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Abstract This paper concerns the global exponential

synchronization of coupled neural networks with stochastic

perturbations and mixed time-varying delays. To be more

practical, we assume that the communication topology

arbitrarily switches among a finite set of directed topolo-

gies, each of which is only required to have a directed

spanning tree. Moreover, we assume that there are impul-

sive effects in the process of signal exchanging. We will

show that all the stochastic dynamical neural networks can

achieve exponential synchronization even if only a single

impulsive controller is exerted. Some sufficient synchro-

nization criteria are given based on multiple Lyapunov

theory. A simple example is presented to show the appli-

cation of the criteria obtained in this paper.

Keywords Stochastic synchronization � Coupled delayed

neural networks � Switching topologies � Single pinning

impulsive control

1 Introduction

Since Hopfield constructed a simple neural network system

to analyze the neuro-computational property in [1], neural

networks have received much attention and have been

widely applied in various areas such as designing associative

memories, signal processing, pattern recognition, solving

optimization problems. The stability problem of different

classes of artificial neural networks is one of the most

important research topics, and various stability criteria were

established in many existing literatures. On the other hand,

Wu and Chua [2] pointed out in that an array of interacted

neural networks could achieve higher-level information

processing and may also exhibit many complicated behav-

iors that cannot be explained in terms of the individual

dynamics of each neural network. In recent years, coupled

neural networks have been widely investigated and found

many important applications in various areas [3, 4]. Espe-

cially, synchronization as an important and interesting col-

lective behavior in coupled neural networks has become

another hot topic, and various kinds of synchronization

criteria for coupled neural networks have been reported in

the literatures [5–15]. As we know, time delay is unavoid-

ably encountered in both biological and artificial neural

networks, which will lead to oscillation, instability, chaos,

etc. Hence, there are a large number of results concerning

the stability or synchronization of delayed neural networks.

In actual complex networks, the communication topol-

ogy usually switches from one mode to another with cer-

tain transition rate due to packet loss or limited
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communication range in networks. Since switching

behavior is a discontinuously fast-varying process, it is

more challenging to achieve synchronization of switched

networks. The results in [16] have showed that an arbitrary

switching may destroy the stability of switched systems.

Up to now, there have been a number of researchers

devoted themselves to the problem of synchronization on

switched neural networks and obtained some valuable

results. The switching law in most of the related works is

Markovian switching or average dwell time switching, for

example, see [17–21] for the synchronization of stochastic

switched neural networks under Markovian switching and

[22, 23] for the synchronization under average dwell time

switching signal. In this paper, we will further investigate

the global exponential synchronization for delayed neural

networks under switching communication topology, and

the associated switching law is more general, which has no

upper bound and only has a lower bound.

When the coupled networks cannot realize synchroni-

zation only depending on their internal structure, it is

necessary to add an external controller into the associated

coupled networks, and it is so-called controlled synchro-

nization. The controlled synchronization of coupled neural

networks has received increasing attention. In [24, 25], the

synchronization of coupled stochastic neural networks with

time delays was investigated using adaptive feedback

controller. Yang et al. [26] investigated the global expo-

nential synchronization for a class of switched delayed

neural networks via impulsive control method. The litera-

tures [27, 28] concerned the synchronization in an array of

linearly coupled delayed neural networks using pinning

control, to name a few. Recently, in [29–31], a novel

controller called pinning impulsive control was introduced,

which means only adding the impulsive controller to a

fraction of nodes. Obviously, pinning impulsive control is a

more economical and important control method. Lu

et al. [31] studied in the synchronization of coupled neural

networks with impulsive effects using a single impulsive

control method, but time delay was not taken into account

and the communication topology is fixed. Lee et al. [23]

investigated the exponential synchronization of coupled

hybrid impulsive switched neural networks using average

dwell time approach. In both [23] and [31], stochastic

disturbance was not considered and the associated coupling

is linear. However, practically synaptic transmission is a

noisy process brought on by random fluctuations from the

release of neurotransmitters and other probabilistic cau-

ses [32, 33], so stochastic disturbances should be consid-

ered in the dynamical behaviors of neural networks. On the

other hand, as discussed in [34], sometimes state variables

xiðtÞ may be unobservable, but gðxiðtÞÞ can be observed

easily, so nonlinear coupling is more realistic.

Motivated by above discussions, this paper aims to

analyze the exponential synchronization of delayed hybrid

impulsive switched neural networks with stochastic dis-

turbance and nonlinearly coupling via a single impulsive

control method. The rest of this paper is organized as

follows: In Sect. 2, we first give the problem statement and,

then, present some definitions, lemmas, and assumptions

required throughout this paper; in Sect. 3, we will give two

novel criteria to ensure the exponential synchronization for

the considered neural networks in terms of LMIS and

nonlinear equations; in Sect. 4, a simple example is pro-

vided to show the application of the theoretical results

obtained in this paper.

2 Preliminaries

In this paper, we consider the following nonlinearly cou-

pled neural networks with stochastic perturbations and

switching communication topology:

dxiðtÞ ¼ �CxiðtÞ þ B~f ðxiðtÞÞ þ D~f xiðt � sðtÞÞð Þ
� �

dt

þ ~gðxiðtÞ; xiðt � qðtÞÞÞdwðtÞ

þ
XN

j¼1

aij;rðtÞ~hðxjðtÞÞdt; ð1Þ

where i ¼ 1; . . .;N; xiðtÞ ¼ ½xi1ðtÞ; . . .; xinðtÞ�T 2 R
n is the

ith neuron state at time t; sðtÞ; qðtÞ are time-varying delays

which satisfy 0\sðtÞ\s; 0\qðtÞ\q with s; q are positive

constants; rðtÞ : ½0;þ1Þ ! M ¼ f1; 2; . . .;mg is a piece-

wise right continuous function representing the switching

signal and rðtÞ ¼ rk 2 M; t 2 ½tk; tkþ1Þ. The switching time

instants tk satisfy 0 ¼ t0\t1\ � � �\tk\tkþ1\ � � � ;
limk!þ1 tk ¼ þ1 and inf0� k\1ftkþ1 � tkg� �h where

�h ¼ maxfs; qg;C ¼ diagfc1; . . .; cng; ðcl [ 0; l ¼ 1; . . .; nÞ
is the state feedback coefficient matrix; B;D 2 R

n�n denote

the connection weight matrix and delayed connection

weight matrix, respectively; ~f ðxiðtÞÞ ¼ ð~f1ðxiðtÞÞ; . . .;
~fnðxiðtÞÞÞT 2 R

n is the activation function; ~gðxiðtÞ; xiðt
�qðtÞÞÞ 2 R

n�m is the noise intensity function matrix;

wðtÞ ¼ ðw1ðtÞ;w2ðtÞ; . . .;wmðtÞÞT 2 R
m is a Brownian

motion defined on a complete probability space ðX;F ;PÞ
with a nature filtration fF tgt� 0 satisfying EðwjðtÞÞ ¼ 0;

Eðw2
j ðtÞÞ ¼ 1;EðwjðtÞwkðtÞÞ ¼ 0 ðj 6¼ kÞ. The configuration

coupling matrices Ark ¼ ðaij;rkÞN�N are defined as follows:

if there is a directed edge from node j to node i; then

aij;rk [ 0; otherwise, aij;rk ¼ 0; and aii;rk ¼ �
PN

j¼1;j6¼i aij;rk

for i; j ¼ 1; . . .;N; rk 2 M; ~hðxjðtÞÞ ¼ ð~h1ðxj1ðtÞÞ; . . .; ~hn
ðxjnðtÞÞÞT 2 R

n is the inner coupling vector function

between two connected nodes i and j.
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The initial condition of system (1) is given by xiðtÞ ¼
uiðtÞ 2 Cð½��h; 0�;RnÞ; where Cð½��h; 0�;RnÞ is the set of

continuous functions from ½��h; 0� to R
n. Let sðtÞ be a

solution of the following stochastic delayed dynamical

system of an isolate neural network:

dsðtÞ ¼ �CsðtÞ þ B~f ðsðtÞÞ þ D~f sðt � sðtÞÞð Þ
� �

dt

þ ~gðsðtÞ; sðt � qðtÞÞÞdwðtÞ;
ð2Þ

where sðtÞ can be any desired state: equilibrium point, a

nontrivial periodic orbit, or even a chaotic orbit. The initial

condition (2) is given by sðtÞ ¼ /ðtÞ 2 Cð½��h; 0�;RnÞ. In
this paper, we adopt the following impulsive effects pro-

posed by Lu et al. [29] in the process of signal exchanging

at each switching interval ½tk; tkþ1Þ:

xj tþk;lk

� �
� xi tþk;lk

� �
¼ lrk xj t�k;lk

� �
� xi t�k;lk

� �h i
ð3Þ

for i; j satisfying aij;rk [ 0; where ftk;lk ; lk 2 N
þg �

½tk; tkþ1Þ are impulsive instances satisfying tk � tk;1\
tk;2\ � � �\tk;lk\ � � �\tkþ1. In this paper, we always

assume that xiðtÞ is right continuous at t ¼ tk;lk . Denote

eiðtÞ ¼ xiðtÞ � sðtÞ; i ¼ 1; . . .;N; to force all xiðtÞ globally
exponentially synchronized to sðtÞ; we impose the fol-

lowing single impulsive controller on (1):

e1 tþk;lk

� �
¼ lrk e1 t�k;lk

� �
: ð4Þ

After adding the impulsive effects (3) and the single

impulsive controller (4) to system (1), one can obtain the

following error dynamical system (5):

where f ðeiðtÞÞ ¼ ~f ðeiðtÞ þ sðtÞÞ � ~f ðsðtÞÞ; gðeiðtÞ; eiðt �
qðtÞÞÞ ¼ ~gðeiðtÞ þsðtÞ; eiðt � qðtÞ þ sðt � qðtÞÞÞ � ~gðsðtÞ;
sðt � qðtÞÞÞ; hðejðtÞÞ ¼ ~hðejðtÞ þ sðtÞÞ � ~hðsðtÞÞ.

Remark 1 In this paper, we assume that the impulses

occur between two switching instants, which is more

general than the assumption that the impulses and switch-

ing occur at the same time in most existing literatures, for

example, see [35–37]. Additionally, we assume that the

impulsive strengths are related to the communication

topologies.

In order to analyze the global exponential synchroni-

zation of the dynamical neural networks (1), we introduce

the following Definitions, Assumptions, and Lemmas.

Definition 1 The dynamical neural networks with

Brownian noise (1) is said to be exponentially stochastic

synchronized with sðtÞ in mean square if for any initial

condition xiðt0Þ; there exist constants k[ 0 and M[ 1

such that for t� t0; the following inequality is satisfied:

E
XN

i¼1

kxiðtÞ � sðtÞk2
 !

�M sup
t0��h� i� t0

E
XN

i¼1

kxiðiÞ � sðiÞk2
 !

e�kðt�t0Þ

Definition 2 [26] An impulsive sequence 1 ¼ ft1; t2; . . .g
is said to have average impulsive interval Ta if there exist

positive integer d and positive constant Ta such that

T � t

Ta
� d�NdðT; tÞ�

T � t

Ta
þ d; 8T � t� 0;

where NdðT; tÞ denotes the number of impulsive times of

the impulsive sequence ft1; t2; . . .g on the interval ðt; TÞ;
the constant d is called the ‘‘elasticity number’’ of the

impulsive sequence.

Assumption 1 Assume that there exists a diagonal posi-

tive matrix L such that for 8x; y 2 R
n; the function ~f ð�Þ

satisfies the following Lipschitz condition:

k~f ðxÞ � ~f ðyÞk� kLðx� yÞk:

Assumption 2 Assume that there exist positive constants

x1j and x2j such that

x1j �
~hjðxÞ � ~hjðyÞ

x� y
�x2j

for all j ¼ 1; 2; . . .; n and 8x; y 2 R.

Assumption 3 Assume that there exist positive constants

g1; g2 such that for 8x1; y1; x2; y2 2 R
n; t 2 R

þ

trace ~gðx1; y1Þ � ~gðx2; y2Þ½ �T � ~gðx1; y1Þ � ~gðx2; y2Þ½ �
� �

� g1 kx1 � y1k2 þ g2 kx2 � y2k2:

dei tð Þ ¼ �Cei tð Þ þ Bf ei tð Þð Þ þ Df ei t � s tð Þð Þð Þ½ �dt þ g ei tð Þ; ei t � q tð Þð Þð Þdw tð Þ

þ
PN

j¼1

aij;rk h ej tð Þ
� 	

dt; t 2 ½tk; tkþ1Þ; t 6¼ tk;lk

ej tþk;lk

� �
� ei tþk;lk

� �
¼ lrk ej t�k;lk

� �
� ei t�k;lk

� �� �
; for i; j satisfying aij;rk [ 0

e1 tþk;lk

� �
¼ lrk e1 t�k;lk

� �
;

8
>>>>>><

>>>>>>:

ð5Þ
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Assumption 4 Each communication topology contains a

directed spanning tree with the first neural network as the

root.

Assumption 5 The mode-dependent impulsive strength

lrk satisfies jlrk j\1 for each rk 2 M.

Assumption 50 The mode-dependent impulsive strength

lrk satisfies jlrk j[ 1 for each rk 2 M.

Lemma 1 [23] Let 0� siðtÞ� s;Fðt; u; �u1; . . .; �umÞ :

R
þ � R� � � � � R|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

mþ1

be nondecreasing in �ui for each fixed

ðt; u; �u1; . . .; �ui�1; �uiþ1; . . .; �umÞ; i ¼ 1; . . .;m; and IkðuÞ :
R ! R be nondecreasing in u. Suppose that

DþuðtÞ�F t; uðtÞ; uðt � s1ðtÞÞ; . . .; uðt � smðtÞÞð Þ
uðtþk Þ� Ikðuðt�k ÞÞ; k 2 Nþ

�

and

DþvðtÞ[Fðt; vðtÞ; vðt � s1ðtÞÞ; . . .; vðt � smðtÞÞÞ
vðtþk Þ� Ik vðt�k Þ

� 	
; k 2 Nþ

�

where the upper-right Dini derivative DþyðtÞ is defined as

DþyðtÞ ¼ limh!0þ
yðtþhÞ�yðtÞ

h
. Then uðtÞ� vðtÞ for �s� t� 0

implies that uðtÞ� vðtÞ for t� 0.

Lemma 2 [31] For any vectors x; y 2 R
n; scalar e[ 0;

and positive definite matrix Q 2 R
n�n; the following

inequality holds:

2xTy� exTQxþ 1

e
yTQ�1y:

Lemma 3 [38] The following linear matrix inequality

S11 S12
ST12 S22

� 
\0

is equivalent to the following conditions:

S22\0; S11 � S12S
�1
22 S

T
12\0;

where S11; S22 are symmetric matrices.

Lemma 4 [39] (Halanay inequality) For any constants

k1; k2 satisfying k1 [ k2 [ 0; continuous function yðtÞ :
½t0 � s;þ1Þ ! R

þ; if

DþyðtÞ� � k1yðtÞ þ k2�yðtÞ

is satisfied for 8t� t0; then yðtÞ� �yðt0Þe�kðt�t0Þ; where

�yðtÞ ¼ supt�s� i� t yðiÞ; k is the sole positive solution of the

equation �k1 þ k2e
ks þ k ¼ 0.

Finally, for the convenience of later use, we introduce

some notations employed throughout this paper. Let x1 ¼
min1� j� nfx1jg; x2 ¼ max1� j� nfx2jg; Ârk denotes the

modified matrix of Ark in which the diagonal elements

aii;rk are replaced by x1aii;rk and other aij;rk are replaced by

x2aij;rk ; jxj ¼ ðjx1j; jx2j; . . .; jxnjÞT for 8 x 2 R
n; kyðtÞk�h ¼

supt��h� i� t kyðiÞk for 8 yðtÞ 2 C½t � �h;þ1Þ; ~elðtÞ ¼
ðe1lðtÞ; e2lðtÞ; . . .; eNlðtÞÞT 2 R

N . For a square matrix

A; As is defined as AþAT

2
; kmaxðAÞ and kminðAÞ denote its

maximum eigenvalue and minimum eigenvalue,

respectively.

3 Main results

In this section, we will give two sufficient exponential

synchronization criteria for the considered coupled neural

networks using multiple Lyapunov theory.

Theorem 1 Assume that Assumptions 1–5 hold, and the

impulsive sequences have average impulsive interval Ta.

Furthermore, we assume that there exist positive constants

e1;rk ; e2;rk ; ark ; brk ; crk ; diagonal positive matrices Prk 2
R

n�n satisfying Prk � hrk In with hrk are positive constants,

such that for each rk 2 M; the following conditions are

satisfied:

ðH1Þ Urk ¼

U11;rk PrkB PrkD 0 0

BTPrk � e1;rk In 0 0 0

DTPrk 0 � e2;rk In 0 0

0 0 0 U44;rk 0

0 0 0 0 U55;rk

0

BBBBBB@

1

CCCCCCA

\0;

where U11;rk ¼ �2PrkC þ e1;rkL
TL þ g1hrk In þ arkPrk

þ2kmaxðÂs
rk
ÞPrk ;U44;rk ¼ e2;rkL

TL � brkPrk ;U55;rk ¼ g2hrk In
�crkPrk .

ðH2Þ � ark þ
2lnjlrk j

Ta
þ l�2d

rk
ðbrk þ crkÞ\0:

ðH3Þ k� ln�

Ta
[ 0;

where k ¼ minrk2Mfkrkg and krk is the sole positive solu-

tion of the equation �ark þ
2 ln jlrk j

Ta
þ krk þl�2d

rk
ðbrk e

krk s þ
crk e

krkqÞ ¼ 0; � ¼ maxfp
p
; ek�hg; p ¼ maxrk2MfkmaxðPrkÞg; p

¼ minrk2MfkminðPrkÞg. Then the coupled neural networks

(1) can be globally exponentially synchronized to sðtÞ.

Remark 2 It should be mentioned that in U11;rk of the

Theorem 1, if hrk ¼ kmaxðPrkÞ; then Urk is not a LMI about
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the matrix Prk . That is why we introduce a positive constant

hrk for each Prk ; which may be kmaxðPrkÞ; or an arbitrary

positive constant that is bigger than kmaxðPrkÞ. We can use

the LMI MATLAB tool to obtain Prk and hrk
simultaneously.

Proof It follows from Lemma 3 that Urk\0 is equivalent

to U44;rk\0;U55;rk\0; and

� 2PrkC þ e1;rkL
TLþ g1hrk In þ 2kmaxðÂs

rk
ÞPrk þ arkPrk

þ 1

e1;rk
PrkBB

TPrk þ
1

e2;rk
PrkDD

TPrk\0:

Define the following Lyapunov functions for system (5):\

VðtÞ ¼
XN

i¼1

eTi ðtÞPrkeiðtÞ; t 2 ½tk; tkþ1Þ; k 2 N:

Differentiating VðtÞ along the trajectories of Eq. (5) for

t 2 ½tk; tkþ1Þ; we can obtain

dVðtÞ ¼ LVðtÞdtþ 2
XN

i¼1

eTi ðtÞPrkgðeiðtÞ;eiðt� qðtÞÞÞdwðtÞ:

ð6Þ

By applying the Itô’s formula to VðtÞ; we can obtain

LVðtÞ¼2
XN

i¼1

eTi ðtÞPrk �CeiðtÞþBf ðeiðtÞÞ
"

þDf eiðt�sðtÞÞð Þþ
XN

j¼1

aij;rkh ejðtÞ
� 	

#

þ trace gT eiðtÞ;ei t�qðtÞð Þð ÞPrkg eiðtÞ;eiðt�qðtÞÞð Þ
� �

:

Using Lemma 2 and Assumption 1, we get

2eTi ðtÞPrkBf ðeiðtÞÞ�
1

e1;rk
eTi ðtÞPrkBB

TPrkeiðtÞ

þ e1;rk f
TðeiðtÞÞf ðeiðtÞÞ

� 1

e1;rk
eTi ðtÞPrkBB

TPrkeiðtÞ

þ e1;rk e
T
i ðtÞLTLeiðtÞ:

ð7Þ

Similar to (7), we can obtain the following inequality:

2eTi ðtÞPrkDf ðeðt � sðtÞÞÞ� 1

e2;rk
eTi ðtÞPrkDD

TPrkeiðtÞ

þ e2;rk e
T
i ðt � sðtÞÞLTLeiðt � sðtÞÞ: ð8Þ

It follows from Assumption 2 that

XN

i¼1

XN

j¼1

aij;rk e
T
i ðtÞPrkhðejðtÞÞ

¼
XN

i¼1

aii;rk e
T
i ðtÞPrkhðeiðtÞÞ þ

XN

j¼1;j6¼i

aij;rk e
T
i ðtÞPrkhðejðtÞÞ

" #

¼
XN

i¼1

Xn

l¼1

prk ;l aii;rk eilðtÞhlðeilðtÞÞ þ
XN

j¼1;j 6¼i

aij;rk eilðtÞhlðejlðtÞÞ
" #

�
Xn

l¼1

prk ;l
XN

i¼1

x1aii;rk e
2
ilðtÞ þ

XN

i¼1

XN

j¼1;j6¼i

x2aij;rk jeilðtÞjjejlðtÞj
" #

¼
Xn

l¼1

prk ;lj~elðtÞj
T
Ârk j~elðtÞj � kmaxðÂs

rk
ÞeTi ðtÞPrkeiðtÞ:

ð9Þ

Note that the assumption Prk � hrk In; associating with

Assumption 3, we have

trace gT eiðtÞ; eiðt � qðtÞÞð ÞPrkg eiðtÞ; eiðt � qðtÞÞð Þ
� �

� hrk
�
g1 e

T
i ðtÞeiðtÞ þ g2 e

T
i ðt � qðtÞÞeiðt � qðtÞÞ

�
:

ð10Þ

It follows from (7) to (10) that for t 2 ½tk; tkþ1Þ;

LVðtÞ�
XN

i¼1

n
eTi ðtÞ

h
� 2PrkC þ 1

e1;rk
PrkBB

TPrk

þ e1;rkL
TLþ g1hrk In þ 2kmaxðÂrkÞPrk

þ 1

e2;rk
PrkDD

TPrk þ arkPrk

i
eiðtÞ � ark e

T
i ðtÞPrkeiðtÞ

þ eTi ðt � sðtÞÞ
�
e2;rkL

TL� brkPrk

�
eiðt � sðtÞÞ

þ brk e
T
i ðt � sðtÞÞPrkeiðt � sðtÞÞ

þ eTi ðt � qðtÞÞ
�
g2hrk In � crkPrk

�
eiðt � qðtÞÞ

þ crk e
T
i ðt � qðtÞÞPrkeiðt � qðtÞÞ

o

� � arkVðtÞ þ brkVðt � sðtÞÞ þ crkVðt � qðtÞÞ:
ð11Þ

Integrate on both sides of (6) from t to t þ Dt for any Dt[ 0

and take mathematical expectation. Let mðtÞ ¼ EVðtÞ;
associating with the properties of the Itô’s integral and Dini

derivation, we can derive from (11) that for t 2 ½tk; tkþ1Þ;

DþmðtÞ� � arkmðtÞ þ brkmðt � sðtÞÞ þ crkmðt � qðtÞÞ:

When t ¼ tk;lk ; it follows from Assumption 4 that for 8j 2
f2; 3; . . .;Ng; there exist suffixes j1; . . .; js 2 f2; 3; . . .;Ng
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such that ajj1;rk [ 0; aj1j2;rk [ 0; . . .; ajs�1js;rk [ 0; ajs1;rk [ 0.

Thus, associating the impulsive effects of signal exchang-

ing (3) with the single impulsive controller (4), we can

derive that

ej tþk;lk

� �
� e1 tþk;lk

� �

¼ ejðtþk;lkÞ � ej1 tþk;lk

� �
þ ej1ðtþk;lkÞ � ej2ðtþk;lkÞ

þ � � � þ ejsðtþk;lkÞ � e1 tþk;lk

� �

¼ lrk ej t�k;lk

� �
� ej1ðt�k;lkÞ

h i
þ lrk ej1ðt�k;lkÞ � ej2ðt�k;lkÞ

h i

þ � � � þ lrk ejsðt�k;lkÞ � e1ðt�k;lkÞ
h i

¼ lrk ej t�k;lk

� �
� e1 t�k;lk

� �h i
;

which results in ejðtþk;lkÞ ¼ lrk ejðt�k;lkÞ. Therefore, one can

obtain

mðtþk;lkÞ ¼ l2rk
XN

i¼1

E eTi t�k;lk

� �
Prkei t�k;lk

� �h i
:

For any e[ 0; let yðtÞ be a unique solution of the following
delay system:

_yðtÞ ¼ �ark yðtÞ þ brk yðt � sðtÞÞ þ crk yðt � qðtÞÞ þ e; t 6¼ tk;lk ;

yðtk;lkÞ ¼ l2rk yðt
�
k;lk

Þ; t ¼ tk;lk

yðtÞ ¼ mðtÞ; tk � �h� t� tk:

8
><

>:

ð12Þ

By the formula for the variation of parameters, it follows

from (12) that for t 2 ½tk; tkþ1Þ;

yðtÞ ¼ Wðt; tkÞyðtkÞ þ
Z t

tk

Wðt; sÞ brk yðs� sðsÞÞ
�

þ crk yðs� qðsÞÞ þ e�ds;
ð13Þ

where Wðt; sÞ; t; s[ tk is the Cauchy matrix of the linear

system

_yðtÞ ¼ �ark yðtÞ; t 6¼ tk;lk
y tk;lk
� 	

¼ l2rk yðt
�
k;lk

Þ; t ¼ tk;lk :

�
ð14Þ

According to the representation of Cauchy matrix, one can

get the following estimation:

Wðt; sÞ ¼ e�ark ðt�sÞl2Ndðs;tÞ
rk

� l�2d
rk

e�a	rk ðt�sÞ;

where a	rk ¼ ark �
2 ln jlrk j

Ta
. Define sð1Þ ¼ 1� a	rkþ

l�2d
rk

ðbrk e1s þ crk e
1qÞ. It follows from ðH2Þ that

sð0Þ ¼ �a	rk þ l�2d
rk

ðbrk þ crkÞ\0. Since _sð1Þ[ 0 and

lim1!þ1 sð1Þ ¼ þ1; there exists a unique krk [ 0 such

that sðkrkÞ ¼ 0; i.e., krk � a	rk þ l�2d
rk

ðbrk e
krk sþ

crk e
krkqÞ ¼ 0. Let nrk ¼ l�2d

rk
kyðtkÞk�h. In the following,

we shall prove the following inequality is satisfied for

tk � �h� t� tkþ1:

yðtÞ\nrk e
�krk ðt�tkÞ þ e

a	rkl
2d
rk
� brk � crk

: ð15Þ

It is obvious that yðtÞ� l2drk nrk\nrk\nrk e
�krk ðt�tkÞ þ

e
a	rkl

2d
rk
�brk�crk

for tk � �h� t� tk. When tk\t\tkþ1; we will

prove the inequality (15) is still satisfied by the way of

contradiction. If there exists a t	 2 ðtk; tkþ1Þ such that

yðt	Þ � nrk e
�krk ðt

	�tkÞ þ e
a	rkl

2d
rk
� brk � crk

; ð16Þ

and for t 2 ðtk; t	Þ;

yðtÞ\nrk e
�krk ðt�tkÞ þ e

a	rkl
2d
rk
� brk � crk

: ð17Þ

Note that sðtÞ� s; qðtÞ� q and ekrk sbrk þ ekrkqcrk ¼
l2drk ða

	
rk
� krkÞ; then by some simple computation, we can

derive from (13) and (17) that

yðt	Þ\nrk e
�a	rk ðt

	�tkÞ þ
Z t	

tk

l�2d
rk

e�a	rk ðt
	�sÞ

nrkðekrk sbrk þ ekrkqcrkÞe
�krk ðs�tkÞ

"

þ
a	rkl

2d
rk
e

a	rkl
2d
rk
� brk � crk

#

ds

¼ nrk e
�krk ðt

	�tkÞ þ e
a	rkl

2d
rk
� brk � crk

� e
a	rkl

2d
rk
� brk � crk

e�a	rk ðt
	�tkÞ

\nrk e
�krk ðt

	�tkÞ þ e
a	rkl

2d
rk
� brk � crk

;

which contradicts with (16). Thus, (15) is always satisfied

for tk � �h� t\tkþ1. Let e ! 0; one can obtain

yðtÞ� nrk e
�krk ðt�tkÞ. Then it follows from Lemma 1 that

mðtÞ� yðtÞ� nrk e
�krk ðt�tkÞ ¼ l�2d

rk
kmðtkÞk�he�krk ðt�tkÞ for

tk � t\tkþ1. In what follows, we will show by induction

that

mðtÞ�� k
Yk

j¼0

l�2d
rj

kmðt0Þk�he�kðt�t0Þ; tk � t\tkþ1; ð18Þ

where � ¼ maxfp
p
; ek�hg; k ¼ minrk2Mfkrkg; p ¼ maxrk2M

fkmaxðPrkÞg; p ¼ minrk2MfkminðPrkÞg.
When t 2 ½t0; t1Þ;

mðtÞ� l�2d
r0

kmðt0Þk�he�kr0 ðt�t0Þ � l�2d
r0

kmðt0Þk�he�kðt�t0Þ:

Assume (18) holds for 1� k� j; j 2 N
þ; then it suffices to

show that (18) holds for k ¼ jþ 1. When tjþ1 �
�h� t\tjþ1; note that tjþ1 � �h� tj; then we get
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mðtÞ�� j
Yj

l¼0

l�2d
rl

kmðt0Þk�he�kðtjþ1��h�t0Þ

¼ ek�h� j
Yj

l¼0

l�2d
rl

kmðt0Þk�he�kðtjþ1�t0Þ:

When t ¼ tjþ1; if tjþ1\tjþ1;1;

mðtjþ1Þ ¼ E eTðtjþ1ÞPrjþ1
eðtjþ1Þ

� 	
¼ E eTðt�jþ1ÞPrjþ1

eðt�jþ1Þ
� �

� p

p
mðt�jþ1Þ�

p

p
� j
Yj

l¼0

l�2d
rl

kmðt0Þk�he�kðtjþ1�t0Þ:

If tjþ1 ¼ tjþ1;1; it follows from jlrk j\1 that

mðtjþ1Þ ¼ l2rjþ1
E eTðt�jþ1ÞPrjþ1

eðt�jþ1Þ
� �

�E eTðt�jþ1ÞPrjþ1
eðt�jþ1Þ

� �

� p

p
� j
Yj

l¼0

l�2d
rl

kmðt0Þk�he�kðtjþ1�t0Þ:

Thus, we have

kmðtjþ1Þk�h �� jþ1
Yj

l¼0

l�2d
rl

kmðt0Þk�he�kðtjþ1�t0Þ;

which leads to

mðtÞ� l�2d
rjþ1

kmðtjþ1Þk�he�kðt�tjþ1Þ

�� jþ1
Yjþ1

l¼0

l�2d
rl

kmðt0Þk�he�kðt�t0Þ;

where tjþ1 � t\tjþ2. This is shown by the induction prin-

ciple that (18) is satisfied 8t 2 ½tk; tkþ1Þ and 8k 2 N. For an

arbitrarily given t[ t0; 9k 2 N
þ; such that t 2 ½tk; tkþ1Þ.

Since the impulses occur at each switching interval, it is

easy to see that k�Ndðt; t0Þ; and then it follows from (18)

that

mðtÞ�� k
Yk

j¼0

l�2d
rj

kmðt0Þk�he�kðt�t0Þ

��Ndðt;t0Þ
Yk

j¼0

l�2d
rj

kmðt0Þk�he�kðt�t0Þ

�� dþt�t0
Ta

Yk

j¼0

l�2d
rj

kmðt0Þk�he�kðt�t0Þ

¼
 

�
Qk

j¼0 l
2
rj

!d

kmðt0Þk�he�k	ðt�t0Þ;

where k	 ¼ k� ln�
Ta

[ 0. Then we have

pEðkeðtÞk2Þ�mðtÞ�
 

�
Qk

j¼0 l
2
rj

!d

kmðt0Þk�he�k	ðt�t0Þ

� p

 
�

Qk
j¼0 l

2
rj

!d

sup
t0��h� i� t0

EðkeðiÞk2Þe�k	ðt�t0Þ;

which follows that

E
�XN

i¼1

kxiðtÞ � sðtÞk2
�
�M sup

t0��h� i� t0

E
�XN

i¼1

kxiðiÞ � sðiÞk2
�
e�k	ðt�t0Þ;

where M ¼ p
p

�
�Qk

j¼0
l2rj

�d
[ 1. Thus, by Definition 1, we

know that the dynamical neural networks with Brownian

noise (1) are exponentially stochastic synchronized with

s(t) in mean square. This completes the proof.

If Prk ¼ In; it is easy to know the condition ðH3Þ is

equivalent to Ta [ �h; so in this case, we can obtain the

following Corollary :

Corollary 1 Under Assumptions 1–5, the coupled neural

networks (1) can be globally exponentially synchronized to

sðtÞ; if the impulsive sequences have average impulsive

interval Ta with Ta [ �h; and for each rk 2 M; the following

condition is satisfied:

�ârk þ
2 ln jlrk j

Ta
þ l�2d

rk
ðb̂þ g2Þ\0;

where ârk ¼ kmaxð2C � LTL� BTB� DTDÞ � 2kmaxðÂs
rk
Þ

�g1; b̂ ¼ kmaxðLTLÞ.

Remark 3 Using single pinning impulsive strategy, Lu

et al. [31] studied the exponential synchronization of the

following coupled neural networks with fixed communi-

cation topology:

_xiðtÞ ¼ CxiðtÞ þ B~f ðxiðtÞÞ þ c
PN

j¼1

aijCxjðtÞdt; t 6¼ tk; k 2 N

xjðtþk Þ � xiðtþk Þ ¼ lðxjðt�k Þ � xiðt�k ÞÞ; for i; j satisfying aij [ 0

e1ðtþk Þ ¼ le1ðt�k Þ;

8
>>><

>>>:

ð19Þ

where C 2 R
n�n;C ¼ diagfc1; c2; . . .; cng. Under the

assumption that the associated digraph is strong connected

or have several strong components, they gave some expo-

nential synchronization criteria using the properties of

irreducible matrix. These criteria they obtained are inde-

pendent of the coupling matrix A. However, it should be

mentioned that the irreducible matrix method does not

apply to the case of nonlinear coupling. Based on our
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assumption about the digraph, we can obtain from Theorem

1 another exponential synchronization criterion for net-

works (19), which is the following Corollary 2.

Corollary 2 Suppose that the digraph of the networks

(19) contains a directed spanning tree with the 1-th neural

network as the root, the function f ð�Þ satisfies Assump-

tion 1, the impulsive sequences have average impulsive

interval Ta; and the impulsive strength l satisfies jlj\1.

Then the coupled neural networks (19) can be globally

exponentially synchronized to sðtÞ; if there exists diagonal

positive matrix P such that the following inequality is

satisfied:

2 ln jlj
Ta

þ kmaxðDÞ\0;

where D ¼ PC þ CTPþ LTLþ PBTBPþ kmaxð~AsÞP; ~A is

the modified matrix of A in which the diagonal elements aii
are replaced by min1� l� nfclgaii and other aij are replaced

by max1� l� nfclgaij.

Remark 4 Obviously, sðtÞ ¼ qðtÞ is a special case of the

model (1), so the results of Theorem 1 can be applied to the

case of sðtÞ ¼ qðtÞ. The results of Theorem 1 are obtained

under the condition jlrk j\1. However, if sðtÞ ¼ qðtÞ; we
can obtain another stochastic exponential synchronization

criterion under the condition jlrk j[ 1.

Theorem 2 When sðtÞ ¼ qðtÞ; under Assumptions1–4

and 50; the coupled neural networks (1) can be globally

exponentially synchronized to sðtÞ; if the impulsive

sequences satisfy inf0� k\1ftk;lkþ1 � tk;lkg�@� s; and

there exist positive constants e1;rk ; e2;rk ; positive constants

ark ; brk satisfying ark [ brk ; diagonal positive matrices

Prk 2 R
n�n satisfying Prk � hrk In with hrk are positive con-

stants, such that for each rk 2 M; the following conditions

are satisfied:

ðH1ÞUrk ¼

U11;rk PrkB PrkD 0

BTPrk � e1;rk In 0 0

DTPrk 0 � e2;rk In 0

0 0 0 U44;rk

0

BBB@

1

CCCA
\0;

where U11;rk ¼ �2PrkC þ e1;rkL
TLþ g1hrk In þ arkPrkþ

2kmaxðÂs
rk
ÞPrk ;U44;rk ¼ e2;rkL

TLþ g2hrk In � brkPrk .

ðH2Þ k� lnM

@ [ 0;

where M ¼ maxrk2MfMrkg;Mrk ¼ maxfekrk s; l2rkg; k ¼
minrk2Mfkrkg and krk is the sole positive solution of the

equation �ark þ krk þ brk e
krk s ¼ 0.

Proof Similar to the proof of Theorem 1, we can derive

that

DþmðtÞ� � arkmðtÞ þ brkmðt � sðtÞÞ

is satisfied for 8k 2 N
þ and t 2 ½tk; tkþ1Þ. In the following,

two inequalities will be shown by induction. The first

inequality is

mðtÞ�MNðt;tkÞ
rk

kmðtkÞkse�krk ðt�tkÞ; ð20Þ

and is satisfied for t 2 ½tk; tkþ1Þ; where Nðt; tkÞ is the

impulsive times in the interval ½tk; tÞ. In this case, it suffices
to show that for 8l 2 N

þ; when t 2 ½tk;l; tk;lþ1Þ; we have

mðtÞ�Ml
rk
kmðtkÞkse�krk ðt�tkÞ; ð21Þ

because if t 2 ½tk;l; tk;lþ1Þ; the impulsive times in the

interval ½tk; tÞ is just l. When t 2 ½tk; tk;1Þ; it follows from

Lemma 4 that mðtÞ� kmðtkÞkse�krk ðt�tkÞ. Suppose that (21)

is satisfied for t 2 ½tk;j; tk;jþ1Þ; 1� j� l; l 2 N
þ. Since

mðtÞ�Ml
rk
kmðtkÞkse�krk ðtk;lþ1�s�tkÞ

� ekrk sMl
rk
kmðtkÞkse�krk ðtk;lþ1�tkÞ

for t 2 ½tk;lþ1 � s; tk;lþ1Þ; and mðtk;lþ1Þ ¼ l2rkmðt
�
k;lþ1Þ�

l2rkM
l
rk
kmðtkÞkse�krk ðtk;lþ1�tkÞ;

kmðtk;lþ1Þks �Mlþ1
rk

kmðtkÞkse�krk ðtk;lþ1�tkÞ;

which leads to

mðtÞ� kmðtk;lþ1Þkse�krk ðt�tk;lþ1Þ �Mlþ1
rk

kmðtkÞkse�krk ðt�tkÞ

for t 2 ½tk;lþ1; tk;lþ2Þ. That is, we show by induction that

(21) is satisfied for 8l 2 N
þ; thus, the inequality (20) is

satisfied.

The second inequality is that for 8k 2 N; when

t 2 ½tk; tkþ1Þ;

mðtÞ�MNdðt;t0Þ
Yk

j¼0

frjkmðt0Þkse�kðt�t0Þ; ð22Þ

where frj ¼ maxfl2rj
p
p
; eksg. This is similar to the proof of

(18). When t 2 ½t0; t1Þ;

mðtÞ�MNðt;t0Þ
r0

kmðt0Þkse�kr0 ðt�t0Þ �MNdðt;t0Þkmðt0Þkse�kðt�t0Þ:

Suppose that (22) is satisfied for 1� j� l; l 2 N
þ; then we

will show that (22) holds for j ¼ lþ 1. When tlþ1 �
s� t\tlþ1; we have

mðtÞ�MNðtlþ1;t0Þ
Yl

j¼0

frjkmðt0Þkse�kðtlþ1�s�t0Þ

¼ eksMNðtlþ1;t0Þ
Yl

j¼0

frjkmðt0Þkse�kðtlþ1�t0Þ:

When t ¼ tlþ1; if tlþ1\tlþ1;1;
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mðtlþ1Þ ¼ E eTðtlþ1ÞPrlþ1
eðtlþ1Þ

� 	
¼ EðeTðt�lþ1ÞPrlþ1

eðt�lþ1ÞÞ

� p

p
mðt�lþ1Þ�

p

p
MNðtlþ1;t0Þ

Yl

j¼0

frjkmðt0Þkse�kðtlþ1�t0Þ:

If tlþ1 ¼ tlþ1;1;

mðtlþ1Þ ¼ l2rlþ1
EðeTðt�lþ1ÞPrjþ1

eðt�lþ1ÞÞ

� l2rlþ1

p

p
MNðtlþ1;t0Þ

Yl

j¼0

frjkmðt0Þkse�kðtlþ1�t0Þ:

Note that jurlþ1
j[ 1; then subsequently we have

kmðtlþ1Þks �MNðtlþ1;t0Þ
Ylþ1

j¼0

frjkmðt0Þkse�kðtlþ1�t0Þ:

Since Nðt; tlþ1Þ þ Nðtlþ1; t0Þ ¼ Nðt; t0Þ; then it is easy to

obtain that for tlþ1 � t\tlþ2;

mðtÞ�MNðt;tlþ1Þ
rlþ1

kmðtlþ1Þkse�krlþ1
ðt�tlþ1Þ

�MNðt;t0Þ
Ylþ1

j¼0

frjkmðt0Þkse�kðt�t0Þ:

Therefore, (22) is satisfied for 8t 2 ½tk; tkþ1Þ and 8k 2 N. It

follows from (22) that

mðtÞ�M
t�t0
@
Yk

j¼0

frjkmðt0Þkse�kðt�t0Þ ¼
Yk

j¼0

frjkmðt0Þkse�k̂ðt�t0Þ;

where k̂ ¼ k� lnM
@ . The rest is similar to the proof of

Theorem 1; here we omit it. This completes the proof.

Remark 5 When sðtÞ ¼ qðtÞ ¼ 0; the associated non-

delayed stochastic dynamical networks with nonlinear

coupling and fixed communication topology were

investigated in [29]. Some exponential synchronization

criteria were given based on the assumptions that the

impulsive strength jlj\1 and the configuration coupling

matrix A is symmetric and irreducible. In contrast, no

matter whether jlj\1 or jlj[ 1; it can be obtained from

Theorems 1 and 2 the corresponding exponential syn-

chronization criteria of the coupled neural networks

studied in [29]. Moreover, the communication topology

graph is directed and not assumed to be strong corrected

in this paper.

4 Numerical simulation

To illustrate the effectiveness of the theoretical results

obtained above, in this section, we consider the coupled

networks consisting of six neural networks with Brownian

noise and impulsive effects, i.e., N ¼ 6. The initial states of

the six neural networks are selected as ðxT1 ð0Þ;
xT2 ð0Þ; . . .; xT6 ð0ÞÞ ¼ �1:2; 1:6; 1:3;�2:4; �2:1; 1:8; �1:2;½
1:6; 1:3;�2:4;�2:1; 1:8�. Let ~f ðxiðtÞÞ ¼ ð~f1ðxiðtÞÞ;
~f2ðxiðtÞÞÞ

T
and ~f1ðxiðtÞÞ ¼

ffiffi
2

p

8
xi1ðtÞ þ tanhðxi2ðtÞÞ½ �;

~f2ðxiðtÞÞ ¼
ffiffiffiffi
14

p

8
tanhðxi2ðtÞÞ; which follows that L ¼

diagf0:25; 0:75g. Select ~hðxjðtÞÞ ¼ ðxj1ðtÞ þ 0:1 sinðxj1ðtÞÞ;
xj2ðtÞÞT ; as a result, one can easily obtain

x1 ¼ 0:9;x2 ¼ 1:1. Assume that the topology of the cou-

pled neural networks switches in a random order between

two networks, which are shown in Fig. 1. The duration of

each topology is also random with the minimum t ¼ 0:5 s;

and the switching scheme is shown in Fig. 2.

By some simple computation, we have kmaxðÂs
1Þ ¼

0:315; kmaxðÂs
2Þ ¼ 0:3224. Let

C¼ 3:5I2; B¼
0:4 �0:2

�0:35 0:3

� 
; D¼

0:3 0:5

�0:4 0:3

� 
;

sðtÞ¼ 0:15sin t; qðtÞ¼ 0:1cos t;

l1 ¼ l2 ¼ 0:85; gðxiðtÞ; xiðt�qðtÞÞÞ

¼ 0:1
xiðtÞ 0

0 xiðt�qðtÞÞ

� 
:

Select a1 ¼ 5:1051;a2 ¼ 5:271;b1 ¼ 0:4478;b2 ¼
0:3255;c1 ¼ 0:2325;c2 ¼ 0:2035; then using LMI MAT-

LAB tool, we get

P1 ¼
0:4272 0

0 0:8085

� 
; P2 ¼

0:6253 0

0 0:8124

� 
;

which follows that p ¼ 0:4272; p ¼ 0:8124. Other param-

eters are obtained as e1;1 ¼ 0:5867; e1;2 ¼ 0:6046; e2;1
¼ 0:6263; e2;2 ¼ 0:4601; h1 ¼ 1:0739; h2 ¼ 1:2363. The

impulsive sequence is constructed by taking Ta ¼ 0:36 and

d ¼ 5; then by solving the nonlinear equations �ark þ

Topology 1 Topology 2

Fig. 1 The network topologies
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2 ln jlrk j
Ta

þ krk þ l�2d
rk

ðbrk e
krk s þ crk e

krkqÞ ¼ 0; ðrk ¼ 1; 2Þ; we
can get k1 ¼ 1:7877; k2 ¼ 2:3489; thus, it is easy to verify

the condition ðH3Þ is satisfied. So by virtue of the Theo-

rem 1 in this paper, it can be concluded that the considered

complex networks can be exponentially synchronized with

the objective trajectory. Figure 3 shows that the errors

between the networks’ states and converge to zero under

the given conditions.

5 Conclusion

In this paper, we studied the exponential synchronization

problem of stochastic dynamical networks with nonlinear

coupling and mixed time-varying delays using single pin-

ning impulsive control. The main contribution of this paper

contains three aspects. Firstly, stochastic disturbance and

mixed time-varying delays were both taken into account,

which were seldom simultaneously considered in coupled

neural networks. Moreover, the graph of the coupled neural

networks is directed and the communication topology is

arbitrarily switching among a finite set of topologies. This

is obviously more practical in real world. Secondly, in the

considered hybrid impulsive and switching networks, the

impulses occur in each switching interval, not at the

switching instants. Additionally, the impulsive strengths

depend on the communication topologies. Thirdly, based

on multiple Lyapunov function theory and Halanay

inequality, we gave some stochastic exponential synchro-

nization criteria, which show that the exponential syn-

chronization can be achieved even if only a single

impulsive controller is exerted.
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