL ARTICLE

Stochastic synchronization of coupled delayed neural networks
with switching topologies via single pinning impulsive control

Yangling Wang - Jinde Cao + Jianqiang Hu

Received: 7 October 2014/ Accepted: 22 January 2015/ Published online: 11 February 2015

© The Natural Computing Applications Forum 2015

Abstract This paper concerns the global exponential
synchronization of coupled neural networks with stochastic
perturbations and mixed time-varying delays. To be more
practical, we assume that the communication topology
arbitrarily switches among a finite set of directed topolo-
gies, each of which is only required to have a directed
spanning tree. Moreover, we assume that there are impul-
sive effects in the process of signal exchanging. We will
show that all the stochastic dynamical neural networks can
achieve exponential synchronization even if only a single
impulsive controller is exerted. Some sufficient synchro-
nization criteria are given based on multiple Lyapunov
theory. A simple example is presented to show the appli-
cation of the criteria obtained in this paper.
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1 Introduction

Since Hopfield constructed a simple neural network system
to analyze the neuro-computational property in [1], neural
networks have received much attention and have been
widely applied in various areas such as designing associative
memories, signal processing, pattern recognition, solving
optimization problems. The stability problem of different
classes of artificial neural networks is one of the most
important research topics, and various stability criteria were
established in many existing literatures. On the other hand,
Wu and Chua [2] pointed out in that an array of interacted
neural networks could achieve higher-level information
processing and may also exhibit many complicated behav-
iors that cannot be explained in terms of the individual
dynamics of each neural network. In recent years, coupled
neural networks have been widely investigated and found
many important applications in various areas [3, 4]. Espe-
cially, synchronization as an important and interesting col-
lective behavior in coupled neural networks has become
another hot topic, and various kinds of synchronization
criteria for coupled neural networks have been reported in
the literatures [5—15]. As we know, time delay is unavoid-
ably encountered in both biological and artificial neural
networks, which will lead to oscillation, instability, chaos,
etc. Hence, there are a large number of results concerning
the stability or synchronization of delayed neural networks.

In actual complex networks, the communication topol-
ogy usually switches from one mode to another with cer-
tain transition rate due to packet loss or limited
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communication range in networks. Since switching
behavior is a discontinuously fast-varying process, it is
more challenging to achieve synchronization of switched
networks. The results in [16] have showed that an arbitrary
switching may destroy the stability of switched systems.
Up to now, there have been a number of researchers
devoted themselves to the problem of synchronization on
switched neural networks and obtained some valuable
results. The switching law in most of the related works is
Markovian switching or average dwell time switching, for
example, see [17-21] for the synchronization of stochastic
switched neural networks under Markovian switching and
[22, 23] for the synchronization under average dwell time
switching signal. In this paper, we will further investigate
the global exponential synchronization for delayed neural
networks under switching communication topology, and
the associated switching law is more general, which has no
upper bound and only has a lower bound.

When the coupled networks cannot realize synchroni-
zation only depending on their internal structure, it is
necessary to add an external controller into the associated
coupled networks, and it is so-called controlled synchro-
nization. The controlled synchronization of coupled neural
networks has received increasing attention. In [24, 25], the
synchronization of coupled stochastic neural networks with
time delays was investigated using adaptive feedback
controller. Yang et al. [26] investigated the global expo-
nential synchronization for a class of switched delayed
neural networks via impulsive control method. The litera-
tures [27, 28] concerned the synchronization in an array of
linearly coupled delayed neural networks using pinning
control, to name a few. Recently, in [29-31], a novel
controller called pinning impulsive control was introduced,
which means only adding the impulsive controller to a
fraction of nodes. Obviously, pinning impulsive control is a
more economical and important control method. Lu
et al. [31] studied in the synchronization of coupled neural
networks with impulsive effects using a single impulsive
control method, but time delay was not taken into account
and the communication topology is fixed. Lee et al. [23]
investigated the exponential synchronization of coupled
hybrid impulsive switched neural networks using average
dwell time approach. In both [23] and [31], stochastic
disturbance was not considered and the associated coupling
is linear. However, practically synaptic transmission is a
noisy process brought on by random fluctuations from the
release of neurotransmitters and other probabilistic cau-
ses [32, 33], so stochastic disturbances should be consid-
ered in the dynamical behaviors of neural networks. On the
other hand, as discussed in [34], sometimes state variables
x;(t) may be unobservable, but g(x;(r)) can be observed
easily, so nonlinear coupling is more realistic.

@ Springer

Motivated by above discussions, this paper aims to
analyze the exponential synchronization of delayed hybrid
impulsive switched neural networks with stochastic dis-
turbance and nonlinearly coupling via a single impulsive
control method. The rest of this paper is organized as
follows: In Sect. 2, we first give the problem statement and,
then, present some definitions, lemmas, and assumptions
required throughout this paper; in Sect. 3, we will give two
novel criteria to ensure the exponential synchronization for
the considered neural networks in terms of LMIS and
nonlinear equations; in Sect. 4, a simple example is pro-
vided to show the application of the theoretical results
obtained in this paper.

2 Preliminaries

In this paper, we consider the following nonlinearly cou-
pled neural networks with stochastic perturbations and
switching communication topology:

dxi(r) = [~Cxi(t) + Bf (xi(1)) + Df (xi(t — ©(1))) ] dt
+ &(xi(t), xi(t — p(1)))dw(1)

N
+ D a5 (1)dr, (1)

where i =1,...,N, x;(1) = [x;1(1),....xin(t)]" € R" is the
ith neuron state at time #; 7(¢), p(¢) are time-varying delays
which satisfy 0 <1(7) <7,0< p(t) <p with 1, p are positive
constants; a(z) : [0,+00) — M = {1,2,...,m} is a piece-
wise right continuous function representing the switching
signal and o(r) = r,, € M, 1 € [t, tx41). The switching time
instants  #;, satisfy O=fy<f < - - <[ <frp1<---,
limy_ ooty = 00 and infpo<pcoo{fir1 —f} >R where
i = max{z, p}; C = diag{cy,...,cn},(c; >0, 1=1,...,n)
is the state feedback coefficient matrix; B, D € R"*" denote
the connection weight matrix and delayed connection
respectively;  f(x:(1)) = (f, (xi(1)), . . .,
L))" €R" is the activation function; g(x;(r),x;(r
—p(1))) € R™™ is the noise intensity function matrix;
w(t) = (wi(2),wa(t), ..., wa(r))" €R™ is a Brownian
motion defined on a complete probability space (2, F,P)
with a nature filtration {F,},., satisfying E(w;(r)) =0,
E(wf(t)) = 1, E(w;(t)wi(t)) = 0 (j # k). The configuration
coupling matrices A,, = (a;;,, )yxy are defined as follows:
if there is a directed edge from node j to node i, then

weight matrix,

. N

aijr, > 0, otherwise, a;,, =0, and aj;,, = — ijl#i ij r,
for ij=1,..,N,r € M h(x;(r)) = (hi(x1 (1)), ..., Iy
(x;n(1)))" € R is the inner coupling vector function
between two connected nodes i and j.
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The initial condition of system (1) is given by x;(r) =
¢;(1) € C(|-h,0],R"), where C([-%,0],R") is the set of
continuous functions from [—7,0] to R". Let s(¢) be a
solution of the following stochastic delayed dynamical
system of an isolate neural network:

ds(r) = [~Cs(1) + Bf(s(1)) + Df (s(t — t(1)))]de
+ 8(s(2),s(r — p(1)))dw(z),

where s(f) can be any desired state: equilibrium point, a
nontrivial periodic orbit, or even a chaotic orbit. The initial
condition (2) is given by s(t) = ¢(r) € C([-%,0],R"). In
this paper, we adopt the following impulsive effects pro-
posed by Lu et al. [29] in the process of signal exchanging
at each switching interval [t, 511 ):

% (fZZk) =X (fZZk) = Hn {xj (’IZIJ T (t’;’kﬂ )

for i,j satisfying a;, >0, where {f,,lk € N'}C
[k, tr41) are impulsive instances satisfying 7 <t <
o< -+ <tgy <--- <try1. In this paper, we always
assume that x;(¢) is right continuous at t = f;,. Denote
ei(t) =x;(t) —s(r), i=1,...,N, to force all x;(r) globally
exponentially synchronized to s(r), we impose the fol-
lowing single impulsive controller on (1):

e (tkf,k) = [, e (t,;lk). (4)

After adding the impulsive effects (3) and the single
impulsive controller (4) to system (1), one can obtain the
following error dynamical system (5):

2

~—

de,-(t) =
N

+ Za,:,-.,.kh(ej(t))dt, t e [l‘k,tk+]), l‘;’é tkA,lk
J=1

[—Cei(1) + Bf (ei(1)) + Df (ei(r — 2(1)))]dr + g(ei(1),

In order to analyze the global exponential synchroni-
zation of the dynamical neural networks (1), we introduce
the following Definitions, Assumptions, and Lemmas.

Definition 1 The dynamical neural networks with
Brownian noise (1) is said to be exponentially stochastic
synchronized with s(7) in mean square if for any initial
condition x;(#), there exist constants A >0 and M > 1
such that for ¢ > 1y, the following inequality is satisfied:

(an, ><M sup E<Z ())

th—h<i1<p

Definition 2 [26] An impulsive sequence ¢ = {f,1,,...}
is said to have average impulsive interval T, if there exist
positive integer ¢ and positive constant T, such that

T—1t

—t
— < N;s(T,1) < +96, VI>t>0,
a a
where Nj(T,t) denotes the number of impulsive times of
the impulsive sequence {f,,,...} on the interval (¢, T),
the constant ¢ is called the “elasticity number” of the
impulsive sequence.

Assumption 1 Assume that there exists a diagonal posi-

tive matrix L such that for Vx,y € R", the function f(-)
satisfies the following Lipschitz condition:

IF () = FO)I < ILGx = )]I-

Assumption 2 Assume that there exist positive constants
wy; and @y; such that

ei(t = p(1)))dw(r)

(5)
e <t]j:lk) —e (tlj,lk) =u, (e_j (t,;,k) —e (t,;,k)), for i,j satisfying a;, >0
erltiy, ) = tner(fey, )
where f(e.(1)) = F(ex(t) + 5(0)) — F(5()) gler(1). et — A — )
p(1) = &lei(t) +s(0),ei(t = p(1) +s(t = p(1) = &(s(1), @S~ T SOy
s(t = p(1))), hle;(1)) = hle;(t) + (1)) — h(s(1)). forall j— 1.2,...n and Vx,y € R.

Remark 1 In this paper, we assume that the impulses
occur between two switching instants, which is more
general than the assumption that the impulses and switch-
ing occur at the same time in most existing literatures, for
example, see [35-37]. Additionally, we assume that the
impulsive strengths are related to the communication
topologies.

Assumption 3 Assume that there exist positive constants
11,1, such that for Vx;,y1,%,y2 € R", t € Rt

— (2, y2)]" [g(x1,y1) — §(x2, 7)1}

2 2
= yill" + 1 llx2 = 2|

[gN(xlvyl)
< [Jx

trace {

@ Springer
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Assumption 4 Each communication topology contains a
directed spanning tree with the first neural network as the
root.

Assumption 5 The mode-dependent impulsive strength
1, satisfies |u, | <1 for each r, € M.

Assumption 5 The mode-dependent impulsive strength
1, satisfies |u, | > 1 for each r, € M.

Lemma 1 [23] Let 0<7t;(t) <7, F(t,u,ity,... 0p):

Rt XRx---
m+1

(t,u,ﬁl, B '7’21‘713’21#1; . '5ﬁm)a i= 17 <o m,

R — R be nondecreasing in u. Suppose that

{D*u(z)gF(t u(®),u(t —11(2)), ..., u(t — 1,(1)))
u(tf) < R(ulry)), k € Ny
and

{D+v(t) > F(t,v(t),v(t — 11 (1)), - .,
V(i) > L (v()), k € N,

where the upper-right Dini derivative D7y(1) is defined as
DFy(t) = limy, g+~ M Then u(t) <v(t) for —t<r<0
v(t ) Sfort>0.

x R be nondecreasing in u; for each fixed

and Ii(u) :

v(t = (1))

implies that u(t) <

Lemma 2 [31] For any vectors x,y € R",
and positive definite matrix Q € R™",
inequality holds:

scalar ¢ > 0,
the following

1
2xTy < axTQx + EyTQ’ly.

Lemma 3 [38] The following linear matrix inequality

Sn S12
<0
(Ssz S»
is equivalent to the following conditions:

S1 <0, Sy — SiS5,'sh, <0,

where S11, Sy are symmetric matrices.

Lemma 4 [39] (Halanay inequality) For any constants
ki, ko satisfying ky >k, > 0, continuous function y(t) :

[tO -1, +OO) - R+a lf
DY y(t) < — kiy(t) + ko¥(1)

is satisfied for Vt>1t, then y(t) <y(tp)e”
¥(t) = sup,_, <, <, ¥(1), 2 is the sole positive solution of the
equation —ky + kye’™ + 1 = 0.

M=) ywhere

@ Springer

Finally, for the convenience of later use, we introduce
some notations employed throughout this paper. Let w1 =
min <j <, {@y}, @2 = max; <<, {0y} 4,
modified matrix of A, in which the diagonal elements
aji,, are replaced by wia;; ,, and other ajj ,, are replaced by
(|3l [l s b)) for Vo€ R [ly(@)]l; =
SUpP; _s<i<r Hy(l)ll for Vy(t) € C[t —h, —|—OO); él(t) =
(en(t),en(t),...,em(t))" € RY. For a square matrix
A, A% is deﬁned as A+A , Zmax (A) and Amin(A) denote its

maximum
respectively.

denotes the

W20, |x| =

elgenvalue and  minimum  eigenvalue,

3 Main results

In this section, we will give two sufficient exponential
synchronization criteria for the considered coupled neural
networks using multiple Lyapunov theory.

Theorem 1  Assume that Assumptions 1-5 hold, and the
impulsive sequences have average impulsive interval T,.
Furthermore, we assume that there exist positive constants
E1r 1 €275 Oy ﬁ,k,ym, diagonal positive matrices P, €
R™" satisfying Py, < 0,1, with 0, are positive constants,
such that for each r, € M, the following conditions are
satisfied:

(pll,m PrAB PrkD 0 0
B'P, — &1y 0 0 0
(H)) @, = | D'P, 0 — &ty 0 0 <0,
0 0 0 [V 0
0 0 0 0 Pss
where @y, = —2P,C+ &, LTL+ 10,1, + o, Py,
+2)Lmax( )Prka @44 s — €2, r;‘L L— ﬁrkPrka @55 gk 1’]20rk1
7 Pry-
2In|u | (2
(HZ) — Oy + Ta - o(ﬁrk + yrk) <0.
InY
(H3) A— >0,
T,

where A = min, coqn{4, } and 4, is the sole positive solu-
21n|u, | _

—op + L+ Ar Jr:urkz(s( rke)’AT +

yrkeﬂrkp) = O7T = max{% ) ekh}ap = maxrke‘Jﬁ{/bmax( rk)}aB

= miny, em{ Amin(Pr,)}. Then the coupled neural networks
(1) can be globally exponentially synchronized to s(t).

tion of the equation

Remark 2 1t should be mentioned that in @y, of the
Theorem 1, if 0,, = Amax(Py,), then @,, is not a LMI about
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the matrix P,,. That is why we introduce a positive constant
0,, for each P, , which may be Amax(Py,), Or an arbitrary
posmve constant that is bigger than Am (P, ). We can use
the LMI MATLAB tool to obtain P, and 0,
simultaneously.

Proof 1t follows from Lemma 3 that @, <0 is equivalent

to @44” <0, @55” <0, and
— 2P, C + &1y L"L+ 0,0, 0 + 22max (A3 )Py, + 0, Py,

1 1
+ —P,BB"P, +—P,DD"P, <0.
&1, 2.1t

Define the following Lyapunov functions for system (5):\

T (s
E e; (1)Py.e;(t

i=1

)t € [tkytrg1), k € N

Differentiating V(¢) along the trajectories of Eq. (5) for
t € [tx,tk41), We can obtain

dV(t) = LV(t)dt +2 XN: el (1)

i=1

Prg(ei(t),ei(t — p(1)))dw(7).

(6)

By applying the 1t6’s formula to V(¢), we can obtain

P, |~ Cei(t)+Bf(e:(1)

+Df(ei(t—1 JrZa,j e e] ]
+ trace[g" (ei(f),ei(t—p( ))Prglei(t),ei(t—p(t)))]-

Using Lemma 2 and Assumption 1, we get

1
Sl,rk

+ e (ei(0)f (eilr))
| )
el ()P, BB" P, ei(t)

2e; (1)PrBf (ei(1)) < —e] ()P BB"Ppei(1)

<

81 Ny

+e1ne] (LT Lei(t).

Similar to (7), we can obtain the following inequality:

26] ()P DI el ~ (1) < -

(1)L  Le;(t — 1(7)). (8)

el (t)P,, DD P, e;(t)

T
+ &€ ([ -

It follows from Assumption 2 that

Aijr €; ( )P h(e(t))

-
'Mz

T
~.

\\Mz \\Mz L

{au ne; ()P h(e(t

Z i€ (f))}

J=lj#i

N
Zprk 1 |:azz Iy Ll + Z aij.fke”(t)hl(eﬂ(t))]
=1 J=LA
|lej(z )|}

Prl |:Z W1 Qajj zl + Z Z W24ij,ry |ell
9)

i=1 j=1,j#i
Note that the assumption P, <0,1I,, associating with
Assumption 3, we have

trace[g” (e;(1), ei(t — p(1))) Py g(ei(t), ei(t — p(1)))]
<0, (m el (1)ei(t) +my el (t — p(1))e;(t — p(t)))~
(10)

IN

M= HM

Pralei(t)]" A @i(t)] < max (A3, )e] (1) Ppei(1).

It follows from (7) to (10) that for ¢ € [t, f+1),

N
1
EV(I) S Z {el ( )|: 2PVkC + PkaBTPrk
i=1
+ gl‘rkL L + '/Ilerkln + 2/“max (Ark)Prk

1
+

—— P DD" Py + 3, Py | ei(t) = el (1)Pei(t)
-2 Tk

+ el (e = 2(t)) (s 'L — B, Py, )eilt — (1)
+m,wwm> ei(t — (1))

p(O)) (M0 00 — 7y, rk)
+ el (0= p(0)Preilt = p(1))}
V(1) + B, V(e —1(1) + 3,V (¢

eit = p(1))

— ().
(11)

Integrate on both sides of (6) from 7 to  + At for any Az > 0
and take mathematical expectation. Let m(z) = EV(¢),
associating with the properties of the 1t6’s integral and Dini
derivation, we can derive from (11) that for ¢ € [t, tx+1),

D m(t) < — om(t) + Bmle — 2(0)) + 3,m(t — p(0).

When ¢t = 1 ,, it follows from Assumption 4 that for Vj €
{2,3,...,N}, there exist suffixes ji,...,js € {2,3,...,N}

@ Springer
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such that aj ,, > 0,a;,, >0,...,qa; > 0,a;1, >0.
Thus, associating the impulsive effects of signal exchang-
ing (3) with the single impulsive controller (4), we can

derive that
+
(152

€j (IZIk) — e
= e(t83) = €5 (1) + € (1) — et
e () e (1)
=ty {ej (’k_.,zk> — ¢ (tk_.,l,()} + [ejl (1) — e (tiy,)

ot [e./; (fi1,) — €1 (t’;’k)}
= U, [e, (’/Zu) —a (t’;’k)} ’

which results in ¢;(r, ) = p, ¢;(t;; ). Therefore, one can

obtain

N
2 T( - _
m(t{;,) ) = My Z [ e; (tk,lk)Prkei (tk,lk>}'

For any ¢ > 0, let y(¢) be a unique solution of the following
delay system:

y(t) = = (1) + Byt — () + 7,5 — p(1)) + &, t# gy,
Y(ta) = 12y () 1=ty
y(t) =m(t), n—h<t<g.

(12)

By the formula for the variation of parameters, it follows
from (12) that for ¢ € [f, txy1),

o[ wealot-)
+7,5(s = p(s)) + elds,

where W(t,s), t,s > 1 is the Cauchy matrix of the linear
system

y() = Wt 0)y(t)

t# ey

I =1y

{ ¥(1) = —oy, (1),
y(te) = 12 y(5c,),

According to the representation of Cauchy matrix, one can
get the following estimation:

(14)

W(t s) — o (1= s)'u2N;(s 1) < u—za —o; (1—s)

)

o =0, —

e Define  s(¢c) =¢—o) +
102 (B e + ). It (H,) that
5(0) = —o;, + u,’kz‘s(ﬂ,k +7,)<0. Since $(¢) >0 and
lim._ . s(¢) = 400, there exists a unique 7, > 0 such
that s(4y) =0, ie., oy — Oy + u‘za(ﬁ,kei'kf—i—

7, eP) =0. Let &, :u;k2‘3||y(tk)||h. In the following,

21In|u,
where #

follows from

@ Springer

we shall prove the following inequality is satisfied for
t—h<t<tfiqr:
&

— A (1=t)
G DI B —
' ark’u%kb o ﬁrk T

(15)

It is obvious that y(r)<p2¢, <¢, <& el 4

m for tp — h <t<t;. When #;, <t <tyy, we will
Tk Tk Tk Tk

prove the inequality (15) is still satisfied by the way of
contradiction. If there exists a r* € (f, #x4+1) such that

: (16)

. €
0 S N R S—
( ) h OCrk,U%f - ﬁrk - ’Yrk
and for 1 € (1, 1%),

g
o 2~ B =
Note that t(f)<7,p(t)<p and e™'B, +eFy, =
,u,z.f(otfk — Ay, ), then by some simple computation, we can
derive from (13) and (17) that

(1) <&l 4 (17)

-~
R
1k

|:érk (e/lyk Tﬁrk + e;ﬂ pyrk )ei;wk (s=tt)

* .20
+ e ds
o, u” B, =
Tk Tk Tk
_ f (" —1y.) + &
’K 20
"k .ur,f ﬁrk - yrk
& ot (=
— e o, (" —11)
0 —
B
&

<épe o (1" —1i)

AT
which contradicts with (16). Thus, (15) is always satisfied
for # —h<t<t;;1. Let &¢— 0, one can obtain
y(t) <&, e =i, Then it follows from Lemma 1 that
m(t) <y(t) < & e = 2 lm(n) e for
ty <t<tyy1. In what follows, we will show by induction
that

k
m(t) <T T w2 Im(eo)[lue ™™, n<t<ngr,  (18)
j=0

where 1 = max{E e} ) = min, cym{l, },P = max,, con
{/Imax(Prk)};E = rﬁinrkeﬂﬁ{/lmin(l)rk)}
When ¢ € [t(),l‘l)

m(t) < i, lm(to) |y~ " < g llm1o) | e ).

Assume (18) holds for 1 <k <j,j € N, then it suffices to
show that (18) holds for k=j+ 1. When f | —
h <t<tj1, note that #;;; — i >1t;, then we get
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Atj1—h—to)

<T’Hﬂ 2|m(to)ll e
1=0

Atir1—to)

— e/h’fj ]:['ur/26||m tO)”

When 7 = g1, if tj11 <tj11,1,
m(tj1) = E(¢" (t:1)Py, e(t1)) = E(ef<r,-;,>Pr,+,e<r,;l>)

<=m(r,) T’Hurfonmro)u fra 1),

=0

[hSARST
I"’B

If tj11 = tj41,1, it follows from [u, | <1 that
mltyr) = 12 E (e (5,)Pr el

< E<€T(f 1)Prj+1€(tf+1))

Mti1— to)

pT’ H 2 lm(1o) | e

Thus, we have
j+1 ! 7
(i) 1y < 2T a2 o) e 00,
=0

which leads to

) < g s e
< i+t H ’ur—126Hm(to)”he—A(z—zo)7
=0

where #;,1 <t<tj». This is shown by the induction prin-
ciple that (18) is satisfied Vr € [, #,1) and Vk € N. For an
arbitrarily given ¢ > f9, 3k € N*, such that ¢ € [t;, fxy1).
Since the impulses occur at each switching interval, it is
easy to see that k < Nj(t,1y), and then it follows from (18)
that

k
0 <1 T2 o) e )

=0
o Ln
STNO- t,to) 2‘)||m(t0)|| G
j:O
<194 T im0
Jj=0
7y o
_ =" (t—t9)
=\ ot | llm(o)llye™ ",
(Hjo “%)
lnT

where A* = 1 — > (0. Then we have

o
gE<|e<r>||2><m<r><< ) i) e

T
k
Hj:() .“3,

J
_ r 2 e
SP\ = 5 sup  E([le(1)[*)e "),
Hj:o M t—h<1<t

which follows that

N

E(D I = s@I?) <M sup

i=1 th—h<i1<t

N
E(Z llx:(1) —s 1)||2)e*/1*(t*to)7
p)

where M = E( T
P

know that the dynamical neural networks with Brownian

noise (1) are exponentially stochastic synchronized with

s(#) in mean square. This completes the proof.

5
) > 1. Thus, by Definition 1, we

If P, =1, it is easy to know the condition (Hj) is
equivalent to T, > 7, so in this case, we can obtain the
following Corollary :

Corollary 1  Under Assumptions 1-5, the coupled neural
networks (1) can be globally exponentially synchronized to
s(t), if the impulsive sequences have average impulsive
interval T, with T, > h, and for each r; € I, the following
condition is satisfied:

21In |y, |
T,

_O(rk _|_

+ 1,2 (B + ) <O,

where 8y, = jmax(2C — L"L — B'B — D'D) — 2/imox (A?))

—Ms /§ = Amax (LTL)-

Remark 3 Using single pinning impulsive strategy, Lu
et al. [31] studied the exponential synchronization of the
following coupled neural networks with fixed communi-
cation topology:

%i(1) = Cxi(t) + Bf (xi(1)) + ¢ ﬁlja,;,-Fx_,v(z)dt, t# t,k €N
=

X[(t;))v

() = xi(t) = plx(ee) — for i,j satisfying a; >0
ei(t) = ner(r),
(19)

where C € RV I =diag{y,,72,.--,7,}. Under the
assumption that the associated digraph is strong connected
or have several strong components, they gave some expo-
nential synchronization criteria using the properties of
irreducible matrix. These criteria they obtained are inde-
pendent of the coupling matrix A. However, it should be
mentioned that the irreducible matrix method does not
apply to the case of nonlinear coupling. Based on our
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assumption about the digraph, we can obtain from Theorem
1 another exponential synchronization criterion for net-
works (19), which is the following Corollary 2.

Corollary 2 Suppose that the digraph of the networks
(19) contains a directed spanning tree with the 1-th neural
network as the root, the function f(-) satisfies Assump-
tion 1, the impulsive sequences have average impulsive
interval T,, and the impulsive strength u satisfies || <1.
Then the coupled neural networks (19) can be globally
exponentially synchronized to s(t), if there exists diagonal
positive matrix P such that the following inequality is
satisfied:

21n |ul
T,

where A = PC + CTP + LTL + PBTBP + Jna (A*)P,A is
the modified matrix of A in which the diagonal elements a;;
are replaced by min; < ;< ,{y,}a;; and other a;j are replaced
by max; <;<.{y}ay.

Remark 4 Obviously, t(f) = p(¢) is a special case of the
model (1), so the results of Theorem 1 can be applied to the
case of t(¢) = p(¢). The results of Theorem 1 are obtained
under the condition |, | < 1. However, if t(f) = p(t), we
can obtain another stochastic exponential synchronization
criterion under the condition |u, | > 1.

+ Amax(4) <0,

Theorem 2  When 1(t) = p(t), under Assumptionsl—4
and 5', the coupled neural networks (1) can be globally
exponentially synchronized to s(t), if the impulsive
sequences satisfy info<p<oco{ts+1 — tks} >N>71, and
there exist positive constants &, € ,, pOSitive constants
%, By, satisfying o, > B, , diagonal positive matrices
P, € R™" satisfying P,, <0,1, with 0, are positive con-
stants, such that for each r, € I, the following conditions
are satisfied:

Dy, P.B P.D 0
B'P, — &1, 0 0
H)) @, = - ' <0,
D’p, 0 — ey, 0
0 0 0 Dy,
where Dy = 2P, C+ erkLTL + 0,1, + o, Pr,+
2/‘{max (A;A )Prk7 (p44,rk = 82,rkLTL + errkln - ﬁrkPrk-
InM
(Hy) A——— >0,
N
where M = max, em{M, }, M, = max{e** ,,ur Hhi=

min, em{4, } and A, is the sole positive solution of the

equation —0,, + A, + ﬁrke)vﬂ —0.

Proof Similar to the proof of Theorem 1, we can derive
that

@ Springer

D¥m(t) < — opum(t) + fm(t — (1)

is satisfied for Vk € N and ¢ € [t,;.1). In the following,
two inequalities will be shown by induction. The first
inequality is

m(t) <MY |lm(n)|| e+, (20)

and is satisfied for ¢ € [t,#1), where N(t,1) is the
impulsive times in the interval [t ¢). In this case, it suffices
to show that for VI € N*, when 7 € [t;, t441), we have

m(t) <M, |lm(se)|| e+, (21)

because if 7€ [, f 1), the impulsive times in the
interval [t,¢) is just I. When t € [tk,tk 1), it follows from

Lemma 4 that m(t) < ||m(t)||,e ). Suppose that (21)
is satisfied for ¢ € [fj, fxj+1), 1 <j<I,l € N". Since

m() < M, lm()|| ¢ Chinr =)
<M, J|m(n)| e o)

for 1€ [tpr — T tk1), and m(tpr) = g m(te, ) <

,U%kMik ||m(tk) ||Te_)w (th11 —t;()7
e, < ME (e || e =),

which leads to

m(t) < [lm(tg ) [l e 0 <M m(n) | e
for ¢ € [ty i1, tki2)- That is, we show by induction that
(21) is satisfied for VI € NT, thus, the inequality (20) is
satisfied.

The second inequality is that for Vk € N, when
tE [tk tiy1),

m(t) < M) HirIIm to) | e, (22)

where {, = max{ ,ufj % ,e’*}. This is similar to the proof of

(18). When ¢ € [to,11),

m(t) < MY mio) e~ < MY (i) o)
Suppose that (22) is satisfied for 1 <j <[, € N, then we

will show that (22) holds for j=1[1+ 1. When #, —

t<t<ft;1, we have

Atry1—t—to)

m(t) < M) HCr,Hm (t0)|le

j=0

I
= AT N1 t0) H er ‘lm(t0)|lre_)v(fl+l_f0).
j=0

When t = 1,1, if 111 <t111,1,
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= E(eT(tHl)PVH]e(tH-l)) = E(eT(tljrl)Prme(tljrl))
l

(fz+1)< 2 pNsa [1¢,lImo)lle

Jj=0

m(tyi1)

Mtrp1—to)

<

I”U I"B\

If t701 = ti41,1,

m(ti) = Mf,HE(eT(t;l)Pr,-ﬂe(tzll))
N(t141,t0) HCr,Hm 10)||,e

Note that |u,,,| > 1, then subsequently we have

Mtir1—to)

< ‘url+1

I+1
lm(tr1)|], < MNC10) Her”m (o)l €~

Aty lo

Since 1\/'(l7 l1+1) + N(lz+1, lo)
obtain that for #,, <t <ty,2,

= N(t,19), then it is easy to

/Lr]+1 (t—t111)

m(t) <M m(t1) | e

I+1
<MNtt0 HCr,Hm fo H At— tU

Therefore, (22) is satisfied for V¢ € [ty, #;11) and Vk € N. It
follows from (22) that

k

_0

M T ¢, Imo)] e ) Hcr/umzo [iah
Jj=0

where 4 = i—%. The rest is similar to the proof of
Theorem 1; here we omit it. This completes the proof.

Remark 5 When 1(t) = p(r) =0, the associated non-
delayed stochastic dynamical networks with nonlinear
coupling and fixed communication topology were
investigated in [29]. Some exponential synchronization
criteria were given based on the assumptions that the
impulsive strength |u| <1 and the configuration coupling
matrix A is symmetric and irreducible. In contrast, no
matter whether |u| <1 or |u| > 1, it can be obtained from
Theorems 1 and 2 the corresponding exponential syn-
chronization criteria of the coupled neural networks
studied in [29]. Moreover, the communication topology
graph is directed and not assumed to be strong corrected
in this paper.

4 Numerical simulation
To illustrate the effectiveness of the theoretical results

obtained above, in this section, we consider the coupled
networks consisting of six neural networks with Brownian

noise and impulsive effects, i.e., N = 6. The initial states of

the six neural networks are selected as (x!(0),
x1(0),...,x5(0)) = [-1.2,1.6,1.3,-2.4, —2.1, 1.8, —1.2,
1.6,1.3,-2.4,-2.1,1.8.  Let  f(x(r)) = (f; (x:(1)),

Rw@)" and  fi(u(0) = ¢ [ (0) + tanh(xa(1))]
f(xi(t)) = Y tanh(xp(1)), which follows that L=
diag{0.25, 0.75}. Select h(x;(t)) = (xj1 () + 0.1sin(x; (),
xp(1)", as a result, one can easily
w1 =0.9,w, = 1.1. Assume that the topology of the cou-
pled neural networks switches in a random order between
two networks, which are shown in Fig. 1. The duration of
each topology is also random with the minimum # = 0.5s,
and the switching scheme is shown in Fig. 2.

obtain

By some simple computation, we have Ana(A3) =
0.315, Jmax(A3) = 0.3224. Let

0.4 —0.2) D_(0.3 0.5)
-035 03 )’ -04 03)’
7(t) =0.15sinz, p(t) =0.1cost,

th = =085, g(x;(1), xi(t—p(1)))

:°'1<Xi((>t) x,-<t—0p<r>>>'

Select =5.1051,0, =5.271,, =0.4478, 5, =
0.3255,y, =0.2325,y, =0.2035, then using LMI MAT-
LAB tool, we get

0.4272 0 L (06253 0
0 08085) %\ o0 0.8124 )’

which follows that p = 0.4272,p = 0.8124. Other param-
eters are obtained as e1,1 = 0.5867, 12 = 0.6046, & |
= 0.6263, 6, = 0.4601,0, = 1.0739,0, = 1.2363.  The
impulsive sequence is constructed by taking 7, = 0.36 and

_O(rk +

C=35L, B= (

1=

0 =5, then by solving the nonlinear equations
1 1
07 K 0.7 \0.25
2 4 2 3
o.3l 07 0.5/ 1.\1‘ o.\<

3 5 05,06 4

Topology 1 Topology 2

Fig. 1 The network topologies
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2.2

181 1

16 1

121 1

0.8 I I I I
0

Fig. 2 The switching scheme

x(t)

25 L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4

Times (sec)

Fig. 3 The errors between x;(7) (i =1,...,6) and s(r)

21In |, | - A )
= A 1, (BT 9, €)= 0, (= 1,2), we

can get 4; = 1.7877, 4, = 2.3489, thus, it is easy to verify
the condition (Hj3) is satisfied. So by virtue of the Theo-
rem 1 in this paper, it can be concluded that the considered
complex networks can be exponentially synchronized with
the objective trajectory. Figure 3 shows that the errors
between the networks’ states and converge to zero under
the given conditions.

5 Conclusion
In this paper, we studied the exponential synchronization
problem of stochastic dynamical networks with nonlinear

coupling and mixed time-varying delays using single pin-
ning impulsive control. The main contribution of this paper

@ Springer

contains three aspects. Firstly, stochastic disturbance and
mixed time-varying delays were both taken into account,
which were seldom simultaneously considered in coupled
neural networks. Moreover, the graph of the coupled neural
networks is directed and the communication topology is
arbitrarily switching among a finite set of topologies. This
is obviously more practical in real world. Secondly, in the
considered hybrid impulsive and switching networks, the
impulses occur in each switching interval, not at the
switching instants. Additionally, the impulsive strengths
depend on the communication topologies. Thirdly, based
on multiple Lyapunov function theory and Halanay
inequality, we gave some stochastic exponential synchro-
nization criteria, which show that the exponential syn-
chronization can be achieved even if only a single
impulsive controller is exerted.
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