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Abstract This paper introduces a method to classify EEG

signals using features extracted by an integration of

wavelet transform and the nonparametric Wilcoxon test.

Orthogonal Haar wavelet coefficients are ranked based on

the Wilcoxon test’s statistics. The most prominent dis-

criminant wavelets are assembled to form a feature set that

serves as inputs to the naı̈ve Bayes classifier. Two bench-

mark datasets, named Ia and Ib, downloaded from the

brain–computer interface (BCI) competition II are

employed for the experiments. Classification performance

is evaluated using accuracy, mutual information, Gini

coefficient and F-measure. Widely used classifiers,

including feedforward neural network, support vector

machine, k-nearest neighbours, ensemble learning Ada-

boost and adaptive neuro-fuzzy inference system, are also

implemented for comparisons. The proposed combination

of Haar wavelet features and naı̈ve Bayes classifier con-

siderably dominates the competitive classification approa-

ches and outperforms the best performance on the Ia and Ib

datasets reported in the BCI competition II. Application of

naı̈ve Bayes also provides a low computational cost

approach that promotes the implementation of a potential

real-time BCI system.

Keywords Wavelet transformation �Wilcoxon test � EEG
signal classification � BCI competition II � Naı̈ve Bayes

classifier

1 Introduction

BCIs are tools which use brain activity in humans or ani-

mals to activate external devices without participation of

peripheral nerves and muscles. They are designed to enable

a direct connection between brain and external devices.

BCIs can be applied to different fields and particularly

useful in the treatment of neuromuscular disorders of pa-

ralysed patients because of their ability to bypass the motor

system using only brain activity. For individuals for whom

conventional methods are ineffective, BCIs are a useful

communication-and-control option.

EEG is the recording of electrical activity of the cerebral

cortex nerve cells in the brain. Examination of the EEG

signals to understand brain activity is a fundamental

problem of a BCI. Therefore, constructing a usable and

reliable BCI requires an accurate and effective classifica-

tion of multichannel EEG signals.

There have been a number of methods introduced for

EEG signal classification in the literature from low-cost

techniques such as linear discriminant analysis (LDA) [1–

4], logistic regression [5–7], k-nearest neighbour [8–10], to

computationally expensive approaches such as support

vector machine (SVM) [11–13], artificial neural networks

[14–17], and Adaboost ensemble learning [1, 18].

Subasi and Gursoy [19] proposed the use of discrete

wavelet transform for feature extraction and SVM for

classifying EEG signals. Gandhi et al. [20] on the other

hand investigated wavelet function among existing mem-

bers of the wavelet families for EEG data analysis.

An approach called clustering technique-based least-

square SVM for the classification of EEG signals is pre-

sented in [21]. Sun et al. [22] applied Bayesian classifiers

with Gaussian mixture models for online EEG data pro-

cessing. Alternatively, Hsu [23] examined an adaptive
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EEG analysis system for two-session, single-trial classifi-

cation of motor imagery data. The adaptive LDA dynam-

ically tunes its parameters by the Kalman filter when the

left- and right-hand motor imagery data are classified.

Likewise, Hu et al. [24] suggested a combination of

coefficients of joint regression model and spectral powers

of EEG data at two specific frequencies to separate dif-

ferent motor imagery patterns. Cinar and Sahin [25] in

another approach utilized particle swarm optimization and

radial basis function networks for classifying EEG signals.

EEG signal classification in general requires investiga-

tion of a feature extraction. A survey of EEG signal ana-

lysis techniques was presented in [26]. Autoregressive

(AR) models, Fourier transform (FT), time–frequency

analysis and wavelet transform (WT) are broadly used to

extract salient features [27]. AR, FT and conventional

time–frequency methods commonly assume that EEG

signal is stationary. However, this assumption is often

invalid in practice. Therefore, WT is recommended rather

than AR and FT for non-stationary transient signals like

EEG. WT provides combined information in time–fre-

quency domain that can enhance the performance of EEG

classification. WT has been successfully applied to a

number of problems including those of medical data ana-

lysis, e.g. see [28–31].

A method using Haar WT and Wilcoxon test is proposed

for EEG signal feature extraction. Haar wavelets are cho-

sen due to their compact support and orthogonality, which

allows the discriminative features of data samples to be

expressed with a few wavelet coefficients. The Wilcoxon

test is employed as a filter approach by ranking the sig-

nificant levels of all features. The orthogonal characteristic

of Haar wavelets ensures the proper and effective

employment of the Wilcoxon criterion.

This paper introduces a combination between WT and

naı̈ve Bayes classifier for EEG signal classification in a

BCI system. Naı̈ve Bayes assumes that the value of a

particular feature is independent to the presence or absence

of any other feature. This assumption is often invalid in

practice. However, the employment of Haar wavelet fea-

tures with orthogonal characteristic allows naı̈ve Bayes to

be carried out efficiently. Therefore, the use of naı̈ve Bayes

in combination with Haar wavelets for BCI motor imagery

data classification is advocated.

Through this study, we examine and compare perfor-

mance of the wavelet-naı̈ve Bayes model with classification

methods frequently applied in the literature. Experiments

are conducted using two benchmark datasets, named Ia and

Ib, downloaded from the brain–computer interface (BCI)

competition II to make sure conclusions driven out of this

study are valid and general. The competition winners of the

Ia and Ib datasets, respectively, were Mensh et al. [32] and

Bostanov [33]. We also show the dominance of the

proposed approach against these winner methods, which are

briefly presented in the following.

Mensh et al. [32] used gamma-band power as a potential

control signal for BCIs due to its correlation with high-

level mental states. Although most frequency-based BCIs

are based on the mu and beta rhythms, the authors recog-

nized that most of the useful frequency information for

classification in the Ia dataset is in the gamma band, with

essentially none below 24 Hz. The discriminant analysis

was utilized efficiently in this dataset despite its linearity

limitation.

Bostanov [33] in another approach used the continuous

WT and Student’s two-sample t-statistic for EEG data fea-

ture extraction. The method performs fully automated

detection and quantification of event-related brain potential

components in the timescale plane. The classical linear

discriminant analysis is then employed for the classification.

The arguments of the paper are organized as follows.

The next section presents the main methodology where

wavelet coefficients are selected by the Wilcoxon test and

naı̈ve Bayes classifiers are used for classification. Section 3

is devoted for experimental results and discussions, fol-

lowed by concluding remarks in Sect. 4.

2 Naı̈ve Bayes and wavelets selected by Wilcoxon test

for EEG signal classification

Naı̈ve Bayes classifier [34] requires a small number of

training data to estimate the parameters. This is an

advantage of the naı̈ve Bayes classifier when applied for

motor imagery data classification as there are often a

limited number of trials in these applications.

The proposed methodology is diagrammed in Fig. 1.

WT is applied to data of each channel separately to extract

the information contained in the signals. The wavelet

coefficients are then ranked based on the Wilcoxon test

statistics to select the most discriminative coefficients of

each channel. In the next step, these selected coefficients

are combined to produce a feature set that serves as inputs

to the naı̈ve Bayes classifier. The following presents in

detail WT and the Wilcoxon test for wavelet coefficient

selection.

2.1 WT for feature extraction

WT represents a signal in a time–frequency fashion [35].

WT eliminates the requirement of signal stationarity

that often applies to conventional methods. Once the

wavelets (the mother wavelet) u(x) is fixed, translations

and dilations of the mother wavelet can be formed

u x�b
a

� �
; a; bð Þ 2 Rþ � R

� �
. It is convenient to take special

values for a and b as a = 2-j and b = 2-jk where j and k
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are integers. One of the simplest wavelets is the Haar

wavelet, which has been used to solve various practical

problems. Haar functions can uniformly approximate any

continuous function. Dilations and translations of the

function u, which is ujk(x) = const.u(2jx - k), define an

orthogonal basis in L2(R). This means that any element in

L2(R) may be represented as a linear combination of these

basis functions. The scaling function in Haar wavelet is

simply unity on the interval [0,1) as / xð Þ ¼ 1ð0� x\1Þ.
Once the transformation is completed, a procedure to

select coefficients that best separate the different classes is

performed. A conventional approach to this procedure is

the maximum variance (MV) criterion. MV selects coef-

ficients (features) that have greatest variance. Quiroga et al.

[36] argued that coefficients with the largest variance do

not necessarily show the best discrimination among clas-

ses. Accordingly, selected coefficients should have the

largest deviation from normality for the best discrimina-

tion. For this end, Quiroga et al. [36] suggested using the

Lilliefors modification of a Kolmogorov–Smirnov (KS)

test for normality. The test compares the cumulative dis-

tribution function of the data F(x) with that of a Gaussian

distribution G(x) given a dataset x. Deviation from nor-

mality is measured by max(|F(x) - G(x)|).

Nevertheless, the KS test follows an unsupervised strat-

egy that does not emphasize the difference or the discrim-

ination of the classes. It is important to note that even in a

single class, features may still present a large deviation from

normality. If this context occurs, the KS test may nominate

these features although they do not refer to the difference

among the classes. Thus, the information used by KS test

may not be appropriate to guarantee good discrimination

properties of a feature passing the test. In this paper, we

introduce a method using the Wilcoxon test to select elite

wavelet coefficients for classification. Unlike the MV or KS

test, the Wilcoxon method provides information about the

equality of population locations of the classes. It involves a

supervised approach that takes into account class labels to

separate features of different classes. The following sub-

section scrutinizes backgrounds of the Wilcoxon method.

2.2 Wilcoxon method

Wilcoxon rank sum test is equivalent to the Mann–Whitney

U test, which is a nonparametric test for equality of pop-

ulation locations (medians). The null hypothesis is that two

populations enclose identical distribution functions,

whereas the alternative hypothesis refers to the case two

distributions differ regarding the medians. The normality

assumption regarding the differences between the two

samples is not required. That is why this test is used instead

of the two-sample t test in many applications when the

normality assumption is concerned.

The main steps of the Wilcoxon test are summarized

below [37, 38]:

1. Assemble all observations of the two populations and

rank them in the ascending order.

2. The Wilcoxon statistic is calculated by the sum of all

the ranks associated with the observations from the

smaller group.

3. The hypothesis decision is made based on the p value,

which is found from the Wilcoxon rank sum distribu-

tion table.

In the application of the Wilcoxon test for wavelet

coefficient selection, the absolute values of the standard-

ized Wilcoxon statistics are utilized to rank coefficients.

Note that the Haar wavelets are orthogonal. This ensures

that the higher ranking coefficients are more prominent.

3 Experiments and discussions

3.1 Performance evaluation metrics

Accuracy, F1 score statistics (F-measure), Gini coefficient

and mutual information are metrics used to evaluate

Fig. 1 Wavelets selected by Wilcoxon test as inputs to Naı̈ve Bayes

classifier
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classification performance in the experiments. The

F-measure is a single measure of a classification proce-

dure’s usefulness. The F-measure considers both the

‘‘Precision’’ and ‘‘Recall’’ of the procedure to compute the

score. Precision is the number of correct positive results

divided by the number of predicted positive results. On the

other hand, Recall is the number of correct positive results

divided by the number of actual positive results. The F-

measure is the harmonic mean of Precision and Recall

expressed as follows:

F-measure ¼ 2� Precision� Recall

Precisionþ Recall
ð1Þ

The higher the F-measure, the better the predictive power

of the classification technique. A score of 1 (or 100 %)

means the classification procedure is perfect.

Gini coefficient (index) is an empirical measure of

classification performance based on the area under a

receiver operating characteristic curve (AUC). It is a linear

rescaling of AUC: 2 9 AUC - 1. The greater the Gini

index, the better performance is the classifier.

The mutual information (MI) between estimated and

true labels is calculated by:

IðX; YÞ ¼
X

y2Y

X

x2X
pðx; yÞ log pðx; yÞ

pðxÞpðyÞ ð2Þ

where p(x, y) is the joint probability distribution function of

estimated and true class labels X and Y, and p(x) and

p(y) are the marginal probability distribution functions of

X and Y, respectively.

3.2 Datasets

Experiments in this study are deployed using the two widely

used Ia and Ib datasets downloaded from the BCI Compe-

tition II. The data were generated by Birbaumer et al. [39].

Description of the Ia dataset is available on the com-

petition website as follows. ‘‘The dataset was taken from a

healthy subject. The subject was asked to move a cursor up

and down on a computer screen, while his cortical poten-

tials were taken. During the recording, the subject received

visual feedback of his slow cortical potentials (Cz-Mas-

toids). Cortical positivity leads to a downward movement

of the cursor on the screen. Cortical negativity leads to an

upward movement of the cursor. Each trial lasted 6 s.

During every trial, the task was visually presented by a

highlighted goal at either the top or bottom of the screen to

indicate negativity or positivity from second 0.5 until the

end of the trial. The visual feedback was presented from

second 2 to second 5.5. Only this 3.5-s interval of every

trial is provided for training and testing. The sampling rate

of 256 Hz and the recording length of 3.5 s results in 896

samples per channel for every trial’’.

Number of training trials is 268 where 135 trials are of

class ‘‘1’’ and 133 trials are of class ‘‘2’’, which correspond

to moving a cursor up and down. Number of testing trials

of this dataset is 293. ‘‘EEG data were taken from the

following positions: Channel 1: A1-Cz (10/20 system)

(A1 = left mastoid), Channel 2: A2-Cz, Channel 3: 2 cm

frontal of C3, Channel 4: 2 cm parietal of C3, Channel 5:

2 cm frontal of C4, Channel 6: 2 cm parietal of C4’’.

On the other hand, ‘‘the Ib dataset was taken from an

artificially respired ALS patient’’. The subject was asked to

move a cursor up and down on a computer screen, while his

cortical potentials were taken. During the recording, the

subject received auditory and visual feedback of his slow

cortical potentials (Cz-Mastoids). Cortical positivity leads

to a downward movement of the cursor on the

screen. Cortical negativity leads to an upward movement

of the cursor. Each trial lasted 8 s.

During every trial, the task was visually and auditorily

presented by a highlighted goal at the top (for negativity) or

bottom (for positivity) of the screen from second 0.5 until

second 7.5 of every trial. In addition, the task (‘‘up’’ or

‘‘down’’) was vocalised at second 0.5. The visual feedback

was presented from second 2 to second 6.5. Only this 4.5-s

interval of every trial is provided for training and testing.

The sampling rate of 256 Hz and the recording length of

4.5 s results in 1,152 samples per channel for every trial.

EEG data were taken from the following positions: Chan-

nel 1: A1-Cz (10/20 system) (A1 = left mastoid), Channel

2: A2-Cz, Channel 3: 2 cm frontal of C3, Channel 4: 2 cm

parietal of C3, Channel 5: vEOG artefact channel to detect

vertical eye movements, Channel 6: 2 cm frontal of C4,

Channel 7: 2 cm parietal of C4’’.

Number of training trials in this dataset is 200 where

classes ‘‘1’’ and ‘‘2’’ both have the same number of trials at

100. Number of testing samples is 180.

EEG signals recorded in the Ia and Ib datasets exhibit

noisy, embedded outliers, non-stationary and multidimen-

sional characteristics. Data of individual channels show

different spectra. Plots presented in Fig. 2 demonstrate

more detailed the differences among the channels. For

example, in the Ia dataset, signals in channel 1 (A1-Cz) are

recorded in greater amplitudes than those in channel 2 (A2-

Cz) at the same frequency. Similarly, in the Ib dataset,

signal amplitudes in the channel 3 (2 cm frontal of C3) are

larger than those in channel 6 (2 cm frontal of C4).

3.3 Feature extraction

The Haar WT at level 4 is implemented for each channel.

Then, some filter approaches are applied to remove coef-

ficients with low absolute values, little variation, small

ranges or low entropy. For each criterion, the threshold for

removing coefficients may be varied. For example, the 10th
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percentile is chosen as the threshold for every criterion. It

means that coefficients are removed if they have absolute

values in the lowest 10 % of the dataset. After that, coef-

ficients with variances, ranges and entropy values less than

the 10th percentile are also disregarded. These coefficients

are generally not of interest because they have a low

potential to discriminate the classes. Taking into account,

these features may enhance noise and computational bur-

den of the feature selection. As the aim is to select the most

prominent feature of each channel to form the feature set,

these filters often do not affect the selection because salient

features are not removed by these procedures. They rather

help to reduce the number of features before performing

the Wilcoxon test and thus diminish computational costs of

the test. These processes are applied to both training and

testing sets simultaneously to ensure features that are

removed or retained in both sets are analogous.

Figure 3a, b displays the distributions of wavelet coef-

ficients obtained by WT on channel 1 of the Ia dataset and

channel 6 of the Ib dataset, respectively. The original signal

is a sum of the coarse approximation component A4 and

four detail components D1–D4. Each component corre-

sponds to a particular frequency bandwidth. The approxi-

mations are the low frequency of the signal, whereas the

details are the high-frequency components. The blue tri-

angular marks indicate the most discriminative coefficients

selected through the statistical test based on the Wilcoxon

method. Alternatively, the blue diamond marks specify the

coefficients chosen by the KS test.

The Wilcoxon statistics of wavelet coefficients of

channel 1 of the Ia dataset and channel 6 of the Ib dataset

are exemplified in Fig. 4a, b, respectively. The most

informative coefficient is indicated by ranking the Wilco-

xon statistics of all coefficients. The coefficient with the

greatest statistic of each channel is selected to form the

feature set.

Distributions of the first feature (i.e. wavelet coefficient

of channel 1) of the feature set for the Ia and Ib datasets are

illustrated in Fig. 5a, b, respectively. It can be seen that

there is a disturbance and vague distinction of two classes

in both datasets.

The feature set in the Ia dataset consists of six features

corresponding to six channels. Likewise, there are seven

features resulting from seven channels of the Ib dataset.

Figure 6 displays the example 3D projections of the feature

sets derived from the training samples of the Ia and Ib

datasets, respectively. Obviously, there is a huge overlap

between the two classes in both datasets. The feature set in

the Ia dataset shows a clearer distinction between the two

classes: ‘‘1’’ and ‘‘2’’. Accordingly, we would expect to

obtain a greater classification performance on the Ia dataset

compared to that of the Ib dataset.

3.4 Results and discussions

For comparison, the following procedures: feedforward

neural network (FFNN), support vector machine (SVM),

k-nearest neighbours (kNN), ensemble learning Adaboost

and adaptive neuro-fuzzy inference system (ANFIS) are

also executed. Tables 1 and 2 present results of the pro-

posed wavelet-naı̈ve Bayes method and the comparable

techniques deployed on the Ia and Ib datasets, respectively.

With nondeterministic classifiers (i.e. FFNN, ANFIS),

results are the average values over 30 independent trials.

For these methods, standard deviation statistics are also

reported adjacent to the means. Note that all results are

displayed in percentage.

We also report here the best results of the competition

on the two datasets, which can be seen at http://www.bbci.

de/competition/ii/results/index.html. The winners of the Ia

and Ib datasets, respectively, were Mensh et al. [32] and

Bostanov [33].

Mensh et al. [32] obtained the greatest accuracy on the Ia

dataset at 88.7 %. However, with the same method, the

authors were just able to obtain 43.9 % accuracy on the Ib

dataset. On the other hand, the method of Bostanov [33]

Fig. 2 Amplitude comparisons

between channels of the a Ia

dataset and b Ib dataset
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derived the best performance on the Ib dataset with the

accuracy at 54.4 %. This method, however, could just pro-

duce the accuracy at 82.6 %on the Ia dataset. These statistics

reveal the fact that none of the two competition-winner

methods performs effectively on both Ia and Ib datasets.

In contrast, the proposed wavelet-naı̈ve Bayes clearly

outperforms both competition-winner methods in both

datasets. Wavelet-naı̈ve Bayes obtains 90.10 and 56.11 %

accuracy in the Ia and Ib dataset, respectively. The com-

parisons among the classifiers also highlight the superiority

of the naı̈ve Bayes against the competitive classifiers. The

dominance of wavelet-naı̈ve Bayes is shown not only in

accuracy but also in other performance measures, i.e.

F-measure, Gini index and MI (Tables 1, 2).

Figure 7 presents the accuracy comparisons when per-

forming classifiers using features selected by KS test and

Wilcoxon test. Noticeably, the performance of applications

of the Wilcoxon features is superior to those of the KS

features through all classifiers. This is understandable as

the KS test selects features without a reference to the class

labels (i.e. an unsupervised approach). Inversely, the Wil-

coxon method takes into account the class labels in

Fig. 3 Wavelet coefficients of a channel 1 of the Ia dataset and b channel 6 of the Ib dataset

Fig. 4 Wilcoxon statistics to

select coefficients: a channel 1,

Ia dataset, b channel 6, Ib

dataset

Fig. 5 Distribution of the first

feature (Channel 1) of the a Ia

dataset, b Ib dataset
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examining the features and also provides the information

about the equality of population locations of the classes so

that it is a more efficient feature selection.

Fivefold cross-validation is applied to further verify

performance of the proposed method. The training and

testing data samples in each dataset, which were split for

the BCI competition II (see Sect. 3.2 for descriptions), are

merged to yield a large dataset before applying the cross-

validation strategy. Each newly formed dataset is divided

randomly into fivefolds where fourfolds of data are used

for training and the last fold is for testing. This process is

repeated 30 times for each classifier using either of the two

feature sets selected by KS and Wilcoxon tests, and the

average accuracy results are reported in Tables 3 and 4 for

the Ia and Ib datasets, respectively.

To draw convincing conclusions in evaluating feature

sets attained by KS and Wilcoxon tests, we implement the

Kruskal–Wallis test [40] for comparing two sets of accuracy

results. The Kruskal–Wallis test is a nonparametric version

of the classical one-way ANOVA. As the results over 30

running times may not be normally distributed, they may

violate the normal assumption of the ANOVA. Therefore,

the use of Kruskal–Wallis test is appropriate. The test

returns the p value for the null hypothesis that all samples in

two sets of results are drawn from the same population. For

example, the value in the last column of the SVM row in

Table 3 (0.000) is the p value of the Kruskal–Wallis test

performed on two sets (populations) of classification

results: one set consists of 30 outcomes of SVM using the

KS features and another set comprises 30 outcomes of SVM

using the Wilcoxon features. In detail, this p value, which is

smaller than 0.01, demonstrates that there is a significant

difference (at 1 % level) between the two populations. It

also means that the Wilcoxon feature set significantly

dominates the KS feature set at the 1 % significance level.

It is seen from Tables 3 and 4 that all classifiers when

employing the Wilcoxon feature set are considerably supe-

rior to when using the KS feature set. On average, the

accuracy difference between these two feature sets is 16.33

and 8.55 % in the Ia and Ib datasets, respectively. This dif-

ference ismaximally up to 20.53 % in the Ia dataset (the case

of SVM) or 11.75 % in the Ib dataset (the case of naı̈ve

Bayes). Noticeably, the proposed combination of naı̈ve Ba-

yes classifier with Haar wavelets selected by Wilcoxon test

outperforms all other competitive methods. It achieves the

average accuracy at 82.59 %,which is themaximumvalue in

the Ia dataset (see Table 3). In the Ib dataset (Table 4), it also

attains the maximum accuracy at 62.89 %.

Fig. 6 Examples of 3D

projection of the a Ia feature set,
b Ib feature set

Table 1 Performance on the Ia dataset

F-measure Gini index MI Accuracy

The best result of competition by Mensh et al. [32] 88.70

The accuracy obtained by Bostanov [33] 82.60

SVM 85.71 68.67 40.42 84.30

kNN 81.57 67.83 41.34 83.96

Adaboost 83.97 65.92 35.19 82.94

FFNN 80.17

(±5.65)

62.49

(±9.90)

32.47

(±9.81)

81.26

(±4.95)

ANFIS 86.91

(±1.86)

73.88

(±3.97)

44.35

(±5.08)

86.94

(±1.99)

Naı̈ve

Bayes

89.90 80.19 53.57 90.10

Table 2 Performance on the Ib dataset

F-measure Gini index MI Accuracy

The best result of competition by Bostanov [33] 54.40

The accuracy obtained by Mensh et al. [32] 43.90

SVM 54.84 6.67 0.32 53.33

kNN 56.22 10.00 0.72 55.00

Adaboost 55.14 7.78 0.44 53.89

FFNN 55.42

(±3.64)

8.07

(±5.60)

0.70

(±0.66)

54.04

(±2.80)

ANFIS 57.49

(±1.71)

10.70

(±3.16)

0.91

(±0.48)

55.35

(±1.58)

Naı̈ve

Bayes

57.75 12.22 1.09 56.11
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Results also show that the p values of the Kruskal–

Wallis pairwise tests are all smaller than 0.01 (see last

column of Tables 3, 4). Therefore, the Kruskal–Wallis tests

reject the null hypothesis that results of two feature

selection methods come from the same distribution at the

1 % significance level. This shows the statistically signif-

icant dominance and robustness of Wilcoxon method

against the KS test method introduced in [36].

The processing time of classification methods is repor-

ted in Table 5 and graphically illustrated in Fig. 8a, b for

the Ia and Ib datasets, respectively. The experiments are

carried out on a computer that has the Intel(R) Core(TM)

i7-2600K CPU @ 3.40 and 3.70 GHz with RAM at

16.0 GB running on the 64-bit Windows 7 Operating

System. Note that the reported statistics measure the time

for modelling and classifying the entire testing datasets.

Being an ensemble learning method, Adaboost spends the

largest amount of time at approximately 9 s to deal with

each dataset. FFNN, SVM, kNN and ANFIS accomplish

classification of the data very quickly with less than a

second. Naı̈ve Bayes is the fastest method and thus it shows

a processing time advantage against the other competitive

classifiers. It needs less than 2.5 ms to process the entire Ia

and Ib datasets with 293 and 180 testing trials, respectively.

Obviously, the amount of time required by naı̈ve Bayes to

classify a single trial is remarkably small, which is

approximately equivalent to 0.014 ms. This implies that

the proposed method can be applied into a real-time EEG

signal analysis system.

4 Conclusions

This paper introduces a method for EEG data classification

using wavelets selected by Wilcoxon test and naı̈ve Bayes

classifier. Well-known methods such as MV and KS tests

for selecting discriminative wavelet coefficients examine

features in an unsupervised approach without reference to

the class labels. This does not guarantee the separability of

the feature set. The proposed method in this study suggests

using the Wilcoxon test, which performs in a supervised

strategy. The Wilcoxon test separates data samples

according to the class labels and select features by evalu-

ating the population locations of the classes. The Wilcoxon

test is employed by ranking wavelet coefficients. As Haar

Fig. 7 Accuracy obtained by

features selected by KS test and

Wilcoxon test in the a Ia

dataset, b Ib dataset

Table 3 Average accuracy of 30 running times with fivefold cross-

validation in the Ia dataset

Classifiers KS Wilcoxon Kruskal–Wallis

p values

SVM 58.13 ± 4.26 78.65 ± 3.82 0.0000

kNN 66.72 ± 4.14 82.54 ± 2.88 0.0000

Adaboost 67.43 ± 4.11 80.64 ± 3.42 0.0000

FFNN 64.13 ± 5.94 80.62 ± 2.79 0.0000

ANFIS 67.30 ± 4.29 81.75 ± 3.45 0.0000

Naı̈ve Bayes 65.10 ± 4.58 82.59 ± 3.75 0.0000

Table 4 Average accuracy of 30 running times with fivefold cross-

validation in the Ib dataset

Classifiers KS Wilcoxon Kruskal–Wallis

p values

SVM 51.01 ± 4.82 62.32 ± 4.04 0.0000

kNN 50.48 ± 5.60 58.55 ± 5.79 0.0000

Adaboost 50.75 ± 4.86 57.15 ± 5.46 0.0000

FFNN 50.61 ± 5.94 57.41 ± 5.85 0.0001

ANFIS 50.70 ± 5.90 57.63 ± 5.54 0.0001

Naı̈ve Bayes 51.14 ± 4.61 62.89 ± 4.89 0.0000

Table 5 Average processing time (in seconds) of classifiers

Classifiers Ia dataset Ib dataset

SVM 0.03 0.02

kNN 0.01 0.01

Adaboost 8.84 8.73

FFNN 0.31 0.23

ANFIS 0.46 0.4

Naı̈ve Bayes 2.48 9 103 2.39 9 103
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wavelets are orthogonal, this employment of the Wilcoxon

criterion as a filter approach is advocated.

Experimental results on two benchmark datasets down-

loaded from the BCI competition II exhibit the superiority

of the Wilcoxon feature selection against the KS test

approach. Results of the Kruskal–Wallis test through the

fivefold cross-validation procedure strengthen the robust-

ness of the Wilcoxon feature set against the KS feature set.

The proposed combination between Haar wavelets and

Wilcoxon test therefore provides an effective approach to

EEG signal feature extraction.

Results also show great performance dominance of

naı̈ve Bayes against other comparable classifiers, including

FFNN, SVM, kNN, Adaboost and ANFIS. There is a

synergy between Haar wavelets and naı̈ve Bayes as their

combination generates the greatest classification accuracy

among competitive methods. This synergy is understand-

able because the most crucial assumption of naı̈ve Bayes

about the independence of features is absolutely satisfied

by the orthogonal characteristic of Haar wavelets. Notice-

ably, naı̈ve Bayes in combination with wavelets outperform

the two winning methods of both benchmark Ia and Ib

datasets in the BCI competition II by 1.40 and 1.71 %,

respectively.

With regard to processing time, naı̈ve Bayes classifier

requires a low computational expense. Less than a milli-

second is needed to classify a signal trial. This enables an

online real-time BCI system to be implemented effectively.

High accuracy and low computational cost clearly dem-

onstrate the win–win benefit of the proposed algorithm. It

therefore can be utilized in the development of a fully

automated motor imagery EEG signal classification sys-

tem, which is simple, accurate and reliable, for BCI

applications. Clinically, the proposed approach can be

applied as an authentic indicator to observe mental states of

paralysed and disabled people and diagnose different brain

related diseases in medical practice.

As two datasets used in this research are cortical posi-

tivity or negativity controlled BCIs, which are somehow

particular because this controlling method is not popular in

comparison with other kinds of BCI complementation, it

would be worth to apply the proposed approach to various

kinds of BCI complementation in a future research.
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