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Abstract Canonical correlation analysis (CCA) is a kind

of classical multivariate analysis method. Less canonical

correlation variables are used to describe the relationship

between two variables completely but easily. To get high

face recognition rate under low-resolution degradation over

a long distance solidly, in this work, CCA is used to extract

the correlation between high-resolution face images and

low-resolution ones and to find the transform pair between

them. Therefore, face images of the same individual with

variable resolutions can be matched accurately. This is the

first method that uses CCA to do low-resolution degrada-

tion face recognition over long distances. We conduct the

experiments on the Extended Yale B and ORL database,

and the experimental results validate the efficacy of the

proposed method.
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1 Introduction

Face recognition is one of the most important branches of

biometrics [1]. Especially in recent years, due to the

governments’ growing concern about the public security,

face recognition has become more popular among the

researchers. Linear subspace learning-based methods

have been successfully applied on face recognition. These

methods are used to extract low-dimensional features,

which are more discriminant for facial image classifica-

tion. Typical subspace learning-based methods include

principal component analysis (PCA) [2, 3], Fisher linear

discriminant analysis (LDA) [2, 3], locality preserving

projections (LPP) [4] and unsupervised discriminant

projection (UDP) [5]. Sparse representation and manifold

learning methods are also widely exploited in face rec-

ognition [6–10].

Subspace learning-based methods could be divided into

two kinds: unsupervised methods and supervised meth-

ods. LDA is a representative supervised method to learn

discriminant subspace. Unfortunately, it cannot be

directly applied to small sample size (SSS) problems [11]

because the within-class scatter matrix is singular. Face

recognition is a typical SSS problem, and many works

have been proposed to use LDA for face recognition. The

most popular method is Fisherface [2]. First, Fisherface

uses PCA to reduce the dimensionality of the original

feature; second, LDA is applied in PCA subspace. To

overcome the singularity, we could add a singular value

perturbation to the within-class scatter matrix [12]. Reg-

ularized discriminant analysis (RDA) is a more systematic

method [13]. Another regularized version of LDA is

penalized discriminant analysis (PDA) [14, 15]. PDA

aims not only to address the SSS problem but also to

smooth the coefficients of discriminant vectors. In face
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recognition, the dimension of features is often more than

ten thousand. It is not practical for RDA or PDA to pro-

cess high-dimensionality covariance matrices. The

famous null subspace methods include LDA ? PCA

method [16] and direct LDA [17]. Loog [18] proposed the

approximate pairwise accuracy criterion (aPAC) that used

a weight to emphasize the close class pair in order to

reduce the merging of close class pairs. Tao et al. [19]

proposed to maximizing the geometric mean of all pairs

of Kullback–Leibler (KL) divergences for subspace

selection, which maximized the geometric mean of KL

divergences between different class pairs.

Due to the influence of the camera hardware, sur-

roundings and light variation, the real images are often in a

very low resolution and difficult to recognize. In the

criminal investigations, if we still use the traditional feature

extraction strategies, then we need the image of acquisition

and that of the database be normalized to the same low

resolution, which severely decreases the recognition

ability.

In general, low-resolution face recognition brings two

problems: First, the low resolution of the face images leads

to a low recognition rate; second, as for the difference

between the training samples and test samples, the tradi-

tional face recognition algorithms cannot be directly

applied to the low-resolution face recognition. So, it is

necessary to build a reliable algorithm for the low-resolu-

tion face recognition.

Canonical correlation analysis (CCA) [20] was pre-

sented by Hoteling in 1936, which is a classical method of

multivariate statistical analysis. The basic idea of the CCA

is to transform the correlation between two groups to

several variables. In this way, we can fully and simply

depict the relationship between two variables by little

canonical correlation variable. Thus, CCA is broadly used

in the correlation analysis and predictive analysis between

the items. Huang et al. [21] gave a face image super-res-

olution reconstruction using CCA. We will simply use

CCA in face recognition.

If we regard the low-resolution and high-resolution

images as two different groups of variable, we can use

CCA to find the transform pair between them. Therefore,

we can project the low- and high-resolution images to the

same linear space and realize the match of images with

different resolutions. To overcome the aforementioned

problems, in this work, we propose a method named low-

resolution degradation face recognition over long distance

based on CCA. This method will connect the low- and

high-resolution images by extracting their correlation and

also avoid the dimension mismatch when the high-resolu-

tion images are normalized to low ones. The experiments

show that the proposed method achieves promising results

in several face recognition problems.

2 Low-resolution face recognition

Subspace learning methods are successfully used in face

recognition. By seeking for a linear projection matrix, we

project the training and testing samples to the same space,

in which it is easy to classify the different kinds of samples.

These projection methods require that the training samples

and test samples have the same resolution, as shown in

Fig. 1.

In the low-resolution degradation face recognition over

long distance, it cannot meet the requirement of the same

resolution between the low-resolution images and the high-

resolution images. So we cannot directly apply subspace

learning methods. One simple way is that we can rescale

the face recognition by down-sampling the high-resolution

images to the same size as the low-resolution images and

employ the traditional feature extraction methods. The

operation will lose much useful information, which

decreases the recognition rate. We plan to seek a method

that could directly classify the high-resolution images and

the low-resolution degradation images.

Different from the traditional ways, we are seeking two

linear transformation matrices wh and wl to project low-

and high-resolution images to the same low-dimensional

space, respectively. Then, we can make a match to rec-

ognize the face recognition between the different resolu-

tions, as shown in Fig. 2.

As for some correlations between the different resolu-

tion face from the same person, we just need to seek a way

to explore the correlation between the low- and high-res-

olution images. So we transform the low- and high-reso-

lution images to a same space. The above ideas not only

preserve the details of high-resolution face image, but also

avoid the mismatching of dimensions.

w                                w    

d

Fig. 1 Illustration of the subspace learning-based methods

wl

wh wl

d

Fig. 2 Illustration of the subspace learning-based methods at differ-

ent resolutions
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3 CCA

CCA [20] is a kind of multivariate statistical analysis

method, which is broadly applied to correlation analysis.

As aforementioned, we will apply CCA to the low-reso-

lution degradation face recognition.

3.1 The objective function

Assume that the vector dimensionality of the low- and

high-resolution images is nh and nl, respectively. Note the

m high-dimension training samples as xi ; i ¼ 1; 2; . . .;m

which compose a training set X:

X ¼

x1

x2

..

.

xm

0
BB@

1
CCA ¼

x11 x12 � � � x1nh
x21 x22 � � � x2nh

..

. ..
. . .

. ..
.

xm1 xm2 � � � xmnh

0
BBB@

1
CCCA: ð1Þ

Similarly, m low-dimension training samples yi; i ¼
1; 2; . . .;m compose the sample set Y,

Y ¼

y1

y2

..

.

ym

0
BBB@

1
CCCA ¼

y11 y12 � � � y1nl
y21 y22 � � � y2nl

..

. ..
. . .

. ..
.

ym1 ym2 � � � ymnl

0
BBB@

1
CCCA: ð2Þ

Different from the traditional feature extract method,

CCA aims to seek for a pair of projection matrix wh and wl

and make the high-dimension samples and low-dimension

samples project to the same space using the linear trans-

formation R1�nd ; nd � nl

x̂i ¼ xiwh; ŷi ¼ yiwl ð3Þ

where x̂i; ŷi 2 Rn; i ¼ 1; . . .;m can capture the maximum

variation direction of the original data. But, CCA intro-

duces the correlation between the high-dimensional sam-

ples and the low-dimensional samples, which guarantees

the maximum correlation between the projected x̂i and ŷi:

The CCA criterion function is as follows:

arg max
wh;wl

max J wh;wl
� �

¼ whTSxyw
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
whTSxxwh � wlTSyywl

q

s:t:whTwh ¼ I; wlTwl ¼ I

ð4Þ

In problem (4), Sxx and Syy are the covariance matrix of

X and Y, respectively, and Sxy is the cross-covariance

matrix of sample set X and sample set Y, as shown below

Sxx ¼
1

n

Xn
i¼1

xi � �x
� �T

xi � �x
� �

ð5Þ

Syy ¼
1

n

Xn
i¼1

yi � �y
� �T

yi � �y
� �

ð6Þ

Sxy ¼
1

n

Xn
i¼1

xi � �x
� �T

yi � �y
� �

ð7Þ

3.2 Solution of the target problem

According to the objective function (4), we build the fol-

lowing Lagrange multiplier function

L wh;wl
� �

¼ whTSxyw
l � k1

2
whTSxxw

h � 1
� �

� k2
2

wlTSyyw
l � 1

� � ð8Þ

where k1 and k2 are Lagrange multipliers. Let the partial

derivative to the projection axis wh and wl be zero; then, we

have:

oL

owh
¼ Sxyw

l � k1Sxxw
h ¼ 0 , whTSxyw

l ¼ k1w
hTSxxw

h

ð9Þ
oL

owl
¼ Syxw

h � k2Syyw
l ¼ 0 , wlTSyxw

h ¼ k2w
lTSyyw

l

ð10Þ

As we know Sxy ¼ Syx; thus,

whTSxyw
l ¼ wlTSyxw

h ð11Þ

According to Eqs. (9)–(11), we get

k1w
hTSxxw

h ¼ k2w
lTSyyw

l , whTSxxw
h ¼ k2

k1
wlTSyyw

l

, whTSxxw
h ¼ awlTSyyw

l;

ð12Þ

where a ¼ k2=k1. By substituting Eq. (12) into Eqs. (9)

and (10), we get two characteristic equations

SxyS
�1
yy Syxw

h ¼ ak21Sxxw
h ð13Þ

SyxS
�1
xx Sxyw

l ¼ k22Syyw
l ð14Þ

We set Mxy ¼ S�1
xx SxyS

�1
yy Syx, Myx ¼ S�1

yy SyxS
�1
xx Sxy; then,

the projection eigenvectorswh andwl are their eigenvalues.By

solving the eigenvectors ofMxy andMxy, we obtain a group of

optimal projection vector pair Wh ¼ wh
1;w

h
2; . . .;w

h
d

� �
and

W l¼ wl
1;w

l
2; . . .;w

l
d

� �
with d�max nh; nlð Þ. Sowewill obtain

the best correlation between X̂ ¼ XWh and Ŷ ¼ YW l;which is

the projected sample set X and Y. The vectors x̂ and ŷ have the

samedimensionality.By this,wecan calculate their Euclidean

distance directly.
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3.3 Descriptions of algorithm flow

As we mentioned above, the low-resolution degradation

face recognition over long distance in this paper is using

CCA. The framework is shown in Fig. 3.

First, we centralize the sample set, and then, we train the

high-dimension set X and low-dimension set Y to follow

the correlation criterion of Eq. (4). The projections x̂i and

ŷi which are the projections of xi and yi on the projection

vector wh and wl will be in the same space R. And their

correlations reach the peak. At last, in the space R, we use

the nearest neighbor classifier base on Euclidean distance

to compare their minimal Euclidean distances between the

projected low-resolution test samples and the high-resolu-

tion training samples and to classify the face.

4 Experiments

In this section, we conduct the low-resolution face recog-

nition experiments on the extended Yale B, ORL and AR

face databases. We compare the proposed method with

Fig. 3 Framework of the

proposed method
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PCA, LDA and multidimensional scaling (MDS) and LPP.

Here, we exploit the nearest neighbor classifier with

Euclidean distance. For PCA, LDA and LPP, we first

normalize the high-resolution image to a low-resolution

one and then extract the features.

4.1 Data sets

4.1.1 Yale B face database

The Extended Yale B face database includes 38 people,

and each one has about 64 different images. The image

resolution is 192 9 168. In this paper, we choose 36

images of each person to do experiments, in which 15 of

them are used as high-resolution images and the other 21

images are used as low-resolution images; especially, the

quality of high-resolution image is three times over that of

low-resolution image. In the training, we make two

experimental sample sets with different resolution: One

uses the 48 9 42 resolution images as the high-resolution

images and the 16 9 14 resolution images as the low-

resolution images, as is shown in Fig. 4; the other uses the

24 9 21 resolution images as the high-resolution images

and the 8 9 7 resolution images as the low-resolution ones,

as shown in Fig. 5.

4.1.2 ORL face database

ORL face database has 40 persons, and each one has 40

face images. The resolution of image is 112 9 92. Ten

images have different angels on one person. In sample set

3, we condense the first four images to the 56 9 46 high-

resolution images and the later six images to 28 9 23 low-

resolution images, as is shown in Fig. 6. In sample set 4,

we condense the first four images to 28 9 23 as high-res-

olution images and the later six images to 14 9 12 as low-

resolution images, as shown in Fig. 7.

4.1.3 AR face database

AR face database [22, 23] consists of 120 persons, and

each one has 26 images in different sunlight, expression,

shield and aging. In this paper, we select 50 persons and

each one has seven images in different expression and

sunlight. In sample set 5, we condense the first three

images of each one to 80 9 60 as high-resolution images

and the later four images to 40 9 30 as low-resolution

images, as shown in Fig. 8. In sample set 6, the first three

Fig. 4 Images in sample set 1

Fig. 5 Images in sample set 2

Fig. 6 Images in sample set 3

Fig. 7 Images in sample set 4
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images of each one is resized to 40 9 30 as the high-

resolution images and the later four images to 20 9 15 as

low-resolution images, as shown in Fig. 9.

4.2 Experimental results

In the first test, we choose 15 low-resolution samples of

each person and 15 high-resolution samples of each person

in the sample set 1 as the training sample set, and the

remaining six low-resolution images of each person as the

test sample set. Similarly, we pick 15 low-resolution

samples of each person and 15 high-resolution samples of

each person in the sample set 2 as training set, and the

remaining six low-resolution images of each person as test

set. For PCA and LDA, we use the mentioned 15 low-

resolution images to train and the six ones to test. The

parentheses in the PCA test indicate the reserved dimen-

sion; LDA test uses the PCA to pretreat and retain 98 %

energy. Gaussian heat kernel with a variance of 1e2 and

ten-nearest neighborhood graph are used in LPP test on set

1, and Gaussian heat kernel with a variance of 1e4 and

25-nearest neighborhood graph are used in LPP test on set

2. In MDS, the iteration number is 60, and the results are

shown in Table 1.

Similarly, the second test picks ten high-resolution

images of each person and ten low-resolution images of

each person as the training sample; the 11 remaining low-

resolution samples of each person are regard as test sample.

Other parameters are the same as that in the test 1, and the

results are as shown in Table 2.

From Tables 1 and 2, the recognition rates are higher

with a high resolution. For example, the recognition rate is

higher in sample set 1 than the sample set 2, which indi-

cates that the image resolution has influence on the rec-

ognition rates. Obviously, PCA is not satisfied in low-

resolution field. As shown in the table, the proposed

method has a better performance than the other three,

whether in the first or second groups. And both the two

results imply that the number of training set will influence

the recognition rate. So we employ the third test, we pick

the MDS as a contrast for its stable rate variation. Kernel

projection simply uses the unit projection; we make 60

times iteration with the kernel parameter 0.5. By steadily

raising the number of sample (training sample from 2 to

15), we get the histograms between the recognition rate and

the sample number of the two algorithms. Results of the

two samples are shown in Figs. 6 and 7, respectively.

From the third test group, the recognition effect of CCA

algorithm is closely related to the sample number,

according to Figs. 10 and 11. When the sample number is

\7, the recognition effect of CCA will decline drastically.

With more test samples, the CCA keeps a relatively perfect

recognition effect. In the sample 1, when the number of

training sample is 13, the recognition rate can reach

95.11 %; in the sample 2, with 8 9 7 low-resolution

images which are hard to be recognized by naked eyes, the

CCA can also reach a recognition rate of 70 %. These

results demonstrate that CCA algorithm is applicable to the

low-resolution images.

Fig. 8 Images in sample set 5

Fig. 9 Images in sample set 6

Table 1 Top recognition rates of the first test

PCA LDA LPP MDS CCA

Sample set 1 0.54 (140) 0.92 0.84 0.77 0.93

Sample set 2 0.32 (50) 0.78 0.65 0.71 0.76

Table 2 Top recognition rates of the second test

PCA LDA LPP MDS CCA

Sample set 1 0.54 (135) 0.90 0.77 0.78 0.93

Sample set 2 0.42 (45) 0.67 0.66 0.76 0.70

Fig. 10 Recognition rates versus the number of the training set in

sample set 1
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In the fourth test, as for everyone, we pick four high-

resolution samples and four low-resolution samples to

compose a training sample set, and the two low-resolution

images remained are regard as test sample set. Similarly,

we pick four high-resolution images and four low-resolu-

tion images in sample 4, and the remaining two face

images are regarded as test sample. For the PCA and LDA

tests, we use the mentioned four low-resolution images to

train and the two remaining low-resolution images to test;

the parentheses in the PCA test indicate the reserved

dimension; LDA test uses the PCA to pretreat and retain

98 % energy. Consistently,LPP utilizes the PCA to pretreat

and retain 98 % energy. Gaussian heat kernel with a var-

iance of 90- and two-nearest neighborhood graph are used

in LPP test on set 3, while a Gaussian heat kernel with a

variance of 100- and one-nearest neighborhood graph on

set 4. As for the MDA test, the number of iterations is 60,

and the results are shown in Table 3.

In the fifth test, for everyone, we pick three high-resolu-

tion samples and three low-resolution samples to form the

training sample set in the sample set 5, and the remaining one

low-resolution face image to form the test sample set. We

make similar procession on the set 6. For the PCA and LDA

tests, we use the three low-resolution images to train and one

low-resolution image to test. The parentheses in the PCA test

indicate the reserved dimension, and both LDA test and LPP

use the PCA to pretreat and retain 98 % energy. A Gaussian

heat kernel with same variance 1e4 is utilized on both set 5

and set 6. However, different nearest neighborhood graph is

adopted in LPP test, 16 for set 5 and 5 for set 6. As for the

MDA test, the number of iterations is 60, and the results are

shown in Table 4.

5 Conclusions

In this paper, CCA is firstly applied on low-resolution

degradation face recognition over long distance. We

extract the most correlated component between the low-

resolution and high-resolution images using CCA. CCA

reduces the requirements of the same dimension of images

and also avoids the mismatch between the low-resolution

images and high-resolution images. CCA achieves very

high recognition rates in our experiments on three face

databases. The experimental results show that CCA could

be successfully used on low-resolution degradation face

recognition over long distance. In the future, how to apply

the supervised CCA, locality preserving CCA and sparse

CCA on low-resolution degradation face recognition over

long distance deserves further studies.
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