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Abstract The accurate prediction of hourly runoff dis-

charge in a river basin during typhoon events is of critical

importance in operational flood control and management.

This study utilizes three model approaches to predict runoff

discharge in the Laonong Creek basin in southern Taiwan:

the hydrological engineering center hydrological modeling

system (HEC-HMS) model and two hybrid models which

combine the HEC-HMS model with a genetic algorithm

neural network (GANN) and an adaptive neuro-fuzzy

inference system approach (ANFIS). Hourly runoff dis-

charge data during seven heavy rainfall/typhoon events

were collected for model calibration (training) and vali-

dation. Six statistical indicators [i.e., mean absolute error,

root-mean-square error, coefficient of correlation, error of

time to peak discharge, error of peak discharge, and coef-

ficient of efficiency (CE)] were used to evaluate the pre-

diction accuracy. The simulation results indicate that the

HEC-HMS model cannot satisfactorily predict hourly

runoff discharge during the typhoon events. Both hybrid

approaches that use the HEC-HMS model in conjunction

with the GANN and ANFIS models can significantly

improve the prediction accuracy for the n-h-ahead runoff

discharge.

Keywords Runoff forecasting � Rainfall–runoff � HEC-
HMS � Artificial neural network � GANN � ANFIS

1 Introduction

Accurate prediction of runoff discharges is a critical topic

in hydrology and water resources. Hydrological problems

are highly nonlinear and complicated, exhibiting a wide

degree of variability in space and time [1]. Therefore,

hydrological modeling has always been an important task

for water resources planning and management [2].

Hydrological models provide a simplified representation

of an actual watershed system to obtain a better under-

standing of hydrological processes in the study area, e.g.,

the characteristics of a watershed and its responses to dif-

ferent inputs [2–4]. In the past decades, continuous efforts

have been made to develop accurate rainfall–runoff mod-

eling techniques. They can be divided into two general

classes: physically based and/or data-driven approaches.

Physically based models express the physical behavior of

the hydrological system by solving partial differential

equations that represent the flow processes within the

watershed to the best of our knowledge. Data-driven

models treat the relationship between rainfall (i.e., input)

and runoff (i.e., output) as a black box using historical

measured results with the algorithms developed in the areas

of statistics, soft computing, computational intelligence,

machine learning, and data mining [5–8].

Artificial neural networks (ANNs) are one kind of data-

driven models suitable for rainfall–runoff modeling as

reported in the previous studies [9–11]. ANNs learning the

rainfall–runoff relationship through the training process

can quantitatively predict the runoff without requiring the

catchment characteristics. ANNs also demonstrate the
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superiority over most classical time series modeling tech-

niques in terms of handling highly nonlinear processes

between input and output variables. Models of this type are

efficient and capable of giving excellent prediction results,

in comparison with those physically based models. Re-

zaeianzadeh et al. [12] carried out a comparative study of

rainfall–runoff prediction between a physically based

model and a data-driven model. They showed that the

hydrological engineering center hydrological modeling

system (HEC-HMS) model described the runoff discharge

response to rainfall events (to a certain degree). The mul-

tilayer perceptron neural network (MLPNN) model pre-

dicted peak flows and annual flood volumes more

accurately than the HEC-HMS model.

For better prediction accuracy, different thought has

been evolved. For example, the discharges simulated by a

single rainfall–runoff model can be further updated with

linear/nonlinear systems [13, 14]. Instead of switching from

one model to another, an alternative approach is the com-

bination of various forecasts produced from several models.

The basic idea is that better solutions could be obtained

since each model captures a certain aspect of the data.

Shamseldin [15] was the pioneer constructing the multi-

model combined predictions based upon five rainfall–runoff

models with three kinds of combinations (i.e., simple

averaging method, a regression-based scheme, and a neural

network approach). Generally, the combined models could

provide more accurate predictions than any single model.

Afterward, the multi-model combination has been exten-

sively implemented for hydrological research [16–21].

According to the complete literature review, it can be

recognized that simulating physical processes in a water-

shed are of critical importance for water resources system

management. The data-driven ANNs based upon sufficient

training with appropriate input–output data sets can accu-

rately predict the runoff discharge in the watershed [22, 23]

but with the drawback of black-box feature hindering the

simulation of physical processes [24]. The multi-model

combination approach for hydrological research is prom-

ising. Recently, Young and Liu [25] proposed a physically

based and ANN hybrid model. In their study, the perfor-

mance of the physically based model, the data-driven ANN

model, and the hybrid model was carefully examined. The

main conclusion was that the n-step ahead prediction from

the single ANN model showed apparent accumulated errors

although model of this type could approximate most non-

linear functions demanded by practice. The hybrid model

with the additional input effectively reduced the errors,

revealing the role of the physically based model. While the

hybrid model has improved the predicted runoff discharge

in a watershed, a challenge to determine an appropriate

structure as well as the interior parameters of the black-box

model still remains. The genetic algorithm (GA) and/or

fuzzy logic approach can be a solution to the conventional

used trial-and-error procedure.

The objective of the present study was to develop a new

hybrid model for rainfall–runoff forecasting. The well-

known HEC-HMS model was firstly applied to simulate the

runoff discharges in the Laonong Creek basin of southern

Taiwan. Two ANN models including genetic algorithm

neural network (GANN) and adaptive neuro-fuzzy infer-

ence system (ANFIS) were subsequently adopted to

improve the predictions from the HEC-HMS model under

different leading time. Six quantitative statistical measures

[the mean absolute error (MAE), the root-mean-square

error (RMSE), the coefficient of correlation, the error of

time to peak discharge, the error of peak discharge, and the

CE] were used to assess the predictions of runoff dis-

charges. The accuracy of these models is carefully dis-

cussed in this paper.

2 Study site and data collection

The Laonong Creek basin is a subbasin of the Kaoping

River watershed in southern Taiwan. The total area of the

Laonong Creek basin is 1,375 km2, and the length of the

main stream is 133 km. The mean elevation of the basin is

1,515 m, and the mean slope is 0.6574 m/m. The Laonong

Creek basin is of six-stream order. There are four rain

gauge stations in the basin: the Tengzhi, Meishan, Gaoz-

hong, and Tianchi stations. A gauge for discharge mea-

surement is also located at the Hsinfa Bridge station

(Fig. 1). Data from these stations were collected from the

Water Resources Agency, Taiwan. The measured rainfall

and runoff discharge during the Bilis Typhoon in 2006 and

the Sepat Typhoon in 2007 are shown in Fig. 2 for illus-

tration. The rainfall data during these two typhoon events

gave different patterns for four gauge stations, suggesting

that measurements of precipitation in the basin are subject

to regional and topographic effects.

3 Methodology

In this study, two hybrid models that combine the HEC-

HMS with GANN and ANFIS models were presented to

obtain an accurate rainfall–runoff prediction. In the fol-

lowing, a brief description of the well-known HEC-HMS

model and the basic idea of the hybrid models will be given.

3.1 The HEC-HMS rainfall–runoff model

The HEC-HMS model developed by the US Army Corps of

Engineers [26] can be applied to various types of hydro-

logical simulations and analyses [27].
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In the HEC-HMS model, land and water bodies in a

watershed can be classified as the directly connected

impervious and pervious surfaces. On the directly con-

nected impervious surface, precipitation runs off with no

volume losses. For the pervious land surfaces, the con-

tributing precipitation is subject to infiltration, which is

simply modeled without the consideration of storage and

movement of water within the soil layer. The overland flow

and near-surface flow are implicitly combined to form the

direct runoff.

In terms of the infiltration loss, partitioning of rainfall

into infiltration and runoff is defined/derived from a set of

empirical equations, i.e.,

Pe ¼
ðP� IaÞ2

P� Ia þ S
ð1Þ

where P and Pe are the accumulated rainfall depth and

precipitation excess at time t, respectively, Ia is the initial

abstraction (loss), and S is the potential maximum reten-

tion, i.e., the ability of a watershed to retain storm pre-

cipitation. Based upon analysis of many experimental

watersheds, the Soil Conservation Service (SCS) gave an

empirical relationship Ia = 0.2 S, where the maximum

retention S is determined using the following equation (SI

unit system, cm)

S ¼ 2;540

CN
� 25:4 ð2Þ

with the SCS curve number (CN) in the range between 1

and 100. The CN indicator determining storm runoff (or

spatially distributed infiltration capability) based on the

land use, land cover types, and hydrological soil group [28]

can be obtained from the standard table developed by the

SCS [29]. For example, the value of CN is 98 in an

impervious area.

Translation and attenuation of spatially distributed pre-

cipitation excess to runoff are modeled using the modified

Clark unit hydrograph (ModClark) algorithm [30]. The

storm hydrograph (Q) is calculated by convolving the

precipitation increments (P) with unit hydrograph ordinates

(U), i.e., Qn ¼
Pn�M

m¼1 PmUn�mþ1; where m increase from 1

to n. The time of concentration for a watershed tc (as a

function of basin length and slope) is used to calculate the

travel time or translation lag for each cell in the basin, i.e.,

tcell = tc (dcell/dmax), where dcell and dmax are the distance

from the cell to the outlet and the maximum traveling

distance in the watershed, respectively [27]. In addition, the

storage coefficient R is used to represent attenuation/

reduction of discharge as excess is stored in a watershed.

The coefficient value can be estimated as the flow divided

by its time derivative at the inflection point on the reces-

sion limb of the hydrograph. The cell outflow hydrograph

Fig. 1 Study site of Laonong Creek basin

Fig. 2 Measured rainfall and discharge data during the Bilis and

Sepat Typhoons. a, f Rainfall at the Gaozhong station. b, g Rainfall at
the Tengzhi station. c, h Rainfall at the Meishan station. d, i Rainfall
at the Tianchi station. e, j Runoff (discharge) at the Hsinfa Bridge

gauge station
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is routed (using a linear reservoir concept) with the fol-

lowing equation [27]

QðtÞ ¼ Dt
Rþ 0:5Dt

� IðtÞ þ 1� Dt
Rþ 0:5Dt

� Qðt � 1Þ
� �

ð3Þ

where Q(t) and Q(t - 1) are the outflow from storage,

respectively, at current time t and previous time t - 1;

I(t) is average inflow to storage at time t; R is the storage

coefficient; and Dt is the time increment.

Baseflow that defines a minimum river depth also plays

an important role in flood studies. Without consideration of

baseflow, models may underestimate water levels and fail

to identify inundated reaches. Typically, baseflow can be

addressed using an exponential decrease function Q = Q0

e-kt, where Q0 is an average value of the initial baseflow

before a storm; k is an exponential decay constant; t is the

time [31].

In this study, the hydrological modeling was carried out

by adopting the SCS-CN loss method, Clark transform

method, and recession baseflow method. Besides, the

Muskingum–Cunge Standard Section method was

employed for channel routing. The key parameters, CN, k,

tc, and R, are set to constant values which are 83.5, 0.35,

3.2, and 4.15, respectively. A sensitivity analysis is per-

formed with these four parameters. We found that CN and

tc values are the most sensitive and less sensitive parame-

ters to affect simulated results, respectively. The time step

was set as 1 h based upon the sampling frequency of

measured rainfall and discharge data in the typhoon events.

Note that the HEC-HMS model with given rainfall data

from the field measurement or numerical weather predic-

tions can be used to simulate or forecast the river runoff in

the historical, present, or future typhoon events. The out-

flow at each sampling time t is computed based upon the

information at the previous time t - 1 (see Eq. 3). Direct

computation form time t - 1 to t ? 1 (or t ? n) is not

available. The whole hydrograph is obtained after the

(recursive) time integration.

3.2 The HEC-HMS–GANN hybrid model

GA searches for the optimal value of a complex function

through a natural process of gene evolution: selection,

crossover, and mutation [32]. Initially, random population

of chromosomes is generated as candidate solutions. Then,

the fitness function (e.g., the MAE of predictions) of each

chromosome is evaluated to determine the probability for

the fitness-based selection. Subsequently, crossover oper-

ation combines a pair of selected chromosomes and alters

the gene components at specific positions to create the next

generation. The rarely happened mutation operator can

change an arbitrary gene component, so that the offspring

can have new (or even better) characteristics. The evalua-

tion of next population and the genetic manipulation pro-

cesses are repeated until the evolution has reached the stop

or convergent criterion. It has been proved that the genetic

manipulation (i.e., selection, crossover, and mutation)

Fig. 3 Architecture of the

back-propagation neural

network (BPNN) algorithm
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enables GA to explore virtually all regions of the state

space, exploit the promising areas, and find out the global

optima in a complicated problem [33].

ANN methods are capable of recognizing patterns in

complex data through a nonlinear mapping between inputs

and outputs. An optimal network architecture and its

associated weights play an important role in successful

ANN modeling. In most cases, the network parameters

(e.g., number of neurons and layers) are usually determined

based upon trial-and-error procedure. The weights are then

obtained by using the back-propagation algorithm. Actu-

ally, the optimality is not guaranteed due to a random type

of searching in a small state space [34]. To tackle the above

issue, the so-called GANN that applies GA to optimize

both the architecture and weights of ANN has been pro-

posed [35].

In this study, we construct the HEC-HMS–GANN

hybrid model using a three-layer network structure with 3,

3, and 1 neurons in the input, hidden, and output layers,

respectively (as shown in Fig. 3). Consistent with the

computation procedure of a physically based model, the

measured rainfall–runoff data at time t hour are given to

forecast runoff discharge at time t ? 1 h. Besides, the

physically based prediction result at time t ? 1 h serves as

an additional input since the computation of whole hyd-

rograph has been carried out over the time integration.

Thus, the three nodes in the input layer correspond to

Psyn(t), QHF(t), and QHEC(t ? 1), where PsynðtÞ ¼
P4

i¼1 wiPiðtÞ is the synthetic rainfall intensity at time

t hour; Pi(t) is the rainfall intensity at time t hour for dif-

ferent rain gauge stations (i = 1, 2, 3, and 4); wi is the

weighting factor determined by the Thiessen polygon

method; QHF(t) is the observed discharge at time t hour at

the Hsinfa Bridge gauge station; and QHEC(t ? 1) is the

runoff discharge at time t ? 1 h at the Hsinfa Bridge gauge

station obtained from the HEC-HMS model. The node in

the output layer is the hourly runoff discharge prediction

at time t ? 1 h at the Hsinfa Bridge gauge station,

QHF(t ? 1). Notice that we have also considered the input

rainfall–runoff data with more lagged times (which are

typically incorporated in time series modeling) and found

insignificant differences in the prediction results. For the

hidden layer, both the GA optimization and trial-and-error

procedure indicate an overfitting issue if more than three

hidden nodes are applied. Afterward, GA is further used to

optimize the weights for the determined network archi-

tecture through the random initialization, fitness calcula-

tion, and genetic manipulation (i.e., selection, crossover,

and mutation) procedures (see the flowchart in Fig. 4). In

terms of the GA parameters, the population size, maximum

generation, and crossover probability are 100, 5,000, and

0.8, respectively. When the training stage is completed, the

HEC-HMS–GANN hybrid model can be applied for the

1-h-ahead prediction. For a different lead time, a recursive

forecasting process is applied, i.e., the input node (for the

measured runoff discharge at the Hsinfa Bridge gauge

station) is updated from the output node (see Fig. 3).

3.3 The HEC-HMS–ANFIS hybrid model

An ANFIS is a kind of ANN based upon the fuzzy infer-

ence system (FIS), i.e., a representation of a FIS in an ANN

architecture. By the combination of ANN and FIS, the

ANFIS can learn the rules and membership functions from

data [36]. In the multilayer feed-forward network of an

ANFIS (see Fig. 5), each node performs a particular

function on incoming signals. To obtain the desired input–

output characteristics, the ANN learning capability (or

algorithm) is utilized to determine the adaptive FIS

parameters. We briefly describe the ANFIS network,

parameters, and learning algorithm as follows.

Determine the structure of neuron network (NN) model 

Initialize random values of weights and bias 

Obtain the prediction for the input data set  

Calculate the fitness (i.e. mean absolute error, MAE) 

Selection 

Crossover 

Mutation 

Stop criterion 
converge to the best fitness 
or reach maximum iterations

Obtain the best solution for the input data set 

Yes 

No 

(GA for the optimal weights/bias) 

Fig. 4 Flowchart of the GANN model
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3.3.1 Network

Layer 1 The input nodes generate grades for the inputs

based on the membership functions of the fuzzy

sets

Layer 2 The rule nodes apply the AND or the OR

operator to yield the firing strength for the

antecedent part in the rule

Layer 3 The average nodes calculate the normalized ratio

of the firing strength between the ith and all rules

Layer 4 The consequent nodes compute the contribution

of each rule using the first-order Sugeno fuzzy

model

Layer 5 The single output node sums all the incoming

signals and computes the overall output

according to the defuzzification process

3.3.2 Parameters and learning algorithm

The ANFIS mainly include the premise and consequent

parameters. The former describes the shape of the mem-

bership functions, and the latter addresses the overall sys-

tem output. The learning algorithm contains the gradient

descent and least-squares methods for adjusting the pre-

mise and consequent parameters, respectively. One can

further refer to Jang [36] and Nayak et al. [37] for the

mathematical details of these algorithms.

In this study, we also construct the HEC-HMS–ANFIS

hybrid model to forecast the hourly runoff discharge.

Similarly, we use three inputs and one output (see Fig. 5),

i.e., the relation of QHF(t ? 1) to Psyn(t), QHF(t), and

QHEC(t ? 1). For the model setting, two membership

functions are applied for each input. Types of membership

function are selected as Gaussian (or bell-shaped) and

linear for inputs and output, respectively. Also, a subtrac-

tive fuzzy clustering that can automatically generate fuzzy

inference systems by detecting clusters in input–output

training data is applied to establish the rule-based rela-

tionship. The model is developed using the fuzzy logic

toolbox of MATLAB [38].

3.4 Indices of simulation performance

To evaluate the performance of the HEC-HMS model, the

HEC-HMS–GANN hybrid model, and the HEC-HMS–

ANFIS hybrid model, six different criteria were used to

compare the predicted results with the observed data,

including the MAE, the RMSE, the coefficient of correla-

tion (R), the error of time to peak discharge (ETp), the error

of peak discharge (EQp), and the CE, according to the

following equations:

MAE ¼ 1

N

XN

i¼1

ðQmÞi � ðQoÞi
�
�

�
� ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

½ðQmÞi � ðQoÞi�
2

v
u
u
t ð5Þ

Fig. 5 Architecture of the

adaptive neuro-fuzzy inference

system (ANFIS) model
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R ¼
1
N

PN
i¼1 ðQmÞi � Qm

� �
ðQoÞi � Qo

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðQmÞi � Qm

� �2 � 1
N

PN
i¼1 ðQoÞi � Qo

� �2
q

ð6Þ

ETp ¼ Tm;p � To;p
�
�

�
� ð7Þ

EQp ¼
Qm;p � Qo;p

�
�

�
�

Qo;p
� 100% ð8Þ

CE ¼ 1�
XN

i¼1

½ðQoÞi � ðQmÞi�
2=

XN

i¼1

ðQoÞi � Qo

� �2 ð9Þ

whereN is the total number of data points,Qm is the predicted

runoff discharge, Qo is the observed runoff discharge, Tm,p

and To,p are the peak time for the predicted peak runoff

discharge and the observed peak runoff discharge, respec-

tively, Qm,p and Qo,p are the predicted and observed peak

runoff discharges, respectively; Qm ¼ 1
N

PN
i¼1 ðQmÞi; and

Qo ¼ 1
N

PN

i¼1

ðQoÞi.

4 Results and discussion

In this study, we apply three different approaches to predict

runoff discharge in the Laonong Creek basin in southern

Taiwan using the measured rainfall data during the his-

torical typhoon events (or numerical weather predictions

when considering the real operations). Notice that the

original HEC-HMS model is not modified. In the hybrid

models, the main idea is to treat the HEC-HMS simulation

as a predictor, similar to the commonly used predictor–

corrector concept in numerical modeling (e.g., see the cited

references in Young and Wu [39]). Due to the operational

nature of this work, the prediction lead time is further

extended (from t ? 1 to t ? 6) based upon a recursive

manner. In the following, the prediction results from the

HEC-HMS and two hybrid models are presented and

discussed.

Fig. 6 Comparison of the observed and simulated runoff discharges

at the Hsinfa Bridge gauge station during a June 9 Flood, b Typhoon

Bilis, c Typhoon Krosa, and d Typhoon Kamegi for model calibration

(training): observation (symbols), HEC-HMS (black and thin solid

lines), HEC-HMS–GANN (green and thin dashed lines), and HEC-

HMS–ANFIS (blue and thick solid lines)

Fig. 7 Comparison of the observed and simulated runoff discharges

at the Hsinfa Bridge gauge station for model validation using the

HEC-HMS model. a Typhoon Sepat, b Typhoon Sinlaku, and

c Typhoon Jangmi
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Table 1 Performance

assessment of runoff discharge

prediction for model calibration

Typhoon event Model Statistical parameter

MAE (m3/s) RMSE (m3/s) R ETP (h) EQP (%) CE

0609 flood HEC-HMS 17.71 24.35 0.957 1 2.34 0.908

HEC-HMS–GANN 15.52 20.37 0.989 0 10.91 0.935

HEC-HMS–ANFIS 7.35 10.66 0.991 1 5.39 0.982

Bilis HEC-HMS 32.63 42.65 0.938 0 10.79 0.846

HEC-HMS–GANN 14.93 19.75 0.987 0 10.48 0.967

HEC-HMS–ANFIS 6.42 10.49 0.996 0 1.27 0.991

Krosa HEC-HMS 37.29 63.04 0.984 0 5.96 0.955

HEC-HMS–GANN 18.06 25.12 0.997 1 6.21 0.993

HEC-HMS–ANFIS 5.47 12.28 0.999 0 0.93 0.998

Kamegi HEC-HMS 12.9 36.33 0.980 2 6.71 0.961

HEC-HMS–GANN 11.79 28.55 0.988 2 1.82 0.976

HEC-HMS–ANFIS 5.96 16.5 0.996 0 0.85 0.992

Table 2 Performance assessment of runoff discharge prediction for model validation

Typhoon event Model Lead time (h) Statistical parameter

MAE (m3/s) RMSE (m3/s) R ETP (h) EQP (%) CE

Sepat HEC-HMS – 42.15 62.96 0.968 1 9.16 0.933

HEC-HMS–GANN 1 19.58 33.22 0.991 1 2.51 0.981

2 27.00 39.20 0.987 0 2.20 0.974

4 36.97 49.95 0.979 0 1.39 0.958

6 41.01 54.71 0.975 0 1.27 0.950

HEC-HMS–ANFIS 1 18.74 37.70 0.989 0 8.75 0.976

2 23.47 43.63 0.985 0 16.73 0.968

4 32.30 55.83 0.975 0 22.53 0.948

6 37.76 63.81 0.967 0 23.91 0.932

Sinlaku HEC-HMS – 42.25 68.82 0.915 1 3.48 0.819

HEC-HMS–GANN 1 16.76 28.31 0.986 1 0.77 0.970

2 23.76 37.18 0.976 1 1.17 0.947

4 31.93 48.03 0.961 1 1.49 0.912

6 35.16 52.52 0.954 0 1.91 0.895

HEC-HMS–ANFIS 1 13.41 27.45 0.987 1 7.15 0.971

2 16.52 32.67 0.982 0 7.69 0.959

4 21.88 40.44 0.970 0 7.68 0.938

6 26.30 47.43 0.959 0 7.68 0.915

Jangmi HEC-HMS – 25.54 45.26 0.963 1 5.97 0.923

HEC-HMS–GANN 1 11.29 20.48 0.993 1 0.87 0.984

2 18.42 28.73 0.987 0 1.33 0.969

4 26.57 41.24 0.973 0 2.19 0.936

6 29.95 47.13 0.965 0 2.40 0.917

HEC-HMS–ANFIS 1 12.55 28.08 0.988 1 8.16 0.971

2 16.26 34.51 0.980 1 7.61 0.955

4 21.67 42.29 0.969 1 7.62 0.933

6 26.13 48.19 0.959 1 7.62 0.913
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4.1 Event-based rainfall–runoff modeling using HEC-

HMS

For the HEC-HMS model application in the Laonong

Creek basin, hourly rainfall and runoff discharge data were

collected for model calibration and verification. Data dur-

ing four heavy rainfall events—the June 9 Flood (2006),

Typhoon Bilis (2006), Typhoon Krosa (2007), and

Typhoon Kamegi (2008)—were used for model calibra-

tion. Data during three typhoon events—Typhoon Sepat

(2007), Typhoon Sinlaku (2008), and Typhoon Jangmi

(2008)—were used for model validation.

Based on the measured rainfall and discharge data, a 1-h

time step was selected for use in the event hydrological

modeling. The model calibration and validation results for

the HEC-HMS model are shown in Figs. 6 and 7, respec-

tively. Further, Tables 1 and 2 present their performance

assessment. Overall, the model predicts the runoff rea-

sonably well during the calibration phase. For example, the

simulation of Typhoon Kamegi gives MAE = 12.9 m3/s,

RMSE = 36.33 m3/s, R = 0.980, ETp = 2 h, EQp =

6.71 %, and CE = 0.961. In terms of the validation events,

the observed flow discharge cannot be totally captured. The

HEC-HMS model notably fails in predicting the runoff

discharge pattern during Typhoon Sinlaku, although the

predicted time and discharge of peak flow are acceptable.

The MAE, RMSE, R, ETp, EQp, and CE values under the

worst prediction are 42.45 m3/s, 68.82 m3/s, 0.915, 1 h,

3.48 %, and 0.819, respectively.

4.2 Runoff prediction using modified/hybrid models

4.2.1 The HEC-HMS–GANN model prediction

Figures 6 and 8 show the runoff discharge predicted by the

HEC-HMS–GANN hybrid model. For both training and

validation phases, the 1-h-ahead forecasting results are in

good agreement with the observation data. The predictions

of the HEC-HMS model are apparently improved within

the presented combination framework. Tables 1 and 2

provide the model performance assessment. An excellent

training of the hybrid model has been achieved according

to the statistical parameters. For model validation phase,

Fig. 8 Comparison of the observed and simulated runoff discharge at

the Hsinfa Bridge gauge station for the validation phase using the

HEC-HMS–GANN model. a Typhoon Sepat, b Typhoon Sinlaku, and

c Typhoon Jangmi Fig. 9 Comparison of the observed and simulated runoff discharge at

the Hsinfa Bridge gauge station during Typhoon Jangmi using the

HEC-HMS–GANN model with a 1-h-, b 2-h-, c 4-h-, and d 6-h-ahead

predictions
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the 1-h-ahead predictions yield MAE, RMSE, R, ETp, EQp,

and CE in the ranges of 11.29–19.58 m3/s, 20.48–33.22

m3/s, 0.986–0.993, 0–1 h, 0.77–2.51 %, and 0.970–0.984,

respectively.

Further, the n-h-ahead predictions based on a recursive

manner were carried out to examine the capability of the

trained HEC-HMS–GANN model. Figure 9 compares the

1-h-, 2-h-, 4-h-, and 6-h-ahead runoff predictions with the

measured data during Typhoon Jangmi. Overall, the pre-

dicted patterns remain quite close to the measured data,

capturing discharge and time of the peak flow. The per-

formance assessment in Table 2 also reveals that the

accuracy is influenced by the lead time because there is

some accumulated error. As the lead time increases, the

performance gets worse. For the 6-h-ahead runoff predic-

tion during Typhoon Jangmi, the MAE, RMSE, R, ETp,

EQp, and CE values are 29.95 m3/s, 47.13 m3/s, 0.965, 0 h,

2.40 %, and 0.917, respectively.

4.2.2 The HEC-HMS–ANFIS model prediction

Figures 6 and 10 also compare the measured and predicted

runoff discharge for the HEC-HMS–ANFIS hybrid model.

The 1-h-ahead predictions mimic the observations in the

training and validation phases. Tables 1 and 2 show the

performance assessment. The overall training results are

better than those obtained from the HEC-HMS–GANN

hybrid model. For the most concerned validation proce-

dure, the MAE, RMSE, R, ETp, EQp, and CE parameters

are about 12.55–18.74 m3/s, 27.45–37.70 m3/s,

0.987–0.989, 0–1 h, 7.15–8.75 %, and 0.971–0.976 in the

1-h-ahead prediction, respectively.

Similarly, the n-h-ahead predictions based upon the

recursive manner (shown in Fig. 5) were conducted using

the HEC-HMS–ANFIS model. Figure 11 compares the

1-h-, 2-h-, 4-h-, and 6-h-ahead runoff predictions with the

measured data during Typhoon Jangmi. The predicted

patterns remain quite close to the measured data. However,

the peak discharge is slightly overestimated in the simu-

lation. For the 6-h-ahead runoff prediction during Typhoon

Jangmi, the MAE, RMSE, R, ETp, EQp, and CE values are

26.13 m3/s, 48.19 m3/s, 0.959, 1 h, 7.62 %, and 0.913,

respectively. Likewise, the performance gets worse as the

lead time increases.

Fig. 10 Comparison of the observed and simulated runoff discharge

at the Hsinfa Bridge gauge station for the validation phase using the

HEC-HMS–ANFIS model. a Typhoon Sepat, b Typhoon Sinlaku, and

c Typhoon Jangmi
Fig. 11 Comparison of the observed and simulated runoff discharge

at the Hsinfa Bridge gauge station during Typhoon Jangmi using the

HEC-HMS–ANFIS model with a 1-h-, b 2-h-, c 4-h-, and d 6-h-ahead

predictions
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4.3 Comparison of the runoff discharge predictions

To evaluate the prediction performance of these three

modeling approaches, the observation–prediction pairs of

hourly runoff discharge during the calibration (training)

and validation phases are presented using scatter plots in

Figs. 12 and 13, respectively. The HEC-HMS model did

not yield a good prediction of the runoff discharge at the

outlet of the watershed (Figs. 12a, 13a). The 1-h-ahead

runoff discharge predictions yielded by the HEC-HMS–

GANN model (Figs. 12b, 13b) and HEC-HMS–ANFIS

model (Figs. 12c, 13c) are superior to that obtained with

the HEC-HMS model. Figures 14 and 15 further compare

the scatter plots for the n-h-ahead forecasting results from

the HEC-HMS–GANN and HEC-HMS–ANFIS models,

respectively. The two hybrid models both exhibit accu-

mulated errors as the lead time increases (see the statistical

parameters RMSE and R in Table 2). Notice that the

detailed comparison raises an interesting point for a deeper

discussion. While these two models are well trained, the

results for ANFIS are overall better than GANN. However,

the fuzzy logic approach (ANFIS) and genetic algorithm

(GANN) show quite different generalization capability in

the validation phase. The HEC-HMS–ANFIS model tends

to overpredict the peak flow and to underpredict the falling

limb of the hydrograph (see Figs. 11d, 15c). By contrast,

the HEC-HMS–GANN model can capture the peak flow

with a similar underestimation of the recession (see

Figs. 9d, 14c). For the EQp value that physically explains

the error of peak flow, therefore, the performance of the

HEC-HMS–GANN model is better than that of the HEC-

HMS–ANFIS model.

5 Conclusions

Three modeling approaches (i.e., the HEC-HMS model, the

HEC-HMS–GANN hybrid model, and the HEC-HMS–

ANFIS hybrid model) were used to predict runoff dis-

charges in the Laonong Creek basin in southern Taiwan.

Four heavy rainfall events were used for model calibration

(training), and three typhoon events were used for model

validation. The relative performance of these models was

comprehensively evaluated using various statistical indices

(i.e., MAE, RMSE, R, ETp, EQp, and CE).

The calibrated and validated results indicated that the

HEC-HMS model cannot satisfactorily predict runoff

Fig. 12 Scatter plots of predicted and measured runoff discharges for

the model calibration/training. a HEC-HMS model, b HEC-HMS–

GANN model, and c HEC-HMS–ANFIS model

Fig. 13 Scatter plots of predicted and measured runoff discharges for

the model validation. a HEC-HMS model, b HEC-HMS–GANN

model, and c HEC-HMS–ANFIS model
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discharges during typhoon events. Two novel alternative

approaches combining the physically based model (i.e.,

HEC-HMS) and the black-box models (i.e., GANN and

ANFIS) were proposed to predict the runoff discharge with

improved accuracy. The results indicated that the 1-h-

ahead prediction obtained by the HEC-HMS–GANN and

HEC-HMS–ANFIS hybrid models was better than that

from HEC-HMS model. It demonstrates that the combi-

nation of physically based and black-box models can yield

the excellent prediction results of runoff discharge during

the typhoon events. When the forecasting lead time

increases, the performance of the HEC-HMS–GANN and

HEC-HMS–ANFIS models gets worse. We also found that

the HEC-HMS–GANN and HEC-HMS–ANFIS models

show quite similar performance in n-h-ahead predictions of

runoff discharge according to statistical indices RMSE and

R values. In terms of the EQp value, the performance of the

HEC-HMS–GANN model is generally better than that of

the HEC-HMS–ANFIS model.
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