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Abstract This paper presents a novel method of gait rec-

ognition that uses the image and depth sensors of the

Microsoft (MS) Kinect to track the skeleton of a moving

body and allows for simple human–machine interaction.

While video sequences acquired by complex camera systems

enable very precise data analyses and motion detection,

much simpler technical devices can be used to analyze video

frames with sufficient accuracy in many cases. The experi-

mental part of this paper is devoted to gait data acquisition

from 18 individuals with Parkinson’s disease and 18 healthy

age-matched controls via the proposed MS Kinect graphical

user interface. The methods designed for video frame data

processing include the selection of gait segments and data

filtering for the estimation of chosen gait characteristics. The

proposed computational algorithms for the processing of the

matrices acquired by the image and depth sensors were then

used for spatial modeling of the moving bodies and the

estimation of selected gait features. Normalized mean stride

lengths were evaluated for the individuals with Parkinson’s

disease and those in the control group and were determined to

be 0.38 and 0.53 m, respectively. These mean stride lengths

were then used as features for classification. The achieved

accuracy was[90 %, which suggests the potential of the use

of the image and depth sensors of the MS Kinect for these

applications. Further potential increases in classification

accuracy via additional biosensors and body features are also

discussed.

Keywords Image and depth sensors � Gait disorders �
Motion features � MS Kinect � Video processing �
Parkinson’s disease

1 Introduction

Systems that enable human–machine interactions and

spatial modeling have a wide range of applications in

modern engineering, robotic and biomedical devices [1].

While complex synchronized video camera systems [5–

7] represent precise but expensive technical solutions, it is

possible to use much cheaper systems that employ depth

sensors to acquire data with sufficient accuracy for many

applications. The Microsoft (MS) KinectTM [2–4, 8] allows

the recording of such data sets via its image and depth

sensors (illustrated in Fig. 1a) and the transfer of these data

to appropriate mathematical environments, such as
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e-mail: marik@ciirc.cvut.cz
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MATLAB, for further processing. The acquired data sets

can then be used to propose methods and algorithms for

movement analyses, scene modeling [9], gesture and body

recognition [10–12], rehabilitation [13] and posture

reconstruction [14–16]. These new devices, combined with

motion sensors and specific control units, are also often

used in robotic systems control [11, 17–19].

This article is devoted to the use of the MS Kinect

system for movement data acquisition, detection of gait

features and analysis of gait disorders [20–24] via selected

digital signal and image processing methods. The proposed

graphical user interface was used to acquire data in a

clinical environment from patients with Parkinson’s dis-

ease [25–27] and from healthy individuals to form a ref-

erence dataset. Specific algorithms were then designed and

used for motion tracking, gait feature evaluation and the

classification of the observed sets of individuals. The

obtained results were evaluated from both the engineering

and neurological perspectives.

The proposed methods show how modern sensors can be

used to acquire video frames of matrices that enable

human–machine interaction. The application discussed

here is related to the analysis of gait disorders but could be

further extended to other areas, including rehabilitation

engineering and robotic systems control.

2 Methods

2.1 Data acquisition

The information related to the body motions of the selected

individuals was recorded with the MS Kinect sensors,

which are illustrated in Fig. 1a. The RGB camera in the

middle of the device recorded video image frames with a

resolution of 480 9 640 pixels and a frequency of 30

frames/s. The depth sensor consists of an infrared projector

(on the left) and an infrared camera (on the right) that use

the structured light principle [28, 29] to detect the distances

of image pixels with a precision of 4–40 mm depending

upon the distance from the sensor. The resulting matrix has

a size of 480 9 640.

                              (a) KINECT SENSORS 
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Fig. 1 An example frame

recorded by the MS Kinect

including: a the MS Kinect’s

RGB camera for image video

recording and depth sensors,

which includes a projector and a

receiver, for the acquisition of

depth frame matrices, b the

image frame matrix combined

with the skeleton estimate and

c the contour plot of the depth

frame matrix with distances

from the selected plane
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Figure 1b, c present portions of selected frames that

were recorded by the image and depth sensors. The

selected image presented in Fig. 1b was combined with

the skeleton projection and the estimated positions of the

joints. Figure 1c illustrates information from the depth

sensor. The contour plot in Fig. 1c presents the distances of

the individual pixels from a selected plane that was at a

distance of 2,200 mm from the MS Kinect. Structure of the

whole system for data acquisition is presented in Fig. 2.

The proposed graphical user interface (GUI) was used to

record MS Kinect data from the observed individuals and

to process the information in the MATLAB (version

2014b) environment [30]. The GUI was designed to allow

the simple recording of video frames in clinical environ-

ments via the following steps:

1. the recording of the name and surname of the patient;

2. an initialization of the MS Kinect system (connected

through a USB); and

3. the recording or interruption of data acquisition.

Additional functions of the graphical user interface inclu-

ded the selection of further parameters for recording and

the previewing of data sets including the options of pre-

viewing image and depth sensor data from the database.

The skeleton tracking algorithm, which processes the data,

also provides information about the locations of joints as

specified in Table 1. The joint numbering and the con-

nection map are presented in Table 1 as well.

Both the RGB camera and the depth sensors store

information in 640 9 480 element matrices according to

the schematic diagram of the system presented in Fig. 2. A

histogram of differences in static portions of consecutive

image frames illustrates the accuracy of the MS Kinect

image sensor. Figure 2 also presents a similar histogram of

these differences for the static portions of the matrices that

include the depth sensor data. The accuracy of the system

is fundamental for spatial data modeling [31–34] and, as

expected, was in the range of -50 to 50 mm.

The experimental portion of this study was devoted to the

analyses of the gaits of the following two sets of individuals:

(1) 18 patients with Parkinson’s disease (PD) and (2) 18

healthy age-matched individuals (Norm). The MS Kinect that

was used for data acquisition was installed approximately

60 cm above the floor. Each individual repeated a straight

walk of approximately 4 m (five steps) back and forth 5 times.

Each video record acquired with the sampling rate of

30 frames/s contained useful information about the direct

walks but also unnecessary frames recorded during the turns.
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Fig. 2 The coordinate system

for the MS Kinect data

acquisition and distribution of

image and depth sensors errors

based on differences of

subsequent submatrices in their

static regions for selected data

frames

Neural Comput & Applic (2015) 26:1621–1629 1623

123



2.2 Skeleton tracking and stride length estimation

The skeleton tracking algorithm processed data matrices

from the image and depth sensors. The algorithm also

provided coordinates that specified the spatial locations of

all joints in the selected coordinate system, as illustrated in

Fig. 2, by utilizing the joint numbering and connection

maps defined in Table 1.

The steps of proposed algorithm for gait feature detec-

tion that utilized the MS Kinect can be summarized as

follows:

1. a preprocessing of the skeleton data to remove gross

errors and finite impulse response (FIR) filtering of the

joint positions to minimize observation errors;

2. the rejection of frames with substantial errors based on

the temporal evolution of the centers of mass (COM)

as evaluated based on joints 1, 2 and 3 (i.e., the hip-

center, spine, and shoulder-center joints, respectively)

and presented in Fig. 3a, b;

3. the extraction of the gait segments in one direction and

the rejection of distorted frames;

4. the evaluation of the positions of the leg centers from

joints 15, 16 and 19, 20 (i.e., the ankle and foot joints

of the left and right legs, respectively) in each segment

(Fig. 3a) and estimation of the average step length via

the evaluation of their Euclidian distances (Fig. 3c)

and the detection of their maxima;

5. the evaluation of the lengths of the legs of each

individual based on the spatial positions of joints 13,

14, 15 and 17, 18, 19 (i.e., the hip, knee and ankle

joints of the left and right legs, respectively) and with

the results presented in Fig. 4a, the averaging for each

individual and normalization of the step lengths; and

6. the estimation of the stride features via the averaging

of the normalized step lengths for each individual in

each segment of a straight walk.

Further stride features, including walking speed, can be

detected in a similar manner using data from the image and

depth sensors of the MS Kinect.

3 Results

Table 2 presents descriptions of the data sets from the

18 individuals (12 men and 6 women) with the Parkinson’s

disease and the 18 controls (7 men and 11 women). All

patients met UK Parkinson’s Disease Society brain bank

clinical diagnostic criteria, and they were monitored in the

movement disorder unit.

Using the proposed algorithm after the reduction in the

observation errors, the numerical results obtained from the

data (acquired with the MS Kinect at a sampling rate of 30

frames per second) are presented in Table 2. The resulting

average stride lengths (SLs) suggest that this system could

be used to classify individuals with Parkinson’s disease

(SL = 0.38 m, SD = 0.06) using the age-matched indi-

viduals (SL = 0.53 m, SD = 0.05) as a reference set. As

expected the average stride length was shorter for the PD

group than for the reference set.

The leg lengths were analyzed separately to normalize

the stride lengths of the specific individuals and to increase

the reliability of the gait features. The joint positions in

three-dimensional space were estimated with the MS

Kinect system and used to evaluate the Euclidean distances

between the hip and knee and the knee and ankle. The sums

of these values for each leg were used to estimate leg

lengths. The average difference in the lengths of the legs of

each of the 36 individuals was 11 mm with a standard

deviation of 8 mm, which was within a normal range

according to a long history of clinical observations. The

average values of the leg lengths of each individual were

calculated (across all subjects, the average leg length was

0.784 m with a standard deviation of 0.011 m) and used for

the stride length normalization. Figure 4a presents these

results for the reference set of subjects.

Table 1 Skeleton positions and connection map of an individual used

for data acquisition and processing of video records

Skeleton positions

Joint No. Joint No.

Hip center 1 Wrist right 11

12
11

20

10

19

9

18

17

4

1
2

3

SKELETON NUMBERING

5

13
6

8
7

16

14

15

Spine 2 Hand right 12

Shoulder center 3 Hip left 13

Head 4 Knee left 14

Shoulder left 5 Ankle left 15

Elbow left 6 Foot left 16

Wrist left 7 Hip right 17

Hand left 8 Knee right 18

Shoulder right 9 ankle right 19

Elbow right 10 Foot right 20

Connection map

Part Connection vectors

Spine [1 2], [2 3], [3 4]

Left hand [3 5], [5 6], [6 7], [7 8]

Right hand [3 9], [9 10], [10 11], [11 12]

Left leg [1 13], [13 14], [14 15], [15 16]

Right leg [1 17], [17 18], [18 19], [19 20]
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Figure 4b, c present the age-dependent stride lengths

for the individuals with Parkinson’s disease (positive set)

and the age-matched controls (negative set). While for

the positive set, it is possible to observe the decrease

in the stride lengths with the regression coefficient

RC = -0.0082 m/year, no such dependence exists for the

reference set. For this reason, no normalization to the age

of individuals was performed in this study.

Figure 5 presents the distributions of stride lengths for

the individuals with Parkinson’s disease (positive set) and
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the age-matched controls (negative set), and these data

correspond to those in Table 2.

A more detailed analysis of the data involving sensi-

tivity and specificity [35] is presented in Fig. 5. As shown

in Fig. 5a, it was possible to determine the true negative

(TN) and false positive (FP) rates in the negative set (i.e.,

the controls) and the true positive (TP) and false negative

(FN) rates in the positive set (i.e., the patients with

Table 2 Stride length results for the two sets of individuals (PD:

Parkinson’s disease, Norm: control) with the standard deviations (SD)

Group size Subjects age (years) Stride length (m)

Range Mean SD Mean SD

PD: 18 52–87 73.6 9.2 0.38 0.06

Norm: 18 32–81 55.0 14.5 0.53 0.05

Negative Set

Positive Set

0.7

0.62

0.54

0.46

0.38

0.3

0

1

2

3

(a) HISTOGRAMS OF STRIDE LENGTHS

Criterion

Threshold

TN − True Negative
FP − False Positive
FN − False Negative
TP − True Positive

0.7 0.66 0.62 0.58 0.54 0.5 0.46 0.42 0.38 0.34 0.3
50

60

70

80

90

Criterion

(b) ACCURACY

Maximal Accuracy: 91.7 % 
 Optimal Criterion: 0.47

0.7 0.66 0.62 0.58 0.54 0.5 0.46 0.42 0.38 0.34 0.3
0

0.2

0.4

0.6

0.8

1

Criterion

(c) SENSITIVITY AND SPECIFICITY PLOTS

Specificity
Sensitivity

Fig. 5 Stride length analysis for

the individuals with Parkinson’s

disease (positive set) and the

age-matched controls (negative

set) presenting: a the

distributions of true and false

results across criterion values,

b the accuracy achieved with

the optimal criterion value and

c the sensitivity/specificity plots
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Parkinson’s disease) for any given threshold step length

value. Next, the accuracy (ACC), sensitivity (SE) and

specificity (SP) were evaluated according to the following

relations:

ACC ¼ TN þ TP

TN þ FP þ TP þ FN
; ð1Þ

SE ¼ TP

TP þ FN
; ð2Þ

SP ¼ TN

TN þ FP
ð3Þ

with respect to the selected criterion (step length) value.

The resulting plot in Fig. 5b shows that it was possible to

achieve an accuracy of 91.7 % at the optimal step length

threshold of 0.47 m.

Figure 6 presents the average stride lengths (with stan-

dard deviations) of the individuals in the positive and

negative sets and the results of the accuracy analyses.

These results suggest that stride length could be a useful

feature for the classification of individuals into Parkinson’s

disease and non-Parkinson’s disease groups.

4 Conclusion

Human–machine interaction and computer intelligence are

key components of the rapidly developing interdisciplinary

field that combines sensor technology, data fusion, com-

puter vision, image processing, control engineering and

robotics. Numerous papers have been devoted to the

identification and detection of motion features [36–38]

with applications in biomedical signal processing and the

diagnoses of gait disorders [39, 40]. The latest research [41,

42] related to wearable and non-wearable systems indicate

the increasing interest in portable systems and specific

body sensors for gait analysis.

This motion analysis and Parkinson’s disease recogni-

tion can be performed by specialized and expensive camera

systems with specific sensors. These systems are com-

monly used for the detections of movement with high

accuracy. This paper presents a new approach to the ana-

lysis of gait disorders that utilizes the relatively inexpen-

sive MS Kinect. The MS Kinect has a depth sensor

accuracy of 4–40 mm, which is sufficient for many appli-

cations. The results obtained suggest that the MS Kinect

can be used for the detection of gait disorders and for the

recognition of Parkinson’s disease. The maximum accu-

racy observed in the present study was 91.7 %.

Further work will be devoted to the study of more

extensive data sets and the evaluation of a higher number

of parameters to increase the classification accuracy of

motion features. We assume that combination of data from

an increased number of biosensors will produce pattern

matrices that can be used for more accurate classifications

across a wide range of criteria values and provide tools for

remote diagnostics and wireless data processing.
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